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Jastrow correlation factor for periodic systems
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We propose a Jastrow factor for electron-electron correlations that interpolates between the radial symmetry
of the Coulomb interaction at short interparticle distance and the space-group symmetry of the simulation cell
at large separation. The proposed Jastrow factor captures comparable levels of the correlation energy to current
formalisms, is 40% quicker to evaluate, and offers benefits in ease of use, as we demonstrate in quantum Monte
Carlo simulations.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) is a prominent family of
techniques for studying strong correlations in quantum many-
body systems [1]. In particular, the variational and diffusion
Monte Carlo methods (VMC and DMC) are accurate tools for
studying ground-state energies and expectation values. Both
methods are predicated on the use of a trial wave function,
whose similarity to the true ground state determines the
accuracy and efficiency of the calculations [2]. It is therefore
important to have access to a high-fidelity trial wave function.

A common foundation for constructing a fermionic trial
wave function is to begin with the Hartree-Fock wave function
�HF = D↑D↓, where D↑ (D↓) is a Slater determinant of
single-electron states for the up (down) spin species. The
Slater determinants encode the fermionic antisymmetry of the
trial wave function, ensuring Pauli exchange is satisfied, but
do not include any effects of electron correlation. To describe
such correlations, we modify the trial wave function to be of
the Slater-Jastrow [3] form � = eJ (R)D↑D↓, where eJ (R) is a
Jastrow factor that is a function of all the electron positions,
R. For real J (R) the Jastrow factor is positive definite, and
hence does not modify the nodal structure of the Hartree-Fock
wave function.

In order to allow the Jastrow factor to accurately describe
the correlations in a particular system of interest, J (R) depends
on a number of variational parameters [4–11]. These param-
eters can be optimized using the relatively inexpensive VMC
method, and then the optimal trial wave function used as the
starting point for a more accurate but more expensive DMC cal-
culation. In principle the DMC estimate of the energy depends
only on the nodal surface of the trial wave function [12], but in
practice a more accurate trial wave function with an optimized
Jastrow factor allows the method to proceed more efficiently.

In this paper we consider Jastrow factors for infinite,
periodic systems. These systems are amenable to numerical
simulation through the use of finite simulation cells, which
are tessellated, with periodic boundary conditions, to fill all
of space. Jastrow factors in the literature tend to either respect
the short-range radial symmetry of the Coulomb interaction,
or abide by the symmetry of the simulation cells, but not
both [4–7]. Here we propose a Jastrow factor that interpolates
between these symmetries, is easier to use than current Jastrow
factors by virtue of having a single parameter that tunes
its accuracy, as opposed to two such parameters for other
Jastrow factors of similar accuracy, requires fewer variational

parameters to reach comparable accuracy, and is 40% quicker
to evaluate than these current Jastrow factors.

All of our QMC simulations were performed using the
CASINO package [13], and we use Hartree atomic units
throughout this paper. In Sec. II we review common Jastrow
factors from the literature, and then show how our proposed
Jastrow factor fits into this hierarchy. In Secs. III and IV we
examine the accuracy and efficiency of the Jastrow factors
in the homogeneous electron gas and crystalline beryllium,
respectively, before drawing our conclusions in Sec. V.

II. JASTROW FACTOR

We are concerned with Jastrow factors that capture cor-
relation between electrons, and hence include functions of
electron-electron separation,

J (R) =
∑
j > i

σ,τ ∈ {↑ , ↓}

Jστ (rij ),

where rij = ri − rj , the sum runs over all electrons labeled i,
j , and we refer to Jστ (rij ) as a Jastrow function. The Jastrow
function contains variational parameters that we optimize
within a VMC calculation to minimize the variance in the
local energy [14].

There are some fundamental constraints on the form of the
Jastrow function. First, in order to retain the spin expectation
value of the Hartree-Fock wave function Jστ (rij ) must be
even under exchange of particles. Second, in order to avoid
nonphysical divergences in the local energy, Jστ (rij ) must
be at least twice differentiable everywhere except at particle
coalescence (rij = 0).

However, at particle coalescence the Coulombic potential
energy of two electrons diverges. In order to retain a nondiver-
gent local energy the kinetic energy therefore has to diverge
in the opposite direction at particle coalescence. This may be
achieved by imposing the Kato cusp conditions [15] on the
wave function, which may be expressed as

∂Jστ

∂rij

∣∣∣∣
rij =0

= �στ ,

giving spherically symmetric behavior at short radius
Jστ (rij ) = �στ rij + · · · , where, for three-dimensional (3D)
systems, �↑↑ = �↓↓ = 1

4 and �↑↓ = �↓↑ = 1
2 . The final con-

straint on the Jastrow factor is that, in periodic systems such
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FIG. 1. The Jastrow functions discussed in the main text, showing the (a) u, (b) p, (c) u (gray) and u & p (blue), and (d) u (gray) and ν

(red) functions. The u, u & p, and ν terms each have a total of five variational parameters, optimized using VMC in the homogeneous electron
gas system. The data are taken for an opposite-spin electron pair in the z = 0 plane, with one particle at the origin, showing one quadrant of
the simulation cell. A gray arc indicates the u term’s cutoff radius, which is comparable to the Wigner-Seitz radius LWS of the simulation cell.
We have subtracted a physically irrelevant constant from the ν Jastrow function for clarity.

as those we consider here, Jστ (rij ) must satisfy periodic
boundary conditions at the edge of the simulation cell in order
to tessellate space.

Before presenting and testing our proposal for a Jastrow
factor, we first review other Jastrow factors that are commonly
used in the literature. We organize the Jastrow factors by
their symmetry, starting with a spherically symmetric function
and then examining a Jastrow factor with the symmetry of
the simulation cell before proposing our Jastrow factor that
interpolates between these symmetries.

A. Term with spherical symmetry

The interaction between two isolated electrons is isotropic,
and so it is reasonable to take the Jastrow factor as being
spherically symmetric and purely a function of particle
separation where two-body effects dominate, and especially
at interparticle separations shorter than the average nearest-
neighbor separation in many-body systems. However, the
simulation cells used in numerical calculations are not spher-
ically symmetric as they have to tessellate to fill 3D space.
Because of this requirement, and in order to limit the effect
of otherwise infinite-ranged terms to within the simulation
cell, radial terms in the Jastrow factor are cut off at a finite
radius that is less than or equal to the Wigner-Seitz radius
corresponding to the simulation cell. This is implemented by

including a term (1 − rij /Lστ )C�(Lστ − rij ) in the Jastrow
function, which goes to zero at a radius Lστ , with C − 1
continuous derivatives. We take C = 3 in order to keep the
local energy continuous at the cutoff radius [5]. �(Lστ − rij )
is a Heaviside step function, which forces the Jastrow function
to be zero everywhere beyond the radius Lστ .

It has been found in the literature [5,6,16–18] that a Taylor
expansion in electron-electron separation captures the most
important short-ranged isotropic interparticle correlations, and
so here we review that expansion. Writing the Jastrow corre-
lation function as a Taylor series around particle coalescence
results in an expression

uστ (rij ) =
(

Lστ

3
[α1,σ τ − �στ ] +

Nu∑
m=1

αm,στ r
m
ij

)

×(1 − rij /Lστ )3�(Lστ − rij ), (1)

which is referred to as a u term [5,6]. Here the Nu coefficients
αm,στ are parameters that are optimized using VMC, and the
cutoff length Lστ is also optimized variationally. The term
Lστ [α1,σ τ − �στ ]/3 ensures that the Kato cusp conditions are
satisfied. Using a pseudopotential for the electron-electron
interaction [19] would set �στ = 0.

The u term Jastrow function with parameters optimized for
a homogeneous electron gas with rs = 4 is shown in Fig. 1(a).
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The short-range behavior of the u term is linear to satisfy
the Kato cusp condition, and then at large separation the
cutoff function limits the range of the u term to within the
Wigner-Seitz radius of the simulation cell, shown as a gray
arc in Fig. 1(a). This not only limits the maximum range of
the correlations that can be captured by the u term, but also
prevents it from capturing correlations in the corners of the
simulation cell.

B. Term with simulation cell symmetry

One method to extend the ability of the Jastrow factor to
capture correlations over the whole simulation cell is to use
a form of Jastrow factor that innately has the space-group
symmetry of the simulation cell. A simple but effective
example of a Jastrow function that has such symmetry is a
plane-wave basis, which also explicitly ensures periodicity of
the Jastrow function. The so-called p term takes the form [5,6]

pστ (rij ) =
Np∑

=1

a
,στ

∑
G+




cos(G
 · rij ). (2)

Here the {G
} are the reciprocal lattice vectors of the simulation
cell that belong to the 
th star of vectors equivalent under the
full symmetry group of the simulation cell, sorted by increasing
size of |G
| (and in periodic systems not including the trivial
vector 0), “+” means that if G
 is included in the sum, −G


is excluded, and the a
,στ are variational parameters, of which
there are Np.

A p term with Np = 1 for the homogeneous electron gas is
shown in Fig. 1(b). The p term exists over the whole simulation
cell, including where the u term is cut off to zero. This means
the p term can capture correlations in the cell corners that
the u term misses. However, the p term does not tend to a
radial form at short radius and so cannot satisfy the Kato cusp
conditions at particle coalescence, meaning that on its own
it does not make for an effective Jastrow factor. A common
approach in the literature [20–27] is to combine both u and p

terms to give a composite Jastrow function

Jστ (rij ) = uστ (rij ) + pστ (rij ), (3)

which uses the u term to capture short-range correlations and
the Kato cusp conditions, and the p term to capture long-range
correlations in the corners of the simulation cell. We refer to
such a combination as a u & p term.

An example of this composite Jastrow function, with Nu =
3 and Np = 1 and parameters optimized in an homogeneous
electron gas, is shown in Fig. 1(c). As expected, the behavior
at short range is dominated by the u term. Yet at large radius
this Jastrow function has structure due to the p term, including
in the corner of the simulation cell outside the cutoff radius of
the u term, shown by the gray arc, which allows the composite
u & p term to capture longer-range correlations.

However, this construction has several undesirable features
that limit its effectiveness at capturing interparticle correla-
tions. For a given amount of computing time to be spent
optimizing the parameters in the Jastrow factor, a choice needs
to be made of the relative number of u and p terms to be used.
We do not know a priori the optimal ratio of Nu to Np, and so
must explore a two-dimensional parameter space to determine

it. A large proportion of the VMC calculation time is spent
evaluating the Jastrow factor, and so it is important that the
Jastrow factor is as simple as possible. But there is not equality
of expense between the u and p terms, as sinusoidal p terms
are more expensive to calculate than polynomial u terms, and
the expense of a p term also increases with the number of
elements of the reciprocal lattice vector stars used to evaluate
it. Higher-order stars generally contain more elements than
lower-order ones, meaning high-order p terms are even more
expensive to calculate. To further complicate the optimization
of the u & p term, although the p term was intended to capture
longer-range correlations, it does also exist at short radius; this
means it interferes with the effect of higher-order contributions
from the u term.

One further problem with the form of Jastrow function given
by Eq. (3) is that the cutoff length Lστ enters the expression
nonlinearly. To optimize the cutoff length and other parameters
we need to solve a multidimensional nonlinear set of equations,
which is a significantly more difficult problem than solving a
multidimensional linear set of equations, where the full force
of linear algebra may be applied to increase the efficiency of
the process [28].

We are interested in finding a form for the Jastrow factor that
avoids these problems with the current method, by being a term
with a single tuning parameter that determines the accuracy
of the Jastrow factor, and which is also cheap to evaluate
with linear coefficients. At the same time the proposed term
should reproduce the advantageous properties of the u term,
accurately capturing short-range correlations, and also the p

term, exhibiting the symmetry of the simulation cell at large
interparticle separation.

C. ν term

We propose a Jastrow factor that combines the properties
and symmetries of the u term at small radius with the properties
and symmetries of the p term at large separation. The Jastrow
function, referred to here as the ν term, is

νστ (rij ) =
Nν∑
n=1

cn,στ

∣∣f 2
x (xij ) + f 2

y (yij ) + f 2
z (zij )

∣∣n/2
,

fx(x) = |x|
(

1 − |x/Lx|3
4

)
, (4)

where the Nν parameters cn,στ are optimized using VMC, and
the length Lx is the width of the simulation cell in the Cartesian
x direction. In Sec. IV A below we generalize the ν term to
noncuboidal geometries.

At small radius, the function fx(x) = |x| + O(|x|4), and so
|f 2

x (x) + f 2
y (y) + f 2

z (z)|1/2 = r + O(r4). This has the correct
spherical symmetry to describe short-range electron-electron
correlations, so at short radius the Jastrow function νστ (rij ) =∑Nν

n=1 cn,στ r
n
ij + · · · consists of an expansion in electron-

electron separation, similarly to the u term. This means the
ν term will reproduce the ability of the u term to capture
short-ranged correlations and it is easy to satisfy the Kato
cusp conditions by setting c1,σ τ = �στ .

The function f (x) is symmetric under x → −x, and
automatically satisfies periodic boundary conditions at the
edge of the simulation cell, with f (Lxx̂) �= 0, f ′(Lxx̂) = 0,
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and f ′′(Lxx̂) �= 0: this is achieved through the use of the
cubic power in the definition of f , chosen by analogy to
the cutoff function in the u term to distinguish long- and
short-ranged components of the Jastrow function. Importantly,
the f functions satisfying periodic boundary conditions means
any function constructed from them, such as the ν term,
will also correctly satisfy periodic boundary conditions. The
scaling of the f functions in the different Cartesian directions
lends the ν term the symmetry of the simulation cell at large
interparticle separation, and allows the ν term to capture
long-range correlations, similarly to the p term. Not requiring
a cutoff function also means all the variational parameters
enter the expression for νστ (rij ) linearly, and so are easier to
optimize than the equivalent number of variational parameters
in the u term [28].

The ν Jastrow function optimized for a homogeneous
electron gas is shown in Fig. 1(d), demonstrating that it has
the same small-radius behavior as the u term. We can also see
that the ν term still has structure in the corner of the simulation
cell, similarly to the u & p term, which allows it to capture
long-range interparticle correlations. We will examine this
similarity in more detail in a case study of the homogeneous
electron gas in Sec. III.

Freedom to optimize the behavior of the Jastrow factor in
the corners of the simulation cell also provides the freedom to
change the kinetic energy of the wave function in the corners
of the simulation cell, as f ′′

x (Lxx̂) �= 0. This allows the ν

Jastrow factor to more accurately respond to a finite and/or
varying potential energy in the corners of the simulation cell.
From a Thomas-Fermi perspective this provides the ν term
with the freedom to counteract changes in the potential energy
from interactions with kinetic energy in order to keep the total
energy constant.

The ν term may also be adapted to systems other than the
3D ones considered here. For 2D systems the fz function
may simply be omitted; or for slab geometries, with two
directions periodic and one nonperiodic, fz should be replaced
by a function that reduces to |z| at short radius, for example
|z|e−(|z|/Lz)2

.
In order to demonstrate the advantages of the ν Jastrow

factor, in the next two sections we carry out simulations of the
homogeneous electron gas and a crystalline solid. We examine
the accuracy, efficiency, and ease of use of the ν Jastrow factor,
and compare it with other forms of Jastrow factor used in the
literature.

III. HOMOGENEOUS ELECTRON GAS

For the first test of our Jastrow factor we examine the
homogeneous electron gas (HEG). This system has been
widely studied using QMC [24,29–31] and serves as an analog
for electrons in a conductor. As it does not contain any atoms it
allows us to focus on the electron-electron Jastrow factor. For
simplicity we assume that the intraspecies correlations for the
up- and down-spin electrons are identical, and so fix J↑↑ = J↓↓
and J↑↓ = J↓↑.

We examine a HEG with density parameter rs = 4 in a
cubic simulation cell subject to periodic boundary conditions,
and use Slater determinants of plane-wave orbitals. We use
a system of 57 up-spin and 57 down-spin electrons, and
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FIG. 2. (a) The percentage of the DMC correlation energy
missing from VMC simulations of the homogeneous electron gas,
with N optimizable parameters in the Jastrow factor. Gray, blue, and
red lines correspond to the u, u & p, and ν term respectively. (b) The
variance in the local energy when using different Jastrow factors, as a
percentage of the variance in the local energy using the Hartree–Fock
wave function. Error bars, where not visible, are smaller than the
size of the points. (a) Correlation energy missing; (b) Local energy
variance.

confirmed that the main results of this section were reproduced
in systems of 33 and 81 electrons per spin species and so
are independent of system size. We optimize all the Jastrow
factors by minimizing the variance in the local energy [28,32],
and confirmed that minimizing the energy directly [33] gave
similar results. All VMC simulations are run for 1×106 steps.
We then carry out DMC simulations to obtain a more accurate
estimate for the energy within the fixed node approximation,
EDMC, which corresponds to the use of a perfect Jastrow factor.
DMC simulations starting with different trial wave functions
agree to within 5×10−6 a.u. To measure the accuracy of
the Jastrow factors, we evaluate the percentage of the DMC
correlation energy missing from the VMC simulation,

η = EVMC − EDMC

EHF − EDMC
×100%

where the Hartree-Fock energy EHF is that obtained by using
just the Slater determinant part of the wave function.

In Fig. 2(a) we compare the percentages of the correlation
energy missing when the various Jastrow factors under scrutiny
are used. The horizontal axis is labeled by the number of
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optimizable parameters per spin channel, N , for each Jastrow
function: so, for example, a u term with a given number N

of optimizable parameters per spin channel has Nu = N − 1
optimizable parameters of terms in the interparticle separation
expansion, αm,στ , as the cutoff length Lστ is also optimized.
A u & p term with Np optimizable parameters a
,στ in the
p part leaves Nu = N − 1 − Np optimizable parameters for
the u term coefficients αm,στ . For the ν term Nν = N + 1, as
the first coefficient c1,σ τ is set by the Kato cusp conditions.
The number of optimizable parameters N required to reach a
converged accuracy is an important measure of the practicality
of the Jastrow factors, as N governs the complexity of the
variance minimization procedure.

We observe that a u term alone can capture over 96% of the
correlation energy missing from the Hartree-Fock (N = 0)
result, converging when Nu � 3 (N � 4). The addition of
p terms improves this to only 2% of the correlation energy
missing, as interparticle correlations in the corners of the
simulation cell are now captured. The number of p terms
used (if greater than zero) makes a negligible difference to
the percentage of the correlation energy captured, as long as
there are also sufficiently many u terms present (Nu � 3, for a
total of N � 5). The smallest number of variational parameters
required to achieve convergence is N = 5. It is important to
capture all the short-ranged correlations at the center of the
cell, and it is also important to capture the leading long-range
correlations that reflect the symmetry of the simulation cell.
This motivates the construction of the ν term as being based
around a short-ranged expansion in interparticle separation that
interpolates to the lowest-order symmetries of the simulation
cell at long range.

The ν Jastrow factor reproduces the best u & p accuracy
of η = 2% for N � 4. The need for only N = 4 optimizable
parameters as opposed to the N � 5 required for the u & p

terms means the ν term is easier to optimize. Furthermore,
the ν term has a single parameter Nν that can be increased to
improve accuracy, as opposed to having to choose both Nu and
Np for the u & p term, which reduces the size of the parameter
space that needs to be explored.

The ν term has captured all of the correlation energy
available to the u & p terms in this system, but another
important quantity in QMC methods is the variance in the
estimate of the energy. The variance of the local energy
determines the efficiency of DMC simulations [1,34] and also
acts as a proxy for the quality of trial wave functions, as the
variance in the local energy of the exact ground state is zero.
In Fig. 2(b) we examine the variances in the local energy using
the different Jastrow factors relative to the variance using the
Hartree-Fock wave function. Again the u term converges for
N � 4, and the addition of p terms reduces the variance by
another 33% if a good choice of Nu and Np is made with N � 5.
The ν term achieves the same reduction in the variance in the
local energy as these more complicated terms but with fewer
optimizable parameters, N � 4.

The similar levels of the correlation energy captured by
the ν and u & p terms may be understood in terms of the
correlations described by these Jastrow factors. In Fig. 3 we
show the ν and Np = 1 u & p Jastrow functions with the u

Jastrow function subtracted, to allow us to focus on the long-
range correlations. Both Jastrow functions capture nontrivial

FIG. 3. The N = 5 Jastrow functions with the u Jastrow function
subtracted, to show how the Jastrow functions vary at large interpar-
ticle separation.

correlations in the corner of the simulation cell, outside the
radius where the u term is cut off to zero (shown by a gray
arc), explaining their improved performance over the u term.
Furthermore, the correlations captured by the ν and u & p

terms are very similar, confirming that both are able to be
optimized to capture all of the available correlation energy.
The similarity of the ν and u & p terms also ensures that
the zero-wave-vector limits of their Fourier transforms are
likewise similar, and hence that the finite-size errors from the
Jastrow factors are comparable and can be dealt with following
the same prescription [23,35].

There is one further advantage to using the ν term in this
system, rather than a u & p term. The ν term is a polynomial
expansion, like the u term, and this makes it quicker to evaluate
than the p term with its sinusoids from each element of the stars
of reciprocal lattice vectors. For N = 5, where both Jastrow
factors have fully converged, the Np = 1u & p term in the
Jastrow factor is 61% slower to evaluate than the ν term, and
the Np = 2 term takes over twice as long to evaluate as the ν

term. This means that simulations with the ν term can be run
significantly quicker than those with the u & p term, to obtain
similar accuracy.

We have shown that the ν Jastrow factor captures the ground
state energy of the HEG as well as a combination of the u and p

terms, achieving the same accuracy and reduction in variance
in the local energy. In addition to this, the ν term is easier
to transfer between systems, as there is only one choice of
parameter to make as opposed to two for the u & p term;
the ν term requires N = 4 linear optimizable parameters to
converge, rather than N = 5 nonlinear parameters for the u &
p term, making it cheaper to optimize; and the ν term is also
quicker to evaluate. We now go on to test the ν Jastrow factor
in an inhomogeneous periodic system, for which we take the
example of crystalline beryllium.

IV. BERYLLIUM

To demonstrate that the advantages of the ν term are
not restricted to simple homogeneous systems with cubic
simulation cells, here we test it in a crystalline solid. As
discussed in Sec. II C, the ν term is constructed to interpolate
between the symmetry of the interaction potential (purely
radial) at short radius and the simulation cell symmetry at
large separation. In order to demonstrate the generality of this
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construction, we will focus on an analysis of a crystal with
relatively low symmetry, in the P 63/mmc (hexagonal) space
group, where it is nontrivial to construct the long-range form of
the ν term. The simplest example of a stable crystal with this
space group at zero temperature, where QMC is applicable,
is crystalline beryllium, and so we use that as our example
system. At the end of this section we will also discuss results in
higher-symmetry face-centered cubic (fcc) and body-centered
cubic (bcc) crystals.

We model crystalline beryllium using a hexagonal simula-
tion cell containing 32 atoms. The Be2+ ions are represented
by pseudopotentials [5,13,36,37], and the orbitals in the
Slater determinants were obtained from a density functional
theory [38,39] (DFT) calculation using the CASTEP code
with a plane-wave basis set [40,41], converted to B-spline
functions [42,43].

The u and p terms are the same in this simulation cell
as in the previous cubic case, with the G
 vectors for the p

term being the reciprocal lattice vectors of the simulation cell,
organized into stars of equal-length vectors. In order to use the
ν term we generalize its functional form to allow for the use
of noncuboidal simulation cells.

A. Generalized form of ν term

To begin the generalization of the ν term we construct a
set of vectors {B}, formed of the reciprocal lattice vectors
of the simulation cell and all symmetry-equivalent vectors.
These vectors are exactly those normal to the faces of the
conventional unit cell, and so encode the symmetry of the
simulation cell, and have length such that |Bi · rface| = π , for
any vector rface lying in the corresponding conventional cell
faces.

Constructing a matrix of the reciprocal lattice vectors {B}
and then (left-)inverting and transposing it leads to a set of
real-space vectors {A}. By measuring the projection of the
electron-electron separation vector r onto these real-space
vectors we can express the electron-electron separation as
r = ∑

ζ Aζ (Bζ · r). The interparticle distance r can then be
expressed as

r =

√√√√√
⎛
⎝∑

ζ

Aζ [Bζ · r]

⎞
⎠ ·

⎛
⎝∑

ξ

Aξ [Bξ · r]

⎞
⎠

=
√∑

i

Ai · Aiw
2
i + 2

∑
j>k

Aj · Akwjwk,

where wi = Bi · r expresses the projection of r onto Ai as a
phase between −π and π as r runs between parallel faces
of the conventional cell. In a directly analogous way to the
previous, cuboidal form we then define the Jastrow function
as

νστ (r) =
Nν∑
n=1

cn,στ

∣∣∣∣∣
∑

i

Ai · Aif
2(wi)

+ 2
∑
j>k

Aj · Akg(wj )g(wk)

∣∣∣∣∣∣
n/2

, (5)

where in order to reduce to a radial expression at short radius
we require that f (wi) → |wi | and g(wi) → wi as r → 0. In
order to retain the symmetry of the simulation cell at large
radii we demand f (wi) be symmetric under wi → −wi , while
g(wi) is required to be antisymmetric, and both functions
should satisfy periodic boundary conditions at |wi | = π . To
satisfy these requirements we take f and g to have the simple
forms

f (wi) = |wi |
(

1 − |wi/π |3
4

)

g(wi) = wi

(
1 − 3

2
|wi/π | + 1

2
|wi/π |2

)
. (6)

f (wi) is very similar to the cuboidal form given in Eq. (4),
and if we use a cuboidal simulation cell with orthogonal
lattice vectors, where {A} = {a1/2π,a2/2π,a3/2π} and {B} =
{b1,b2,b3}, the general form of the Jastrow function Eq. (5)
reduces to the cuboidal form Eq. (4). g(wi) is the lowest-
order polynomial-like expansion that is antisymmetric under
wi → −wi . The sets of vectors {A} and {B} that we use for
the hexagonal simulation cell, as well as for other common
simulation cell geometries, are given in the Appendix.

B. Electron-ion correlations

In crystalline systems there are correlations between the
ions and electrons, as well as those between electrons. The
DFT orbitals in the Slater determinants describe most of
the electron-ion correlations, but these are modified by the
introduction of electron-electron correlations in the Jastrow
factor: in our simulations we add optimizable electron-ion
correlations to the electron-electron Jastrow factor to counter
this,

J (R) =
∑
j > i

σ,τ ∈ {↑ , ↓}

Jστ (rij ) +
∑
i,I

σ ∈ {↑ , ↓}

χσ (riI ),

where riI = ri − rI , for ion positions rI , i running over all
electrons, and I running over all ions. It has been shown [5,6]
that a short-ranged u-like expansion in electron-ion separation,

χσ (riI ) =
⎛
⎝Lχ

σ

3
β1,σ +

Nχ∑
m=1

βm,σ rm
iI

⎞
⎠

×(
1 − riI

/
Lχ

σ

)3
�

(
Lχ

σ − riI

)
,

captures the most important electron-ion correlations in the
electron-ion term, without the need for a longer-ranged p-like
term. The cutoff length Lχ

σ is generally comparable to the
interionic distance, and we use Nχ = 4 in our simulations.
As we use pseudopotentials for the ions there is no gradient
discontinuity in the wave function at electron-ion coincidence.
We also tested a cuspless form of the ν Jastrow function to
capture the electron-ion correlations, which agreed with the
energies obtained using χσ (riI ) to within 10−5 a.u. with the
same number of variational parameters. This confirms that it
is the short-range electron-ion correlations that are the most
important to capture, and so we shall use the well-established
χσ (riI ) term in the following investigations.
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In all-electron QMC simulations, particularly of molecules,
the addition of three-body electron-electron-ion correlations
to the Jastrow factor lowers the calculated energy [1,6,44],
as these terms allow a more detailed description of tightly
bound electrons. However, electron-electron-ion correlations
are less important in simulations using pseudopotentials, and
including them here changes the correlation energy by less
than 0.9%. Similarly to the electron-ion term the dominant
effect of electron-electron-ion terms is at short radius, and
so the ν Jastrow factor formalism is expected to offer
limited improvements relative to an isotropic u-like term in
constructing such terms. As electron-electron-ion terms make
a small difference to the energy and will not help us to
discriminate between the u, u & p, and ν terms we neglect them
here, although they should of course be included in simulations
targeting high accuracy.

The full Jastrow function is then obtained by combining the
electron-ion term χσ (riI ) with the electron-electron Jastrow
functions under examination, the u, u & p, and generalized ν

terms. We now examine the accuracy and efficiency of these
Jastrow functions for simulating crystalline beryllium.

C. Results

In Fig. 4(a) we compare the percentages of the DMC
correlation energy missing, η, when the various Jastrow factors
are used with N variational parameters in the electron-electron
Jastrow factor. We observe that a u term alone is always
missing nearly 20% of the correlation energy, and moreover
that the addition of a single p term does not significantly
improve the result. This is in contrast to the case of the HEG,
where the addition of a single p term was the most important
step in achieving a high-accuracy u & p term. This is due to the
fact that, in the beryllium simulation cell, the b3 lattice vector
orthogonal to the hexagonal planes is shorter than those in
the b1,b2 plane, and so the first p term only acts along the
c axis, not providing flexibility to capture correlations in the
hexagonal planes. However, the addition of just one more p

term reduces the correlation energy missing to around 9%, and
the addition of more p terms to this does not significantly alter
the result. This means that to achieve convergence we again
require N = 5 when using the u & p term.

As in the HEG, the ν term achieves comparable accuracy
to the most accurate u & p terms, reaching convergence by
N = 2. This, combined with the necessity of otherwise using
N � 5 for the u and p term, of which Np = 2 are expensive
p terms, means that the ν term is significantly cheaper to
optimize and use than alternative Jastrow factors.

In Fig. 4(b) we examine the variance in the local energy
using different Jastrow factors. There is significantly less
difference here between the Jastrow factors than in the
proportion of the correlation energy they capture, but the ν

term again performs as well as the most detailed other Jastrow
factors, meaning that the trial wave functions have similar
efficiency in DMC.

As well as hexagonal crystalline beryllium, we have also
tested the electron-electron ν term in other crystals with
different symmetry. The missing correlation energy when
using the ν term and the Np = 2u & p term is shown in Table I.
The u & p term is not significantly improved by increasing Np

(a)
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0 1 2 3 4 5 6 7 8

η
(%

)

N

u: Nu = N − 1
u & p: Nu = N − 2, Np = 1
u & p: Nu = N − 3, Np = 2
u & p: Nu = N − 5, Np = 4

ν: Nν = N + 1

(b)
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2 V

M
C
/σ

2 H
F
×

10
0%

N

u: Nu = N − 1
u & p: Nu = N − 2, Np = 1
u & p: Nu = N − 3, Np = 2
u & p: Nu = N − 5, Np = 4

ν: Nν = N + 1

FIG. 4. (a) The percentage of the DMC correlation energy
missing from VMC simulations of crystalline beryllium, with N

optimizable parameters in the Jastrow factor. Gray, blue, and red
lines correspond to the u, u & p, and ν terms, respectively. (b) The
variance in the local energy when using different Jastrow factors, as a
percentage of the variance in the local energy using the Hartree-Fock
wave function. Error bars, where not visible, are smaller than the
size of the points. (a) Correlation energy missing; (b) Local energy
variance.

in any of these crystals, and we use N = 5 as this is where the
u & p term approaches its converged accuracy; in each case
the ν term is already converged.

The two Jastrow factors capture similar levels of the
correlation energy in each system, indicating that the ν term is
a good general choice of Jastrow factor for use in crystalline
systems, with the slight differences between the ν and u &

TABLE I. The percentage of the DMC correlation energy missing
within VMC, η, for the ν and u & p terms with N = 5 in
example systems: crystalline beryllium in a hexagonal simulation
cell; crystalline lithium in a body-centered cubic (bcc) simulation
cell; and crystalline silicon in a face-centered cubic (fcc) simulation
cell. Bracketed numbers indicate the standard error in the values
for η.

Crystal type (example system) ν u & p: Np = 2

Hexagonal (Be) 8.6(1)% 9.3(1)%
bcc (Li) 4.7(1)% 5.0(1)%
fcc (Si) 10.1(2)% 9.6(2)%
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p terms in different systems being due to the exact details
of the symmetry of the simulation cell in each case, some of
which are better captured by the ν term than others. However,
overall, the differences between Jastrow factors are smaller
than the differences between systems, and the ν Jastrow factor
achieves high accuracy while having fewer (and only linear)
parameters to optimize and being cheaper to evaluate, due to
being polynomial as opposed to sinusoidal.

V. DISCUSSION

We have proposed and tested a form of electron-electron
Jastrow factor that interpolates between the radial symmetry
of the Coulomb potential at short range and the space-group
symmetry of the simulation cell at large separation. The ν

Jastrow factor captures comparable levels of the correlation
energy to the most detailed u & p terms used in the literature,
and converges with fewer variational parameters. There is also
only one choice of input to the ν term, the expansion order Nν ,
which reduces the parameter space to be explored compared
to the two variables, Nu and Np, required for the u & p term.
Finally, the polynomial ν term is quicker to evaluate than the
plane-wave p term.

It would be possible to apply the ideas behind the
ν term to higher angular-momentum terms in a Jastrow
factor: for instance, carrying out the transformation x/r →
g(x)/

√
f 2(x) + f 2(y) + f 2(z) would allow the Y11 spherical

harmonic to be expressed in a way that satisfies the symmetry
of a cuboidal simulation cell. The ν term could also be
used in systems with interactions other than the Coulomb
potential; for instance, QMC may also be used to study the
dipolar [22] and contact [45] interactions in cold atomic gases,
and also more exotic interactions such as those found in 2D
semiconductors [46]. The interpolation between symmetries
of the ν term could also be applicable more widely than just
in Jastrow factors. Any expansion in or use of interparticle
separation in a numerical investigation could be written instead
in terms of the f and g functions of the ν term, and so
would immediately satisfy periodic boundary conditions in
the simulation cell. Systems that might be well suited to this
approach could include two-particle pairing orbitals in Slater
determinants [47], large-amplitude phonons simulated within
density functional theory [48], or the construction of force
fields that natively reflect bond angles for molecular dynamics
simulations [49].

The ν Jastrow factor is implemented in the CASINO QMC
package [13,50]. Data used for this paper are available
online [51].
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APPENDIX: SYMMETRY-RELATED
VECTORS FOR THE ν TERM

Here we enumerate the {A} and {B} vectors for use in the
ν term for some common simulation-cell geometries.

1. Cubic cell

For a cubic cell with lattice vectors a1 = a[100], a2 =
a[010], a3 = a[001], the symmetry-related vectors take the
form

{A} = 1

2π
{a1,a2,a3}

{B} = {b1,b2,b3}.

2. fcc cell

For a face-centered cubic cell with lattice vectors a1 =
a
2 [011], a2 = a

2 [101], a3 = a
2 [110], the symmetry-related vec-

tors take the form

{A} = 1

8π
{3a1 − a2 − a3,3a2 − a3 − a1,

3a3 − a1 − a2,a1 + a2 + a3}
{B} = {b1,b2,b3,b1 + b2 + b3}.

3. bcc cell

For a body-centered cubic cell with lattice vectors a1 =
a
2 [1̄11], a2 = a

2 [11̄1], a3 = a
2 [111̄], the symmetry-related vec-

tors take the form

{A} = 1

8π
{2a1 + a2 + a3,2a2 + a3 + a1,

2a3 + a1 + a2,a1 − a2,a1 − a3,a2 − a3}
{B} = {b1,b2,b3,b1 − b2,b1 − b3,b2 − b3}.

4. Hexagonal cell

For a hexagonal cell with lattice vectors a1 = a[100], a2 =
a[ 1

2

√
3

2 0], a3 = c[001], the symmetry-related vectors take the
form

{A} = 1

6π
{2a1 − a2,2a2 − a1,3a3,a1 + a2}

{B} = {b1,b2,b3,b1 + b2}.
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