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Multiparticle instability in a spin-imbalanced Fermi gas
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Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple
fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up-
and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in
momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive
this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability
extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of
a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity
out of Cooper pairs.
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I. INTRODUCTION

Attractive interactions have a long and noteworthy history as
the progenitors of strongly correlated states. One of the earliest
yet most profound insights was that attractive interactions
between up- and down-spin electrons may induce a pairing
instability, resulting in the formation of Cooper pairs [1].
These Cooper pairs then form the basis of the many-body
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity
[2,3]. Furthermore, even when there are unequal numbers of
up- and down-spin particles in a system, Fulde and Ferrell [4]
and, separately, Larkin and Ovchinnikov [5] (FFLO) showed
that it is still energetically favorable for up- and down-spin
particles from their respective Fermi surfaces to form Cooper
pairs, leading to a strongly correlated superconducting phase
in spin-imbalanced Fermi gases [6,7]. However, the density of
states in momentum at the Fermi surface of the majority-spin
particles is greater than that of the minority-spin species,
so the number of bound pairs that can exist is limited by
the number of minority-spin particles, leaving many of the
majority-spin particles at their Fermi surface unpaired and
so uncorrelated. We propose a multiparticle instability that
involves multiple majority-spin particles for each minority-
spin particle, allowing us to utilize all of the potential of the
majority-spin particles for contributing correlation energy. We
find that the number of particles involved in the instability per
species is proportional to the density of states in momentum at
their respective Fermi surfaces. The multiparticle instability
has more binding energy per particle than a Cooper pair,
so could replace the Cooper pair as the building block of a
superconducting state in spin-imbalanced Fermi gases.

The prototypical experimental realization of an imbal-
anced Fermi gas is electrons in an external magnetic field.
Most superconductors are destroyed by an external magnetic
field, reverting to the normal phase. However, some mate-
rials, including CeCoIn5 [8] and κ-(BEDT-TTF)2Cu(NCS)2

[9], which are superconducting at zero magnetic field, with
increasing field undergo a phase transition into an exotic
second superconducting state, before a further transition into
the normal phase. Other materials, including ErRh4B4 [10]

and ErNi2B2C [11], display overlap of ferromagnetism and
superconductivity at zero applied field, and it has recently
been suggested that Bi2Sr2CaCu2O8+x exhibits some char-
acteristics of an FFLO-like phase in the pseudogap regime
[12]. Further possible realizations of FFLO superconductivity
in spin-imbalanced Fermi gases include an ultracold atomic
gas of fermions trapped in one dimension that displays a
transition between superconducting phases [13], or a spin-
orbit coupled superconductor with imbalanced Fermi surfaces
[14,15]. However, the exotic superconducting state has not
been fully characterized in any of these systems, leaving the
true nature of the ground state an open question.

We follow the prescription of Cooper [1] to study the
multiparticle instability on top of the Fermi surfaces. Working
in second quantization notation, we construct a trial wave
function for a multiparticle instability of several majority-spin
particles binding to a (potentially smaller) number of minority-
spin particles to make the binding energy per particle larger
than for a Cooper pair. The optimal ratio for the number of
majority- to minority-spin particles is found to be the ratio of
the densities of states in momentum at their respective Fermi
surfaces.

To verify our multiparticle instability, we analyze the
system with exact diagonalization. We confirm that our second
quantized wave function captures the crucial correlations of the
exact solution, we expose additional insights into the structure
of the wave function, and verify our conclusion that the optimal
number of particles in the instability is set by the ratio of the
densities of states in momentum.

II. THEORY

To explore the possibility of the multiparticle instability, we
study a two-spin fermionic system with an attractive contact
interaction at zero temperature. The BCS Hamiltonian takes
the form

Ĥ =
∑
σ,k

ξσkc
†
σkcσk − g

∑
k,k′,q

c
†
↑(q−k)c

†
↓kc↓k′c↑(q−k′), (1)
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FIG. 1. Idealized representation of the spin-imbalanced system showing Fermi surfaces for the down- (light blue circle) and up-spin (light
red fragment of circle) species, with shaded areas denoting the allowed momentum states extending outwards by the Debye momentum kD.
Also shown are Fermi surface arcs, bounded by thick blue lines for the down-spin species and thick red lines for the up-spin species, for (a) the
simplest instability of one up-spin and one down-spin particle, and (b) a proposed multiparticle instability with (N↑,N↓) = (2,1), indicating the
momentum states used in the trial wave functions.

where σ ∈ {↑ , ↓} is the spin index, ξσk is the single-particle
dispersion for spin species σ and momentum k, c

†
σk (cσk) is

a creation (annihilation) operator for a fermionic particle, and
g > 0 is the strength of the attractive contact interaction. In the
absence of interactions, the ground state of the Hamiltonian in
Eq. (1) is a filled Fermi sea,

|FS〉 =
∏

ξ↑k↑<E↑F

c
†
↑k↑

∏
ξ↓k↓<E↓F

c
†
↓k↓ |0〉, (2)

with species-dependent Fermi energies EσF (corresponding to
Fermi momenta kσF) and |0〉 being the vacuum state. Without
loss of generality we fix the number of particles in the Fermi
sea of the up-spin species to be greater than or equal to that of
the down-spin species. We follow the prescription of Cooper
[1] and assume that the noninteracting ground state remains
undisturbed for ξσk < EσF, and focus only on a few-particle
instability at ξσk � EσF. We work in a general number D � 2
of dimensions.

A. Fermi surface arcs

The idealized conceptual situation where we expect a
multiparticle instability to be present consists of two Fermi
surfaces for the different species that are different sizes, but
otherwise geometrically similar. In Fig. 1, we show example
Fermi surfaces for the up- and down-spin particles in D = 2
dimensions. Above the Fermi surfaces are the unoccupied
momentum states that can host the multiparticle instability,
which for typical phonon-mediated interactions extend over
a species-independent Debye momentum kD. We assume
that kD/kσF � 1, as for many conventional superconductors
[16–18].

To construct the trial wave function for the multiparticle
instability, we start by developing multiparticle basis states. To
capture all possible correlations in the system, we require that

the interaction term in the Hamiltonian can couple the different
basis states. As the interaction term conserves momentum, all
basis states must have the same total momentum. To construct
these basis states, first consider the Cooper pair situation
with only one up-spin and one down-spin particles in the
instability. We start with a basis state that has both particles
on their respective Fermi surfaces on opposite sides of the
Fermi seas [at the momenta labeled q↑1 and −q↓1 in Fig. 1(a)].
In systems with anisotropic Fermi surfaces, like many of the
candidate systems for FFLO [19–21], the Cooper pair (and,
later, the multiparticle instability) will be dominated by the
lowest-curvature parts of the Fermi surface, and so in a general
dispersion we place the initial basis state at the points on the
Fermi surfaces with the lowest curvature.

If we move away from these starting momenta, tangentially
to the Fermi surfaces by equal and opposite momenta for
the different species to conserve momentum, we eventually
reach the Debye momentum kD above the Fermi surfaces
where there are no more momentum states accessible via the
interaction term [reach the outer edge of the shaded regions
in Fig. 1(a)]. The tighter curvature of the down-spin species
means we will first run out of allowed momentum states for
the down-spin species [at the point −q↓1 − k↓1 in Fig. 1(a)].
The angular width of the allowed down-spin momentum states
thus sets the angular width of the up-spin momentum states
for Cooper pairs.

We refer to the allowed momentum states for the particles
as forming “arcs” on the Fermi surfaces. An idealized version
of the available momentum states for the down-spin species is
indicated in Fig. 1(a) by the arc above the down-spin Fermi
surface bounded by blue lines, with angular width θ . The cor-
responding up-spin species arc is shown bounded by red lines.

Because it was the down-spin species that exhausted its
available momentum states first in the Cooper pair situation in
Fig. 1(a), we wasted the opportunity for some up-spin species
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momentum states to become involved in the instability and so
lower the energy of the system. We can make use of twice
as many up-spin momentum states by duplicating the arc of
up-spin momentum states that were available in the Cooper
pair situation, offsetting the arcs so they do not intersect as
required by Pauli exclusion, and placing a particle in each arc.
If we allow either up-spin particle to interact with the down-
spin particle, we have increased the variational freedom in the
system and would generically expect the binding energy to
become larger. Two such Fermi surface arcs for the up-spin
species are shown in Fig. 1(b), bounded by red lines.

We can generalize the above argument to include more than
two up-spin and more than one down-spin particles; in general,
we may have N↑ up-spin arcs and particles, and N↓ down-spin
arcs and particles. However, if we include too many particles,
the gradients of the Fermi surfaces of the different species
will differ radically at the extremal Fermi surface arcs, and it
will not be possible to move around one species’ arc without
immediately pushing the other species out of their allowed
momentum states. We bound the maximum extent of the Fermi
surface arcs by noting that when the tangents to the species’
Fermi surfaces are parallel it is possible to move particles of
both species simultaneously without either being forced from
their allowed momentum states. For dispersions with inversion
symmetry, this is achieved when the total angular widths of the
two species’ arcs are equal, shown in Fig. 1(b) with the total
width of the arcs of both species taking the value θ .

The densities of states in momentum of the occupied arcs,
νσ , describe the availability of momentum states throughout
all arcs for each species, in our two-dimensional example
being proportional to θ . The density of states in momentum
per particle is then νσ /Nσ . The species with the smaller value
of this ratio limits the angular size available for each particle
to move in, and we refer to this as the “critical” species, with
Nc particles and density of states in momentum νc.

To show that an instability with multiple particles in separate
Fermi surface arcs is the energetically favorable solution
for a broad class of spin-imbalanced systems, we follow
the approach of Cooper [1] to construct a variational wave
function for the multiparticle instability. We demonstrate that
in spin-imbalanced systems the multiparticle instability gives
an improved binding energy over traditional Cooper pairs.

B. Basis states

To formalize the above description of the Fermi surface arcs,
we label the angular center of each arc, on the Fermi surface, by
a q vector qσ i . These q vectors therefore satisfy |qσ i | = kσF

and ξσqσ i
= EσF. For kD � kσF and so small θ , the qσ i can

be taken to be parallel, |qσ i − qσj | � |qσ i |. All the momenta
within a particular arc are described by qσ i + kσ i , where the
vectors kσ i indicate the positions of the particles within the
Fermi surface arcs, and for small kD � kσF we have |kσ i | �
|qσ i |. This guarantees ξ↑(q↑i+k↑i ) � E↑F and ξ↓(−q↓j −k↓j ) � E↓F

so that the particle momenta lie near their corresponding Fermi
surfaces. Examples of this labeling procedure are shown in
Fig. 1.

The proposed multiparticle instability is an excitation of
(N↑,N↓) correlated particles on top of the undisturbed Fermi
seas, with each particle existing in a unique arc. This can be

constructed out of basis states

|K↑; K↓〉 =
N↑∏
i

c
†
↑(k↑i+q↑i )

N↓∏
j

c
†
↓(−k↓j −q↑j )|FS〉, (3)

where Kσ = (kσ1,kσ2, . . . ,kσNσ
) is an Nσ × D matrix of

particle momenta in D spatial dimensions.

C. Trial wave function

The trial wave function for a system with a given set of qσ i

vectors is a sum over basis states with optimizable coefficients
α(K↑,K↓),

|ψ〉 =
∑

K↑,K↓

′
α(K↑,K↓)|K↑; K↓〉, (4)

where the sum is over all Nσ momentum components kσ i of
each matrix Kσ , with the prime on the sum indicating that we
only sum over kσ i such that

∑N↑
i k↑i = ∑N↓

j k↓j , ensuring
momentum conservation. We take the α(K↑,K↓) coefficients
to be nonzero only if all of the momenta kσ i lie within their
respective arcs of the Fermi surfaces. With N↑ = N↓ = 1,
Eq. (4) collapses to the trial wave function for a Cooper pair.

D. Kinetic energy

To find an analytic expression for the energy expectation
value E, we first focus on the kinetic energy term and
linearize the dispersions near the Fermi surfaces, ξσp ≈ (|p| −
kσF)ξ ′

σkσF
. Here, kσF is the momentum corresponding to the

Fermi energy, which for small enough kD � kσF can be
considered constant over the Fermi surface arcs, and ξ ′

σkσF
is

the derivative of the single-particle energy at the Fermi surface.
For the dispersions involved, ξ↑(k↑i+q↑i ) and ξ↓(−k↓i−q↓i ), recall
that |qσ i | = kσF and |kσ i | � |qσ i |, and so ξ↑(k↑i+q↑i ) ≈ k↑iξ

′
↑k↑F

and ξ↓(−k↓i−q↓i ) ≈ k↓iξ
′
↓k↓F

where kσi is the projection of kσ i

along qσ i (or equivalently, the radial component of kσ i).
This linearity simplifies the full expression for the kinetic

energy of our trial wave function. With kinetic energy operator
T̂ = ∑

σ,k ξσkc
†
σ,kcσ,k, we find

〈K↑; K↓|T̂ |ψ〉

= α(K↑,K↓)

⎛
⎝ N↑∑

i

ξ↑(k↑i+q↑i ) +
N↓∑
j

ξ↓(−k↓j −q↓j )

⎞
⎠

≈ α(K↑,K↓)

⎛
⎝ N↑∑

i

k↑iξ
′
↑k↑F

+
N↓∑
j

k↓j ξ
′
↓k↓F

⎞
⎠, (5)

which may be simplified further by using the conservation of
total momentum to define

∑N↑
i k↑i = ∑N↓

j k↓j = K , giving

〈K↑; K↓|T̂ |ψ〉 ≈ 2α(K↑,K↓)Kξ ′, (6)

with ξ ′ = 1
2 (ξ ′

↑k↑F
+ ξ ′

↓k↓F
).

E. Potential energy

To evaluate the total energy of the wave function |ψ〉, we
also need to evaluate the effect of the potential energy operator
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V̂ = g
∑

k,k′,q c
†
↑(q−k)c

†
↓kc↓k′c↑(q−k′). The interaction operator

removes two particles, one of each spin species, from a basis
state and then replaces them, having transferred momentum
m = k′ − k between them. For a general basis state |K↑; K↓〉,
there are N↑N↓ ways of choosing the pairs of particles that are
involved. We can formalize this procedure by defining

V̂ |K↑; K↓〉 = g
∑


P↑, 
P↓,m

|K↑ − 
P↑ ⊗ m; K↓ − 
P↓ ⊗ m〉, (7)

and hence

〈K↑; K↓|V̂ |ψ〉 = g
∑


P↑, 
P↓,m

α(K↑ − 
P↑ ⊗ m,K↓ − 
P↓ ⊗ m),

(8)

where the vectors 
Pσ form a set of standard basis vectors in
particle-number space: each has one element that takes the
value 1, with the remaining (Nσ − 1) elements having value
0. These label the particles in the different arcs in Fig. 1(b).
The effect of an outer product of a 
Pσ vector with a scattering
vector m is to construct the matrix (0, . . . ,m, . . . ,0), where
the column containing m is determined by the particular 
Pσ

vector. We sum over all possible pairs of up- and down-spin
particles.

F. Multiparticle instability

We are now ready to combine the effect of the kinetic and
potential energies by projecting the full Schrödinger equation
Ĥ |ψ〉 = E|ψ〉 onto the state 〈K↑; K↓| to calculate the energy
expectation value E. We find that

(2Kξ ′ − E)α(K↑,K↓)

= g
∑


P↑, 
P↓,m

α(K↑ − 
P↑ ⊗ m,K↓ − 
P↓ ⊗ m), (9)

which, following the approach of Cooper [1], we divide by
(2Kξ ′ − E) and sum over all Kσ to obtain∑

K↑,K↓

′
α(K↑,K↓)

= g
∑

K↑,K↓

′ ∑

P↑, 
P↓,m

α(K↑ − 
P↑ ⊗ m,K↓ − 
P↓ ⊗ m)

2Kξ ′ − E
.

(10)

Shifting the dummy momentum variables Kσ on the right
hand side by 
Pσ ⊗ m to remove the 
Pσ and m from the
arguments of α(K↑,K↓), we bring the implicit expression for
the energy to the form∑

K↑,K↓

′
α(K↑,K↓)

= g
∑

P↑, 
P↓

∑
K↑,K↓

′
α(K↑,K↓)

∑
m

1

2(K + m)ξ ′ − E
, (11)

where m is the radial projection of m. We can now separate
the angular and radial parts of the sum over m, and carry
out the angular summation. The angular summation is limited
by the critical species, giving a contribution of the density of

available states νc/Nc, meaning that the whole sum over m
should be considered as over the critical species.

We can also make the substitution m′ = K + m, which
has the effect of restraining the Kσ dependence of the right
hand side of Eq. (11) entirely to the parameters α(K↑,K↓)
and the limits of the sums over m′. However, the momentum
m′ accounts only for single momentum-transfer events, which
following the prescription of Cooper theory have a maximum
radial width in momentum of the Debye momentum kD.

The maximum kinetic energy 2m′ξ ′ of a basis state is ob-
tained when each particle is at the upper end of its Fermi surface
arc, giving a total kinetic energy 2m′ξ ′ = (N↑ + N↓)kDξ ′, and
the minimum kinetic energy is obtained when each particle is
at the bottom of its arc, for 2m′ξ ′ = 0. The summation over
m′ may be extended to cover this range, giving an implicit
expression for the energy of

∑
K↑,K↓

′
α(K↑,K↓)

= 2gνc

(N↑ + N↓)Nc

∑

P↑, 
P↓

∑
K↑,K↓

′
α(K↑,K↓)

(N↑+N↓)kD
2∑

m′=0

1

2m′ξ ′ − E
.

(12)

The only dependence on the Kσ in the implicit expression for
the energy is in the coefficients α(K↑,K↓), so we can factorize
out

∑′
K↑,K↓

α(K↑,K↓) from both sides of Eq. (12). We have

also removed all dependence on 
Pσ from the expression, and
so can explicitly carry out those summations to give a factor
of N↑N↓. This leaves us with

1 = g
2N↑N↓

(N↑ + N↓)

νc

Nc

(N↑+N↓)kD
2∑

m′=0

1

2m′ξ ′ − E
, (13)

analogous to Eq. (4) of Cooper’s original paper [1].
We have reduced the complexity of the multiparticle insta-

bility to a single summation with a multiplicative constant. In
the same manner as Cooper’s original analysis we may now
convert this summation to an integral and solve, finding the
binding energy

Eb = (N↑ + N↓)kDξ ′

exp
( (N↑+N↓)ξ ′

gN↑N↓
Nc
νc

) − 1
. (14)

In the weakly interacting limit, this binding energy simplifies
to

Eb = (N↑ + N↓)kDξ ′ exp

(
− (N↑ + N↓)ξ ′

gN↑N↓

Nc

νc

)
, (15)

similar to the familiar form of the binding energy of a Cooper
pair.

We wish to identify the number of particles (N↑,N↓) in the
energetically optimal multiparticle instability. The strongest
dependence of the binding energy in Eq. (15) on N↑ and N↓ is
in the exponential, with the binding energy being maximized
when the argument of the exponential function is least negative.
The values of Nσ , which achieve this, and are therefore the
optimal solutions for the system, can be deduced by symmetry
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to satisfy the relation

N↑
N↓

= ν↑
ν↓

, (16)

i.e., the number of particles involved in the wave function
per spin species is proportional to the density of states in
momentum. This means that all of the available momentum
states are involved in the instability, and so contributing the
maximum possible binding energy. Eq. (16) suggests that
in D � 2 dimensions a multiparticle instability is energeti-
cally favorable over conventional pair instabilities in a spin-
imbalanced system.

In the next section, we shall analyze our expression for the
binding energy in the light of Eq. (16), which gives a definite
prediction for the energetically optimal instability in different
systems. We shall then return to the trial wave function given
by Eq. (4), and look further at its properties and limits.

G. Binding energy analysis

To build our intuition for the expression for the binding
energy of the multiparticle instability found in Eq. (14), we
now examine the binding energy as a function of the ratio
of the number of particles N↑/N↓. We render the binding
energy dimensionless by normalizing by g, the interaction
strength; kD, the maximum interaction momentum; ν↑ν↓, in
order to account for different system sizes; and Nc/νc, the
number of critical species particles per density of states in
momentum. Normalizing by this final ratio looks forward to
the eventual creation of a many-body strongly correlated state
from multiparticle instabilities, with the number of instabilities
merged being limited by the availability of critical species
particles. We note, however, that at low interaction strengths
the dominant term in the binding energy in Eq. (15) is the
exponential, so the normalization could be chosen to be by the
total number of particles without affecting the results below.
This results in a measure of the binding energy per critical
species particle of

Xb = 1

gkDν↑ν↓

Eb

Nc/νc
. (17)

To further justify this measure of the binding energy per
critical species particle, we first examine the strongly interact-
ing limit of Eq. (14). Here, in terms of the normalized ratio of
number of particles per species,

x = N↑
N↓

ν↓
ν↑

, (18)

the binding energy per critical species particle takes the simple
form

Xb =
{

x, x < 1,

1/x, x > 1.
(19)

This expression is maximized at x = 1, that is when N↑/N↓ =
ν↑/ν↓, in agreement with the expression in Eq. (16) for
the weakly interacting limit. Away from the strongly and
weakly interacting limits the optimal binding energy remains
at N↑/N↓ = ν↑/ν↓. In Fig. 2, we show the binding energy
per critical species particle Xb from Eq. (14) as a function
of imbalance x for ratios of densities of states in momentum

0.3

0.5

1

0.5 1 2 3

1
g
k
D

ν
↑ν

↓
E

b
N

c
/
ν
c

N↑
N↓

ν↓
ν↑

Eb(g→∞)
ν↑/ν↓ = 4
ν↑/ν↓ = 3
ν↑/ν↓ = 2
ν↑/ν↓ = 1

FIG. 2. The binding energy per critical species particle as a
function of the normalized ratio of number of particles per species
at intermediate interaction strength g = E↑F. Results are shown for
a free dispersion in D = 2 dimensions and for different imbalance
ratios, with the infinite-interaction-strength limit indicated by a
dashed line.

ν↑/ν↓ ∈ {1,2,3,4} at an intermediate interaction strength g =
E↑F. We take as an example system a free dispersion with
ξ ′
σkσF

= kσF in D = 2 dimensions, so that νσ ∝ kσF, although
similar results hold in other systems. The balanced system
ν↑ = ν↓ is shown by the gray line, with the conventional
Cooper state, having N↑ = N↓, being the energetically optimal
instability. This line is symmetric about N↑/N↓ = ν↑/ν↓ on
the log-log scale, which reflects the symmetry between spin
species when ν↑ = ν↓. For the spin-imbalanced systems where
ν↑ > ν↓, the energetically optimal instability is still found at
N↑/N↓ = ν↑/ν↓, as predicted by Eq. (16). To the right of this,
there are too many up-spin particles in the instability, and to the
left there are too many down-spin particles in the instability;
this leads to the ν↑ > ν↓ lines not being symmetric about their
maxima, as in imbalanced systems including the wrong number
of up-spin particles is not equivalent to including the wrong
number of down-spin particles. Having examined the result of
Eq. (16) that the optimum ratio of number of particles is given
by the ratio of densities of states in momentum, we now discuss
the difference between instabilities with different numbers of
particles, but the same ratio N↑/N↓.

H. Instabilities with same ratio N↑/N↓

The prediction given in Eq. (16) that the energetically
optimal numbers of particles involved in the instability are
related by N↑/N↓ = ν↑/ν↓ only sets the ratio between N↑ and
N↓, but does not predict the absolute numbers of particles. To
probe the effect of changing the absolute numbers of particles,
we need to examine in more detail the effect of Pauli blocking.

The effect of Pauli blocking has been carefully analyzed
[22–24] for the product of two (N↑,N↓) = (1,1) instabilities,
and found to give only a small correction to the binding energy
of two separate pairs (the correction going as the inverse of the
number of available momentum states). This agreement with
our result for a (N↑,N↓) = (2,2) instability, up to small Pauli
blocking corrections that vanish in the thermodynamic limit,
supports our finding that the binding energy per critical species
particle is independent of the total number of particles involved
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in the instability. We shall present further numerical evidence
that captures the Pauli blocking corrections in Sec. III D.

However, the effect of Pauli blocking will become more
acute in a many-body state constructed from multiparticle
instabilities. This suggests that in the limit of a large number of
multiparticle instabilities in a system, instabilities with fewer
total particles will be energetically favorable over instabilities
with more particles but the same value of N↑/N↓ in a given
system.

Having investigated the structure and binding energy of
the proposed multiparticle instability, we now turn to some of
its limits. We examine the conventional Cooper system, with
balanced Fermi seas, and identify the predictions made for one-
dimensional systems, recovering in both cases agreement with
well-known results from the literature. We also briefly examine
the strongly-interacting limit of the proposed multiparticle
instability.

I. Cooper limit

The system studied originally by Cooper [1] is a balanced
Fermi gas, and so has k↑F = k↓F = kF, ν↑ = ν↓ = ν, which we
predict should have the optimal ratio N↑/N↓ = 1 in agreement
with Cooper’s findings. Moreover, with N↑ = N↓ = 1 our trial
wave function Eq. (4) reproduces the conventional Cooper trial
wave function [1]. Therefore, with a free dispersion ξσk =
k2/2 − k2

F/2, the weakly interacting binding energy given by
Eq. (15) reduces to the familiar Cooper expression [1]

Eb = 2kDξ ′ exp

(
−2kF

g

1

ν

)
= 2ωD exp

(
− 2

g


)
, (20)

where the Debye energy ωD = kDξ ′ and the density of states
in energy 
 = ν/kF.

J. One-dimensional limit

Although the discussion in previous subsections has focused
on D � 2 dimensions, our main prediction of N↑/N↓ = ν↑/ν↓
also holds in D = 1 dimension. Here the density of states in
momentum is independent of the Fermi momentum, and so
ν↑/ν↓ = 1 for both balanced and imbalanced systems. This
suggests that a Cooper pair instability with N↑ = N↓ = 1
should be energetically optimal for both balanced and im-
balanced systems in D = 1 dimension. This is in agreement
with both analytical predictions [25–27] and numerically exact
calculations [28,29] that show an FFLO phase constructed
from Cooper pairs is the ground state throughout a large part
of the phase diagram of one-dimensional Fermi gases.

K. Strongly interacting limit

In the limit of strong attractive interactions g 
 EσF, we
expect the system to promote particles to the energy of the
up-spin Fermi surface to reconstruct full rotational symmetry,
similar to a breached superconductor [30–32]. This turns
the system effectively into one with balanced reconstructed
Fermi surfaces, and so supporting conventional Cooper pair
instabilities. In the strongly-interacting limit of a many-body
theory built from Cooper pairs, the pair coherence length
becomes small on the scale of the separation between pairs, and
so the pairs can be considered tightly bound dimers [33,34].

We have shown that the proposed multiparticle instability
reduces to the well-studied Cooper problem in the balanced
limit, and collapses to a pair instability in one dimension,
which both link with previous results, and also reproduces a
known result in the strongly interacting limit. This gives us
confidence that the multiparticle construction is also valid away
from these limits. Having shown the strength of the formalism
in reproducing these known limits, we now provide numerical
evidence for the multiparticle instability being energetically
optimal in a range of spin-imbalanced systems.

III. EXACT DIAGONALIZATION

A. Method

In order to provide further insights into our conclusion
that the optimal ratio of number of particles in an insta-
bility is given by N↑/N↓ = ν↑/ν↓, we turn to a numerical
evaluation of the wave function |ψ〉 and energy expectation
value 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉. To gain computational traction, we
examine a reduced Hilbert space, taking only a finite number
of momentum states from the Fermi surfaces. We indicate
this reduction in Hilbert space size in Fig. 3, where instead
of considering all momentum states (gray points) or even all
momentum states on the up- and down-spin Fermi surfaces
(red and blue curves), we use just linear subsets from opposite
sides of the Fermi surfaces. This allows us to focus on the
angular extent of the Fermi arcs, the driving force behind
the emergence of the multiparticle instability. We work in the
strongly interacting limit, to minimize the effect of neglecting
the radial component of the sum over momentum. We use
systems with L↑ momentum states for up-spin particles, and
L↓ momentum states for down-spin particles: the ratio L↑/L↓
then mimics the ratio of densities of states in momentum ν↑/ν↓.
Figure 3 shows an example system with (L↑,L↓) = (16,8).

To numerically identify the ground state of the (N↑,N↓)
system of particles in a system with (L↑,L↓) momentum
states, we explicitly construct the

(
Lσ

Nσ

)
combinations of particle

FIG. 3. Example discretized momentum states (gray points) for
use in exact diagonalization calculations, showing up- and down-spin
Fermi surfaces (red and blue curves) with a ratio of ν↑/ν↓ = 2. The
origin is marked by the large black point. The subsets of momentum
states used in calculations are colored and circled, in this case showing
a (L↑,L↓) = (16,8) system. These states are shown larger, for clarity,
on the right-hand side, with sample particle occupations.
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FIG. 4. The normalized binding energy per critical species parti-
cle obtained using exact diagonalization (lines), including the Cooper
pair values (orange points).

momenta for each species, for a total of
(
L↑
N↑

) × (
L↓
N↓

)
basis states.

Note that we do not explicitly include the additional constraint
of the separation into Fermi surface arcs used in the wave
function (4). We then directly evaluate and diagonalize the
matrix of interactions between these states, with the optimal
instability being that with the most negative eigenvalue.

B. Binding energy

We investigate the dependence of the optimal binding
energy on the ratio of number of particles N↑/N↓ in the
instability in Fig. 4, where we plot the normalized binding
energy per critical species particle against the ratio of number
of particles per species, normalized by the inverse ratio of
number of momentum states. This rescaling of N↑/N↓ ensures
that our predicted optimal binding energies are located at
N↑L↓/N↓L↑ = 1, as in Fig. 2. We examine systems with
different ratios of numbers of momentum states L↑/L↓ ∈
{1,2,3,4}, with the lines in Fig. 4 coming from systems
containing (L↑,L↓) = (16,16), (L↑,L↓) = (16,8), (L↑,L↓) =
(18,6), and (L↑,L↓) = (16,4) momentum states, respectively.

We observe that, as predicted by Eq. (16), the optimal
binding energy per critical species particle for each ratio of
number of momentum states is obtained with a ratio of number
of particles of N↑/N↓ = L↑/L↓. This is the principal result of
our exact diagonalization investigation: our numerical study
reproduces the result of our approximate analytical method.

To highlight that Cooper pairs are suboptimal in spin-
imbalanced systems, we indicate the Cooper pair instability
for each system in Fig. 4 with orange circles, from left to right
for the L↑/L↓ = 4, L↑/L↓ = 3, L↑/L↓ = 2, and L↑/L↓ = 1
systems. We note that for L↑/L↓ > 1 these Cooper pair states
have lower binding energy per critical species particle than
the proposed multiparticle instability, whilst for L↑ = L↓ the
optimal multiparticle instability is simply a Cooper pair, as
predicted by Cooper [1].

In Fig. 5, we confirm the convergence of our exact diagonal-
ization results with respect to the system size for an example
ratio L↑/L↓ = 2. The different blue lines in Fig. 5 correspond
to exact diagonalization calculations of the binding energy
using different numbers of up-spin particles,N↑ ∈ {1,2,3,4,5},

0.3
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1
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L
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↓
E

b
N

c
/
L

c

L↓ = L↑/2

FIG. 5. System size dependence of the binding energy per critical
species particle, for a ratio of the number of momentum states
L↑/L↓ = 2. The different lines correspond to different ratios of
numbers of particles in the instabilities.

and fixed N↓ = 1. We observe a rapid convergence to the
infinite size limit, with the (L↑,L↓) = (16,8) system shown
in Fig. 3 giving results within 0.4% of the infinite size limit
for the N↑/N↓ ∈ {1,2,3} ratios of numbers of particles. A slice
through Fig. 5 at L↓ = 8 gives the line for L↑/L↓ = 2 in Fig. 4.

C. Fermi surface arcs

It is also illuminating to examine the wave functions of
the energetically optimal instabilities. In Fig. 6, we show the
basis states involved in the energetically optimal (N↑,N↓) =
(2,1) instability of the (L↑,L↓) = (14,7) system. Each down-
spin momentum state is part of a basis state with the two
up-spin momentum states joined to it by lines of the same
thickness and color. Thicker lines indicate higher weighting
[larger α(K↑,K↓)] of the basis states, and colours represent the
separation in momentum between the up-spin species particles
in the instability. The wave function comprises basis states
that have spontaneously organized arcs of the up-spin Fermi
surface: each plotted basis state has one up-spin particle in the
left-hand half of the up-spin Fermi surface, and one particle in
the right-hand half. This is in agreement with the use of arcs in
the analytical wave function given by Eq. (4). In addition, the
highest-weighted basis states are those at the angular center of
the arcs, which are the momenta labeled qσ i in Sec. II.

The separation of the wave function into Fermi surface arcs
is also indicated by the integrated weights of the basis states
at each momentum state, which are shown by the small points
above the up-spin momentum states and below the down-spin
momentum states in Fig. 6. The integrated weights for the
up-spin particles show a bimodal distribution, indicating a
separation into arcs. The black lines are symmetric fits to the
data points, showing the arcs to contain identical distributions
of integrated weights. As expected for an N↓ = 1 system, the
down-spin particle inhabits a single Fermi surface arc.

D. Instabilities with same ratio N↑/N↓

Exact diagonalization may also be used to confirm the con-
clusion of Sec. II H that instabilities with fewer total particles
are marginally energetically favorable over instabilities with
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FIG. 6. The weighting of basis states for the (N↑,N↓) = (2,1)
instability of the (L↑,L↓) = (14,7) system. Colored lines between the
momentum states [represented by large red (up-spin) and blue (down-
spin) points] indicate the basis states: each down-spin momentum
state is part of a basis state with the two up-spin momentum states
joined to it by lines of the same color and thickness. Thicker lines
indicate higher weighting [larger α(K↑,K↓)] of the basis states; thinner
lines indicate lower weighting. Color indicates the separation of the
up-spin momentum states in each basis state, with yellow indicating
small separation and purple large separation, with the color key
indicating the separation in number of momentum states. Only the
35 highest weighted basis states are shown for clarity. Above the
up-spin momentum states and below the down-spin momentum states
are the integrated weights of the basis states at each momentum
state, indicating the separation of the momentum states into Fermi
surface arcs.

the same ratio N↑/N↓, but more particles. By examining the
binding energy per particle of the simple (N↑,N↓) = (1,1)
and (N↑,N↓) = (2,2) instabilities in balanced systems with
L↑ = L↓ = L, we observe that the (N↑,N↓) = (1,1) instability
does indeed have higher binding energy per particle at all
finite interaction strengths. As predicted analytically [22],
the difference scales as L−1 in the weakly-interacting limit,
confirming the conclusion that instabilities with fewer total
particles are energetically favorable in finite systems.

Our exact diagonalization results on this simplified system
have supported the main claims and conclusions of the analyti-
cal arguments in Sec. II. The energetically optimal instability in
a range of different spin-imbalanced systems has been shown to
satisfy the relationship N↑/N↓ = L↑/L↓ predicted in Eq. (16).
The separation of the Fermi surface into arcs in the analytical
wave function has also been justified by the emergence of
such arcs in the numerical calculations, and we have provided
evidence for which instabilities with the same ratio N↑/N↓ are
most energetically favorable.

IV. DISCUSSION

We have shown that spin-imbalanced Fermi gases with
attractive interactions support a multiparticle instability. The
most energetically favorable instability contains up- and down-
spin particles in the ratio N↑/N↓ = ν↑/ν↓, set by the ratio of
the densities of states in momentum at the Fermi surfaces.

The proposed trial wave function for the multiparticle
instability interpolates between the well-known Cooper wave
function [1] in the limit of balanced Fermi surfaces and
theoretical predictions [25–27] of the FFLO phase in one
dimension. This lends support to the contention that our trial
wave function is also valid away from these limits.

We note that the physics presented here can be explored in
few-body systems. Cold atoms in an harmonic trap [35,36]
are an ideal system to explore few-particle physics, as the
exact energy and expectation values such as the wave function
symmetry may be directly measured [37,38]. Cold atom
experiments may therefore be able to observe the scaling of the
binding energy and spatial structure of the trial wave function
proposed here, of which hints may previously have been seen
numerically [38].

In real experiments, the interaction between fermions will
never be exactly the contact interaction from Eq. (1). In
cold atom systems the interaction may be expanded as g(1 +
8aReffk

2
F), where a < 0 is the scattering length and Reff is

the effective range [39]. Positive Reff reduces the effective
interaction strength, making the multiparticle instability less
energetically favorable, whilst negative Reff makes it more
energetically favorable; however, |Reff | is typically small on
the scale of 1/kF, and so the effect of the finite range
interaction is also small. The screened Coulomb interaction,
g/(1 + 2b2k2

F) where b > 0 is the Thomas-Fermi screening
length, relevant, for example, to electron-hole systems [40,41],
has a similar effect, with the screening length taking on the
same role as the effective range for cold-atom interactions, and
so weakening the multiparticle instability relative to the pure
contact case. This weakening is also found in standard Cooper
pairs, however, and so is unlikely to qualitatively change the
conclusions in the manuscript. The next order term in the
effective range expansion would go as ReffkD: this term will
discriminate between multiparticle instabilities and Cooper
pairs, being a function of how many fermions near the Fermi
surfaces are involved in the instability, but is not expected to
have a large effect, as in our formalism both kD and Reff are
small.

In the same way that Cooper pairs form the conceptual basis
of the Bardeen-Cooper-Schrieffer theory of superconductivity,
it is expected that a many-body state may be constructed
using the multiparticle instabilities presented here with even
values of N↑ + N↓. By analogy to the relationship between
the traditional Cooper result and the BCS order parameter,
we expect that the order parameter of the future many-body
superconducting theory should have a form that is reminiscent
of Eq. (15). The many-body theory should not be limited to
including a single type of multiparticle instability, and similarly
to predictions made for the FFLO phase [7] may be constructed
from multiple superposed multiparticle instabilities, forming
a crystalline structure.

A natural tool to use to search for this exotic supercon-
ducting state is a spin-imbalanced ultracold fermionic gas
[42,43]. This system allows fine control over the populations
and interactions of the fermions, allowing experiments to focus
on the potential of new physics. Previous spin-imbalanced
ultracold fermionic gas experiments have used inhomoge-
neous optical trapping potentials, in which the region of
space where multiparticle instability-based superconductivity
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is likely to be observable is very small. However, recent
experimental developments have allowed the creation of ho-
mogeneous ultracold fermionic gases [44], where the del-
icate novel superconducting state is likely to exist over
larger regions of space, and so be easier to observe and
characterize.

Such a strongly correlated state would present novel super-
conducting properties, including unusual Andreev reflection
[45], Josephson tunneling [46], and SQUID [47] or other
superconducting loop [48] properties, due to the underlying
multiparticle structure. With the underlying instabilities in-
volving N↑ + N↓ fermions, the magnetic flux is likely to be
quantized in units of h/(N↑ + N↓)e, rather than h/2e for BCS
superconductivity based on Cooper pairs. The superconducting
order parameter would also exhibit unusual behavior, being

necessarily complex due to the presence of nonantipodal q

vectors, and oscillating with wave vectors q↑i + q↓j , with
interference due to similar q vectors giving rise to beats in the
order parameter amplitude. The existence of a superconducting
state constructed from multiparticle instabilities may also
explain the lack of definitive observations of the conjectured
FFLO state.
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