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Pseudopotential for the two-dimensional contact interaction
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We propose a smooth pseudopotential for the contact interaction acting between ultracold atoms confined to
two dimensions. The pseudopotential reproduces the scattering properties of the repulsive contact interaction up
to 200 times more accurately than a hard disk potential, and in the attractive branch gives a tenfold improvement
in accuracy over the square well potential. Furthermore, the potential enables diffusion Monte Carlo simulations
of the ultracold gas to be run 15 times quicker than was previously possible.

DOI: 10.1103/PhysRevA.93.042702

I. INTRODUCTION

Many collective quantum phenomena emerge from reduced
dimensionality, including the quantum Hall effect [1], high-
temperature superconductivity [2], quantum magnetism [3],
and topological insulators [4]. Consequently, two-dimensional
(2D) systems have recently attracted a great deal of atten-
tion [5–11]. 2D systems may now be realized, for example,
at the interface between two solids [12], or in an ultracold
atomic gas in an anisotropic optical trap, with one dimension
tightly confined relative to the other two [13–15]. This
coincidence of novel many-body phenomena with accurate
experimental realizations makes 2D systems attractive for
numerical investigation.

Ultracold atoms provide a clean model Hamiltonian with
a tunable interaction strength, and their study has delivered
new insights into many-body quantum physics [16–19]. The
resonant Feshbach interaction [20] between ultracold atoms
is usually modeled by a contact potential [21–29]. Despite
its widespread usage, the contact interaction causes sampling
problems in numerical simulations due to its infinitesimally
short range and divergence at coalescence. It also harbors a
bound state, complicating the use of ground state methods
for examining repulsive scattering between particles. These
difficulties are conventionally circumvented by replacing the
contact potential by, for example, a hard disk potential,
which we show leads to inaccurate scattering properties.
This problem has recently been resolved in three dimen-
sions by Bugnion et al. with the development of a smooth
pseudopotential [30] that results in a hundredfold increase in
the accuracy of the scattering properties. The smoothness of
the new pseudopotential also radically speeds up numerical
calculations [31,32]. Here we follow that prescription to
develop a pseudopotential that improves the modeling of 2D
quantum gases with a contact interaction.

In Sec. II we discuss two particles interacting via the 2D
contact potential. In Sec. III we derive the pseudopotential,
and in Sec. IV demonstrate its accuracy in an inhomogeneous
two-body system. In Sec. V we examine the pseudopotential’s
advantages over other methods in a homogeneous many-body
system, before discussing potential future applications of the
pseudopotential in Sec. VI.

II. ANALYTICAL RESULTS

In order to develop a pseudopotential for use in many-body
simulations, it is essential to first understand the behavior of

the two-particle system. Here we analyze an isolated two-body
system of distinguishable fermions, starting with noninter-
acting particles and then adding a short-ranged interaction
potential, which not only allows us to find solutions for the
contact interaction, but also serves as a platform from which to
propose a pseudopotential. Atomic units (� = m = 1) are used
throughout, and anticipating that we will study many-body
systems, we measure energies in units of the Fermi energy EF

and lengths in units of the Fermi length k−1
F .

A. Short-ranged two-particle interactions

We consider two equal-mass, distinguishable fermions in
a vacuum. In their center-of-mass frame, the Schrödinger
equation for particles interacting via a potential V (r) is given
by

− ∇2ψ(r,θ ) + V (r)ψ(r,θ ) = Eψ(r,θ ), (1)

where E is the energy in the center-of-mass frame.
The analytic solution to Eq. (1) for noninteracting particles

(V (r) = 0) in a vacuum takes the form

ψ�(r,θ ) = R�(r)��(θ )

with

��(θ ) = 1√
2π

ei�θ ,

R�(r) = A(k)J�(kr) + B(k)Y�(kr),

where k = √
E is the wave vector in the center-of-mass frame,

� is angular momentum projected onto the normal to the 2D
plane, and A(k) and B(k) are constants set by the boundary
conditions. J�(kr) and Y�(kr) are Bessel functions of the first
and second kinds, respectively.

If we take the potential V (r) to be short ranged and
cylindrically symmetric, for distinguishable fermions the only
effect of the potential is in the � = 0 channel. The wave
function beyond the interaction range, where V (r) = 0, then
takes the same form as in the noninteracting case,

ψ0(r) ∝ A(k)J0(kr) + B(k)Y0(kr). (2)

There are two branches of solutions, scattering states for E > 0
and bound states for E < 0.
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1. Scattering states (E > 0)

For two-particle scattering with positive E, the noninter-
acting wave function given by Eq. (2) with k = √

E can be
written at large separations in the oscillatory form

ψs(r) ∝ sin
[
kr + π

4 + δ(k)
]

√
kr

, (3)

where the scattering phase shift δ(k), given by

cot δ = −A(k)/B(k), (4)

describes the large radius behavior of the wave function and
captures the full impact of the scattering interaction.

2. Bound states (E < 0)

Two particles with E < 0 are in a bound state in which they
remain in close proximity if no external force is applied. The
bound state wave function has the form

ψb(r) ∝ A(κ)J0(iκr) + B(κ)Y0(iκr),

where κ = √−E. For the wave function to be normalizable
A and B must satisfy B(κ)/A(κ) = i, and therefore the wave
function

ψb(r) ∝ J0(iκr) + iY0(iκr)

∝ H
(1)
0 (iκr), (5)

where H
(1)
0 (x) = J0(x) + iY0(x) is the Hankel function of the

first kind. Note that H
(1)
0 (iκr) → e−κr/

√
κr as κr → ∞, with

the expected exponential decay of a bound state.

B. 2D contact interaction

We now apply these results for short-ranged 2D interactions
to the 2D contact interaction V cont(r). In a fermionic system
this zero-ranged interaction acts only between distinguishable
particles, with the interaction strength described by a scattering
length a. We can capture the full effect of the interaction by
imposing the boundary condition [33,34](

r
d

dr
− 1

ln(r/a)

)
ψ(r) = 0 (6)

at r = 0 and then at r > 0 use the noninteracting solution
Eq. (2), which gives

ψcont
0 (r) ∝ J0(kr) − π

2[γ + ln(ka/2)]
Y0(kr), (7)

where γ ≈ 0.577 is Euler’s constant.
For E > 0 the scattering phase shift is evaluated using

Eq. (4) as

cot δcont(k) = 2

π
[γ + ln(ka/2)]. (8)

The pseudopotential must be able to reproduce this phase shift
as a function of scattering wave vector.

For E < 0 the bound state wave function is given by Eq. (5).
The corresponding bound state energy can be found from the
condition B/A = i and Eq. (7) as

Eb = − 4

a2
e−2γ .
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FIG. 1. The bound (blue) and scattering (red) state wave functions
of the contact interaction with kFa = 1/2. The wave functions are
offset by their energies, Es = EF for the scattering state and Eb =
− 4

a2 exp(−2γ ) for the bound state. The radius rc gives the position
of the first antinode in the scattering state, which is used as the cutoff
radius for the pseudopotentials.

Examples of a scattering and bound state wave function are
shown in Fig. 1. At large radii the scattering state wave
function takes the form of a wave, with the first node occurring
at r = a in the k → 0 limit, whilst the bound state wave
function decays exponentially. Both wave functions diverge
at particle coalescence, which makes them difficult to sample
in numerical methods. This motivates us to develop a smooth
pseudopotential for the contact interaction, which will give
rise to a wave function that is easier to sample numerically.

III. DERIVATION OF THE PSEUDOPOTENTIALS

To develop smooth pseudopotentials for the contact inter-
action we continue to investigate the two-particle system in
a vacuum, where the particles are distinguishable fermions
and an analytical solution exists. We first focus on scattering
states where, after reviewing the hard and soft disk potentials
that are commonly used in ultracold atomic gas calculations,
we construct a pseudopotential using the method proposed
by Troullier and Martins (TM) [35]. This method was
originally developed for making pseudopotentials for electron-
ion interactions, but has been successfully applied to other
systems of interacting particles [30,32]. Next we construct
another, “ultratransferable,” pseudopotential (UTP) following
the method in Ref. [30]. We then compare the accuracy of
the TM and UTP pseudopotentials with that of the hard and
soft disk potentials. Finally, we develop pseudopotentials for
bound states. We have made the software used to generate all
the pseudopotentials in this work available online [36].

A. Pseudopotentials for scattering states

1. Hard disk potential

Here we briefly review the hard disk potential that is
currently used in many numerical studies of the contact
interaction [11,21,22]. The interaction potential has the form

V HD(r) =
{∞, r � R,

0, r > R,

where R is the radius of the potential. Solving the Schrödinger
Eq. (1) with a boundary condition ψHD

0 (R) = 0, the wave
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FIG. 2. Scattering state pseudopotentials V (r) for the contact
potential with kFa = 1/2. The pseudopotential for the hard disk with
radius a is shown in cyan, the soft disk with radius aSD in blue, the
TM pseudopotentials in red and green, and the UTP in magenta. The
pseudopotential cutoff radius rc is the same as in Fig. 1.

function is given by

ψHD
0 (r) ∝

{
0, r � R,

−Y0(kR)J0(kr) + J0(kR)Y0(kr), r > R,

and the scattering phase shift defined by Eq. (4) is

cot δHD(k) = Y0(kR)

J0(kR)

= 2

π
[γ + ln(kR/2)]+ (kR)2

2π
+O((kR)4). (9)

By setting the hard disk radius R equal to the scattering length
a, the low energy scattering phase shift from the hard disk has
the same form as the phase shift from the contact potential
in Eq. (8). A hard disk potential with R = a then gives the
phase shift for the contact interaction with an error of order
O((ka)2), delivering the correct scattering properties only in
the k → 0 limit. An example of a hard disk potential is shown
in Fig. 2.

2. Soft disk potential

To reduce the error in the scattering phase shift at finite k

from that found with the hard disk, we may instead use a soft
disk potential [37]

V SD(r) =
{
U, r � R,

0, r > R,

where U is the height of the soft disk potential. The extra
degree of freedom in this potential relative to the hard disk
allows it to remove the error in the scattering phase shift in
Eq. (9) of (kR)2/2π , and so describe the scattering correct
to O((ka)4). We solve the Schrödinger equation using this
potential separately in the regions r < R and r > R, enforcing
continuity of the wave function and its derivative at r = R,
and expanding the scattering phase shift Eq. (4) to second
order around k = 0. Setting the first term equal to the contact
potential scattering phase shift of Eq. (8) relates R and the
scattering length a via

R = aSD = a exp

(
I0(χ )

χI1(χ )

)
,

where I�(χ ) is the modified Bessel function of the first kind,
and the factor χ2 = UR2 ≈ 2.67 is obtained by setting the
second order term in the phase shift expansion to zero. This
uniquely specifies a soft disk potential for a given a, whose
scattering properties are correct up to order O((ka)4). An
example of a soft disk potential is shown in Fig. 2. It has a
larger radius R than the hard disk potential but a lower height
U , with the width tending to zero and the height to infinity as
the scattering length goes to zero.

3. Troullier-Martins pseudopotential

The previous subsections showed that the hard and soft disk
potentials give accurate scattering properties only in the limit
of k → 0. However a Fermi gas contains all the scattering
wave vectors in the range 0 < k � kF, and so the hard and
soft disk potentials will give rise to inaccurate results. To
demonstrate how the accuracy may be improved at finite k,
we develop pseudopotentials using the TM formalism [30,35].
This formalism produces scattering state pseudopotentials
that

(1) should reproduce the phase shift of the contact potential
accurately for all scattering wave vectors in the Fermi sea;

(2) are smooth everywhere, which accelerates numerical
calculations; and

(3) for repulsive interactions do not support a bound state.
This formalism requires two prescribed parameters, namely

the calibration wave vector kc at which the resulting pseudo-
wave function has identical scattering properties to the contact
potential, and a cutoff radius rc at which the pseudopotential
smoothly becomes zero.

The calibration wave vector must be chosen for each
system. For example, in a superfluid we might choose kc = kF,
as that is where the most important physics of Cooper pair
formation occurs. For a fermionic gas we choose kc = kF/2,
which minimizes the average phase shift error [32].

By choosing the cutoff radius to be larger than the radius of
the first node in the analytic wave function, which is at r ≈ a

in Fig. 1, we ensure that the pseudo-wave function does not
contain the innermost node that corresponds to the bound state
of the contact interaction [30]. In order to avoid unnecessarily
removing scattering states from the potential the cutoff radius
must also be smaller than the radius of the second node, and
so we choose the cutoff radius to be at the first antinode of the
wave function with k = kc, shown in Fig. 1.

The TM pseudopotential takes the form

V TM(r) =
{
k2

c + p′′ + p′2 + p′
r
, r � rc,

0, r > rc,

where the polynomial p(r) = ∑6
i=0 cir

2i , and primes indi-
cate derivatives with respect to r . The coefficients {ci} are
determined by a set of constraints on the pseudopotential
and pseudo-wave function, whose form is ψ(r) = exp[p(r)] :
that the pseudo-wave function is smooth up to the fourth
derivative at rc; that the pseudopotential has zero curvature
at the origin; and that the norm of the pseudo-wave function
within rc equals that of the wave function from the real
contact potential [30,32,35]. This gives rise to a set of coupled
equations for the {ci} of which one is quadratic and the others
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linear: there are therefore two separate branches of solutions,
which give rise to two separate TM pseudopotentials.

In Fig. 2 we compare all of the discussed pseudopotentials
for the contact interaction, with kFa = 1/2. The TM pseu-
dopotentials, being everywhere smooth and finite, are easier
to work with numerically than the hard and soft disks, and
they do not introduce discontinuities in the first derivative
of the wave function. The potential labeled Troullier-Martins
(1) in Fig. 2 is smaller than Troullier-Martins (2) at particle
coalescence, but larger at further separations to give similar
average scattering.

4. Errors in scattering phase shift

The quality of a pseudopotential for scattering states may
be determined by how accurately it reproduces the phase shift
of the contact potential. All information on the difference
between the pseudopotential and contact potential can be
obtained from the wave function just beyond the edge of
the pseudopotential. We match the analytical pseudo-wave
function that solves Eq. (1), ψ , and its first derivative to the
noninteracting solution Eq. (2) at a radius Re beyond the radius
of the pseudopotential. This leads to an expression for the
scattering phase shift

cot δ(k) =
ψ ′(Re)
ψ(Re) Y0(kRe) + kY1(kRe)
ψ ′(Re)
ψ(Re) J0(kRe) + kJ1(kRe)

.

We calculate the difference in the phase shift between the
contact interaction and pseudopotentials, showing the error in
the calculated phase shifts from using the pseudopotentials
|δpseudo(k) − δcont(k)| in Fig. 3, with Re = rc. The hard and
soft disk potentials are exact in the limit of k → 0, but deviate
away from that point, with the soft disk performing better
than the hard disk. The TM (1) pseudopotential is on average
around twice as accurate as the hard disk potential, with the
TM (2) pseudopotential being around twice as accurate again,
and the soft disk being another 1.3 times more accurate. Both
TM pseudopotentials capture the scattering behavior perfectly
at kc = kF/2 but deviate at all other scattering wave vectors,
which is a consequence of the norm-conserving condition on
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FIG. 3. The error in the scattering phase shift |δpseudo(k) −
δcont(k)| as a function of scattering wave vector for the different
pseudopotentials at kFa = 1/2. The error from the hard disk is shown
in cyan, the error from the soft disk in blue, the errors from the two
TM pseudopotentials in red and green, and the error from the UTP in
magenta.

the pseudo-wave functions. To further improve the accuracy
of the pseudopotentials, a natural extension to the formalism is
to construct a pseudopotential that minimizes this deviation in
the phase shift over all wave vectors k � kF. We propose such
a pseudopotential here, referring to it as an “ultratransferable
pseudopotential” (UTP) [30].

5. Ultratransferable pseudopotential

Similarly to the TM pseudopotential, the UTP takes a
polynomial form within a cutoff radius rc,

V UTP(r)=
{(

1− r
rc

)2[
u1

(
1 + 2r

rc

)+∑Nu

i=2 ui

(
r
rc

)i]
, r � rc,

0, r > rc,

with Nu = 3. The term (1 − r/rc)2 ensures that the pseudopo-
tential goes smoothly to zero at r = rc, and the component
u1(1 + 2r/rc) constrains the pseudopotential to have zero
derivative at the origin. This ensures that the pseudo-wave
function is smooth, easing the application of numerical
methods.

To determine the coefficients {ui} we numerically solve the
scattering problem, extract the scattering phase shift δUTP(k),
and then minimize the total squared error in the phase shift
over all scattering wave vectors k,

〈|δUTP(k) − δcont(k)|2〉 =
∫ kF

0
|δUTP(k) − δcont(k)|2g(k/kF)dk,

where the weighting is given by the density of states
in the center of mass frame g(k) = k(4 − 8

π
[k

√
1 − k2 +

arcsin(k)]) [32]. An example UTP is shown in Fig. 2,
confirming that this construction gives smooth potentials.
The scattering phase shift error from the UTP is shown
in Fig. 3, demonstrating that the UTP construction creates
pseudopotentials that are significantly more accurate than the
Troullier-Martins pseudopotentials and soft disk potential and
some 200 times more accurate than the hard disk. This is
achieved by the phase shift error from the UTP being optimized
to be zero at three different wave vectors, as opposed to the
single wave vector for the TM pseudopotentials.

B. Pseudopotentials for bound states

Pseudopotentials may also be constructed for particles in a
bound state, with E < 0. In order to accurately imitate the con-
tact potential, the pseudopotentials must reproduce the bound
state energy of the contact potential Eb = −(4/a2) exp(−2γ ),
and also must accommodate only one bound state. We first
discuss the square well pseudopotential, which has been used
in previous ultracold atomic gas calculations, and then again
develop smooth pseudopotentials using the TM formalism.
For bound states there is no quantity like the scattering phase
shift that can be used to directly determine the quality of the
pseudopotentials. We therefore demonstrate their accuracy in
a two-body inhomogeneous system in Sec. IV.

1. Square well potential

The square well potential has the form

V SW(r) =
{−U, r � R,

0, r > R.
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FIG. 4. Bound state pseudopotentials for the contact potential
with kFa = 1/2. A square well with kFR = 1/4 is shown in blue, and
the TM (1) pseudopotentials with kFrc = 1 is shown in red. Inset: the
TM (2) pseudopotential, shown in green and with kFrc = 1, behaves
qualitatively differently near particle coalescence.

This potential may be made arbitrarily close to the bound
state contact interaction by taking the well radius R → 0 and
depth U → ∞. Decreasing R, however, reduces the sampling
efficiency and thereby increases the computational cost. We
require R to be less than the average interparticle separation
∼1/kF, in order to avoid the unphysical situation of three
or more particles interacting simultaneously. In Sec. IV we
investigate the R dependence of the accuracy of the square
well pseudopotential.

Because there is no analog of the scattering phase shift for
the bound system it is not possible to uniquely define a U and
R for a given a, as we did for the soft disk potential in which U

and R were related by the second order term in the expansion.
However one parameter may be determined by ensuring that
the bound state energy of the potential is Eb, and for a given
R the value of U this sets can be found as a solution to

−J0(k1R)

k1J1(k1R)
= J0(ik2R) − iY0(−ik2R)

k2[−iJ1(ik2R) + Y1(−ik2R)]
,

where k1 = √
U − |Eb| and k2 = √|Eb|. An example of a

square well potential is shown in Fig. 4. Except in the limit
of being infinitely deep and narrow, the square well potential
does not give rise to the same wave function as the true contact
interaction, but within the potential the wave function and
therefore probability density is too small. This means that in
the presence of an external potential (for example an harmonic
trap, as in Sec. IV) there is too much weight at large particle
separations, giving rise to inaccurate values of the system’s
energy. As R → 0 the wave function approaches the exact
form given by Eq. (5).

2. Troullier-Martins pseudopotential

The Troullier-Martins pseudopotential resolves the problem
of having too much weight at large particle separations by
being a norm-conserving pseudopotential, and so has the
correct amount of weight within and outside of its cutoff
radius. The construction of the TM pseudopotential for the
bound state is identical to that of the scattering state, except
that the calibration energy is now given by the bound state
energy Ec = Eb. The cutoff radius rc should be kept smaller
than the average interparticle separation ∼1/kF to reduce the

probability of three or more particles interacting at once, but
there is no lower bound on rc: similarly to the case of the
square well, reducing rc increases the accuracy but also the
computational cost of simulations. The square well and TM
pseudopotentials are shown in Fig. 4.

One of the TM pseudopotentials, labeled (1) in Fig. 4,
behaves as would be expected qualitatively for a short-ranged
potential giving rise to a bound state: it has a large negative
region near particle coalescence. The other TM solution,
labeled (2) and shown in the inset to Fig. 4, does not show this
behavior, instead having an attractive region at finite particle
separation. This will give rise to a nonzero expected separation
between bound particles, which is physically discordant with
the contact interaction. We therefore reject the TM (2)
pseudopotential because of its unphysical behavior and select
the TM (1) pseudopotential instead, referring to it henceforth
simply as the TM pseudopotential.

Since all particles in bound states have approximately the
same energy, the UTP formalism does not offer any advantage
in this system. We now move on to testing the pseudopotentials
in an inhomogeneous two-body system.

IV. TWO FERMIONS IN AN HARMONIC TRAP

We have constructed pseudopotentials that describe the
scattering behavior of two isolated fermions. To test the pseu-
dopotentials we turn to the experimentally realizable [38,39]
system of two distinguishable fermions in a circular harmonic
trapping potential 1

4ω2r2 of frequency ω. This system also has
the advantage of being analytically soluble, which provides
a stringent test for the pseudopotentials that we will use in
many-body simulations.

A. Analytic energy levels

In the center-of-mass frame the Schrödinger equation for
two distinguishable fermions in an harmonic trap is given by

−∇2ψ(r) + 1

4
ω2r2ψ(r) + V cont(r)ψ(r) = Eψ(r),

where the interparticle interaction term V cont(r)ψ can be
replaced by a boundary condition given by Eq. (6). For the
contact interaction the energy levels in the center-of-mass
frame are solutions to the nonlinear equation [33,40]

�

(
− E

2ω
+ 1

2

)
= ln

(
d2

a2
e−2γ

)
, (10)

where d = √
2/ω is the characteristic length scale of the

trap and � is the digamma function. These solutions are
shown in Fig. 5 as a function of the dimensionless interaction
strength g = −1/ ln(a/d). In the noninteracting case g = a =
0 the energies have the expected values E = ω(2n + 1) for
noninteracting particles. As the repulsive interaction strength
g > 0 in Fig. 5 increases, the energy increases and at g → ∞
joins onto the energy of the attractive branch at g → −∞, in an
analog of unitarity in the BEC-BCS crossover [41]. The bound
state of the contact potential survives in this inhomogeneous
system as the deep bound state at g > 0.
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FIG. 5. Analytic energy levels for two particles in an harmonic
trap as a function of the dimensionless interaction strength g =
−1/ ln (a/d). The excited states (solid lines) correspond to the
scattering states of the contact potential and the ground state (dashed
line) corresponds to the bound state. The noninteracting energies are
shown by circles along the line g = 0.

B. Accuracy of the pseudopotentials

We compare the estimates of the center-of-mass energies
of two particles in an harmonic trap to the analytic result in:
Fig. 6(a), for repulsive interactions; Fig. 6(b) for attractive
interactions; and Fig. 6(c) for bound particles. In the repulsive
case, we find that the hard and soft disk potentials and TM
pseudopotential are accurate at small interaction strengths, but
at large interaction strengths the error in the calculated energies
is greater than 10%. The UTP pseudopotential is around 10
times more accurate at high interaction strengths and becomes
exact in the noninteracting limit.

To choose the radii of the potentials for the attractive and
bound branches we follow the approach used in Ref. [30] and
use a TM pseudopotential with a cutoff radius of nr2

c = 10−2,
where n = ω/2π is the peak density of two noninteracting
particles in the trap. We compare this to square wells with
radii given by the same nR2 = 10−2 and the smaller nR2 =
10−4 [29,30]. We note that in both the attractive and bound
branches, reducing the well radius increases the accuracy of
the square well potential, but that the TM pseudopotential
gives up to 10 times higher accuracy than a square well
with a radius 1/10 the size. The ability to use a larger cutoff
radius with the TM pseudopotential brings significant benefits
in numerical sampling of the potential, with the sampling
efficiency expected to scale as ∼r2

c . The increased accuracy
can be related to the fact that the square well gives rise
to wave functions with too much weight at large particle
separations, raising the energy in the external trap, whilst the
TM pseudopotential is norm-conserving, having the correct
weight in the wave function outside rc. The norm-conservation
condition ensures that the TM pseudopotential gives a bound
state wave function that is robust against changes in the local
environment, and hence performs well in the spatially varying
harmonic trap. As opposed to the single calibration energy
of the TM pseudopotential, in constructing the UTP we would
average over a range of energies. This would offer no advantage
in the attractive and bound branches, where there is a definite
binding energy for the pair of particles, and so we do not
examine the UTP in these branches.
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FIG. 6. Error in the center-of-mass energy of two fermions in an
harmonic trap calculated using pseudopotentials from the analytic
value of the energy from Eq. (10). (a) Error in the center-of-mass
energy of particles with a repulsive interaction as a function of
interaction strength for the hard disk in cyan, the soft disk in blue,
the TM pseudopotential in red, and the UTP in magenta. (b) Error
in the center-of-mass energy of particles with a weakly attractive
interaction as a function of interaction strength. The square well
pseudopotentials have radii given by nR2 = 10−4 and nR2 = 10−2,
and the TM pseudopotential has a cutoff radius given by nr2

c = 10−2,
with the different cutoff radii denoted by different types of line
dashing. (c) Error in the bound state energy as a function of interaction
strength.

We have shown that for particles in an harmonic trap
with attractive interactions, the TM pseudopotential gives an
increase in both accuracy and sampling efficiency relative to
the square well potential. For two particles with repulsive
interactions, the use of a UTP can offer a tenfold increase in
accuracy relative to using the TM pseudopotential or hard or
soft disk potentials. We now go on to demonstrate the scaling
benefits of the UTP in a many-body simulation.
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V. FERMI GAS

Having demonstrated the effectiveness of the UTP for
studying the two body scattering problem and two distin-
guishable fermions in an harmonic trap, we now demonstrate
the advantages of the UTP in a prototypical setting: a two-
dimensional homogeneous Fermi gas. Such a system serves as
a benchmark for cold atom experiments [42,43] and also as a
model for electrons in conductors.

We focus on the repulsive branch of the contact interaction.
Here the hard and soft disk potentials are uniquely defined
for a given interaction strength, and may not be improved to
attain arbitrarily high accuracy, as is possible in the attractive
and bound branches by reducing the well radius to zero. This
allows us to demonstrate the intrinsic benefits of the UTP
formalism over the hard and soft disk potentials.

The smoothness of the UTP relative to the hard and soft disk
potentials will be reflected in the many-body wave function,
which will make it easy to work with numerically. Having
shown in Sec. IV that the UTP is more accurate than the
competing hard and soft disk potentials and Troullier-Martins
pseudopotential, we proceed here to verify the accuracy of the
UTP by comparing the energy of a Fermi gas with first- and
second-order perturbation theory calculations [44–46].

A. Formalism

To calculate the ground state energies we use the diffusion
Monte Carlo (DMC) technique. DMC is a highly-accurate
Green’s function projector method for determining ground
state energies and expectation values [47–49], and it is well
suited to investigating homogeneous gaseous phases. We use
the CASINO implementation [50] of the DMC method with
a Slater-Jastrow trial wave function � = eJ D↑D↓, where D↑
(D↓) is a Slater determinant of plane-wave states for the spin up
(down) channel. The Jastrow factor eJ describes correlations
between particles, with

J =
∑
j �= i

α,β ∈ {↑ , ↓}

(
1 − rij

Lc

)3

uαβ(rij )�(Lc − rij ), (11)

where rij = |ri − rj | is the distance between two particles
with labels i and j , and uαβ are eighth-order polynomials,
whose parameters are optimized using variational Monte Carlo
subject to the symmetry requirements u↑↑ = u↓↓ and u↑↓ =
u↓↑. Lc is a cutoff length that we set equal to the radius of
a circle inscribed within the simulation cell, and � is the
Heaviside step function.

We calculate the ground state energy expectation value
for 49 spin-up and 49 spin-down particles in a homogenous
two-dimensional system for increasing interaction strengths
−1/ ln(kFa) up to a maximum value of 1.8 before the system
would phase separate into a fully polarized state. To accurately
capture the hard disk wave function at small interparticle
distances in our DMC simulations we add an additional term
to the Jastrow factor in Eq. (11),

uH(r) =
⎧⎨
⎩

−∞, r � R,

ln[tanh( r/R−1
1−r/Lc

)], R < r < Lc,

0, r � Lc,

(12)

as in Ref. [11], where R is the hard disk radius. In the present
study the additional term applies to opposite spins only.

We extrapolate to zero DMC time step to obtain accurate
ground state energies. For each data point we run three
simulations with time steps 0.25dt,0.5dt,dt , [51] with dt the
maximum time step in the linear regime, and extrapolate to
zero time step by minimizing the weighted least squares fit.
All error bars represent the DMC stochastic error combined
with the concomitant uncertainty in the time step extrapolation.
We expect that the use of a quadratic DMC algorithm would
give similar results [52,53].

B. Results

In Fig. 7 we compare ground state energies of the Fermi
gas obtained using the different potentials. It is clear that for
−1/ ln(kFa) > 0.7 both the hard and soft disk potentials, as
well as the Troullier-Martins pseudopotential, are insufficient
to obtain the desired 10−4EF accuracy that has been obtained
in other DMC studies of homogeneous systems [30–32,54].

To verify the DMC results we compare our estimates for
the ground state energy with perturbation theory [44–46].
As can be seen in Fig. 7(b), first order perturbation theory
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FIG. 7. (Top) Differences in ground state energy from the result
obtained with the UTP as a function of interaction strength, nor-
malized by the energy of the noninteracting system. The green lines
denoted E(1) and E(2) are predictions from first- and second-order
perturbation theory [44–46] and EGF is the result of a Galitskii-
Feynman partial resummation of Feynman diagrams reported in
Ref. [46], shown in orange. GB is the Monte Carlo result from
Ref. [22], calculated using a hard disk potential and shown in gray,
and our results using the hard disk are shown in cyan, the soft disk
in blue, the TM pseudopotential in red, and the UTP in magenta.
(Bottom) The same results on a logarithmic scale.
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E(1) = EF
2 (1 + [−1/ ln(kFa)]) deviates quadratically in the

interaction strength −1/ ln(kFa) from the UTP result as
expected, and second order perturbation theory

E(2) = EF

2

[
1 +

( −1

ln(kFa)

)
+

(3

4
− ln(4e−γ )

)( −1

ln(kFa)

)2
]

deviates cubically in −1/ ln(kFa) and outperforms first order
perturbation theory. In Fig. 7 we also show the result obtained
in Ref. [46] using a partial resummation of Feynman diagrams
in the Galitskii-Feynman (GF) scheme which is correct to
order O([−1/ ln(kFa)]3), and note that this indeed deviates
cubically in interaction strength from the UTP result. The
agreement of the scaling behavior of the energy calculated
using the UTP with interaction strength when compared to
these analytic results confirms the accuracy of the UTP.

In addition to the analytic approximations, we compare our
DMC results with an independent study using the hard disk
potential and the same number of particles in Ref. [22], labeled
GB. We note that their predicted energies are higher than those
from our DMC calculations using the hard disk potential, and
as DMC is a variational method this indicates that our trial
wave function is likely more accurate than was available to the
authors of Ref. [22], possibly due to our inclusion of a Jastrow
factor with variational parameters.

Having confirmed the accuracy of the UTP we now examine
its performance benefits. The local energy, EL = �−1Ĥ�, is
a crucial quantity in DMC calculations [50]. The stochastic
error in a DMC calculation is proportional to the standard
deviation σL in the local energy distribution, and therefore a
smoother local energy will give rise to more accurate results
for the same computation time. Figure 8 shows the standard
deviation of the local energy distribution of the trial wave
function when using all of our pseudopotentials. Both the UTP
and TM pseudopotentials benefit from their smoothness in
obtaining a lower local energy standard deviation compared
to the hard and soft disk potentials. For weak interactions the
hard disk potential benefits from an additional Jastrow factor
term, Eq. (12), relative to the soft disk potential, whose height
U also diverges as a → 0. However for larger interactions the
soft disk potential results in a smoother wave function than
the hard disk potential and therefore has lower local energy
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FIG. 8. Standard deviation of the local energy distribution of the
trial wave function. The hard and soft disk pseudopotentials exhibit a
larger standard deviation, due to the sudden changes in energy when
two particles approach one another.

variance. The variance in the local energies diverges for the
hard and soft disk potentials for weak interactions, whereas it
decays for the UTP and TM pseudopotentials. The standard
deviation for the TM pseudopotential is slightly lower than
the UTP at all interaction strengths, which is understood from
the larger size of the potential for the UTP in Fig. 2 compared
to the TM pseudopotential. This behavior is similar to the 3D
case reported in Ref. [30].

The reduced variance in the local energy lowers the
computational effort T required for a DMC calculation, which
scales as T ∝ σ 2

L/dt [31,32,55]. From Fig. 8 we see that
at intermediate interaction strength −1/ ln(kFa) = 0.8 the
variance of the local energy for the UTP is 2.7 and 3.0 times
lower than for the soft and hard disk potentials, respectively,
corresponding to a speedup of 7.5 and 9.1.

In addition to the lower local energy variance, our pseu-
dopotentials offer an additional speedup. The DMC estimate
of the energy must be extrapolated to zero time step, and the
larger the region of linear dependence of energy on time step,
the larger time step can be used. This reduces computational
effort even further, as T ∝ 1/dt . In Fig. 9 we observe that the
extent of the linear regime of the error in ground state energy
with time step differs between the pseudopotentials: it extends
up to dtHD = 1.25 × 10−3/EF for the hard disk, up to dtSD =
2.5 × 10−3/EF for the soft disk, up to dtUTP = 5.0 × 10−3/EF

for the UTP, and up to dtTM = 1.0 × 10−2/EF for the TM
pseudopotential. This means that the maximum time step for
a calculation with the UTP is two and four times larger than
for the soft and hard disk potentials, respectively. Combining
this with the reduced variance we therefore accomplish a total
speedup of at least 15 times by using the UTP instead of the
hard and soft disks.

To summarize, we have demonstrated the importance of
using a pseudopotential with scattering properties that accu-
rately describe the contact interaction. For weak interactions
we observe that a divergence in the variance in the local
energy severely constrains the accuracy of DMC simulations
with soft or hard disk potentials. At strong interactions these
inaccurate potentials introduce a significant bias into the
results, such that we were unable to attain the 10−4EF target
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accuracy in the ground state energy. However the UTP delivers
highly accurate results over the full range of interaction
strengths and additionally offers 15 times better computational
performance. We therefore recommend the UTP as an accurate
and efficacious tool for studying the contact interaction in 2D.

VI. DISCUSSION

We have developed a high-accuracy pseudopotential for the
contact interaction in 2D, building on the work of Ref. [30]. We
have demonstrated that our ultratransferable pseudopotential
provides accurate scattering phase shifts, accurate energies
for two harmonically confined particles, and we have demon-
strated its advantages in many-body simulations. The energies
obtained with our UTP are over ten times more accurate
in the repulsive branch of the interaction than is afforded
by the hard and soft disk potentials used in recent studies.
Moreover, we have demonstrated that for many-body systems
our pseudopotential delivers a speedup of at least 15 times
in diffusion Monte Carlo computations, on top of the more
accurate result.

The performance and ease of construction of the pseu-
dopotential suggests that it could be widely applicable across
first-principles methods beyond quantum Monte Carlo. The
pseudopotential formalism has already been used to study
the Coulomb [31] and dipolar [32] interactions. Although
in this paper we have focused on using the pseudopotential
to accurately capture the scattering properties of the contact

interaction, our formalism allows the further improvement of
modeling of quantum gases by calibrating the pseudopotentials
to more accurately describe the scattering properties of the
underlying Feshbach resonance interaction. To next lowest
order in scattering wave vector, this corresponds to including
the effective range term essential for describing narrow
Feshbach resonances, which may exhibit exotic breached
superfluidity [56,57], or other interactions with nonzero
effective ranges, which are applicable in the study of nucleon
reactions [58]. Rather than a description in terms of the
scattering phase shift, the pseudopotentials could instead be
calibrated to other scattering properties. For example, they
could be calibrated to the cross-section for elastic scattering
measured experimentally via the thermalization rate, or the
inelastic loss coefficient, to capture the full physical interaction
between particles [20].

Data used for this paper are available online [59].
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