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ABSTRACT: Animal pharmacokinetic (PK) data as well as
human and animal in vitro systems are utilized in drug discovery
to define the rate and route of drug elimination. Accurate
prediction and mechanistic understanding of drug clearance and
disposition in animals provide a degree of confidence for
extrapolation to humans. In addition, prediction of in vivo
properties can be used to improve design during drug discovery,
help select compounds with better properties, and reduce the
number of in vivo experiments. In this study, we generated machine learning models able to predict rat in vivo PK parameters and
concentration−time PK profiles based on the molecular chemical structure and either measured or predicted in vitro parameters.
The models were trained on internal in vivo rat PK data for over 3000 diverse compounds from multiple projects and therapeutic
areas, and the predicted endpoints include clearance and oral bioavailability. We compared the performance of various traditional
machine learning algorithms and deep learning approaches, including graph convolutional neural networks. The best models for PK
parameters achieved R2 = 0.63 [root mean squared error (RMSE) = 0.26] for clearance and R2 = 0.55 (RMSE = 0.46) for
bioavailability. The models provide a fast and cost-efficient way to guide the design of molecules with optimal PK profiles, to enable
the prediction of virtual compounds at the point of design, and to drive prioritization of compounds for in vivo assays.

KEYWORDS: rat pharmacokinetics, clearance, bioavailability, concentration−time pharmacokinetic profiles, machine learning,
neural networks, data imputation, graph convolutions, QSPR, compound design

1. INTRODUCTION

The efficacy and safety of a drug is a function of both its
intrinsic molecular properties (such as bioactivity against
molecular targets, chemical reactivity, etc.) and its concen-
tration at a particular site of action as a function of time, that
is, its pharmacokinetic (PK) profile.1 While the former has
received significant attention recently in the context of
“artificial intelligence” (AI) in drug discovery in areas such
as bioactivity prediction2,3 and the de novo design of ligands
for particular proteins,4 the impact of AI in the area of
modeling in vivo properties, such as PK, is much less
pronounced at this stage. One reason is that domains differ
significantly with respect to the quantity of high-quality data
available.5,6 In some areas, in vitro assays can be run to
characterize compounds,7 such as biochemical assays or assays
for PK-related properties such as LogD (base-10 logarithm of
distribution coefficient) or solubility, which give rise to large
numbers of available data points. This makes these properties
relatively amenable to current developments in the machine
learning domain, such as deep learning.8 However, in vivo PK
data (as well as in vivo data more generally) are more costly

and complex, resulting in a lack of data in this domain, which
hinders the application of some algorithms.6 On the other
hand, due to the direct therapeutic relevance of in vivo assays,
as well as their high cost, modeling these types of endpoints
provides a stronger incentive to generate in silico models.
Furthermore, it has been shown that failure rates in the
clinical phases due to sub-optimal PK are what makes drug
discovery so costly.5,9

In vivo rat PK studies commonly assess intravenous (iv)
and oral (po) administration of a test article and measure the
plasma concentration of the compound over time, typically
over a 24 h period. From this concentration versus time curve,
a number of PK parameters can be calculated including the
area under the concentration−time curve (AUC), the
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maximum plasma concentration (Cmax), half-life (t1/2),
clearance (CL), volume of distribution (Vss), and oral
bioavailability (F). Drug discovery projects strive to achieve
optimal PK parameters to reach efficacy in vivo in
combination with a suitable safety profile at a given dosing
regimen.1 For example, for an oral drug, bioavailability needs
to be high enough (e.g., F > 30%) to reduce interindividual
variability, while clearance needs to be sufficiently low to
achieve a long enough exposure at the site of action for
therapeutic efficacy.
Current approaches applied to predict in vivo PK include

(among others) in vitro to in vivo extrapolation (IVIVE)10,11

and physiologically based pharmacokinetics (PBPK) model-
ing.12 The well-stirred model (WSM),13−15 an IVIVE
approach for clearance, assumes that the drug concentration
in the liver is uniform (“well stirred”) and estimates only
hepatic metabolic clearance. The model incorporates meas-
ured in vitro data from liver microsomes or hepatocytes and
protein binding and a subsequent extrapolation step to in vivo
including hepatic blood flow.14

PBPK models are usually applied later in drug discovery
projects and require a comprehensive suite of in vitro and
usually also animal in vivo characterization of the compound
in question. The method can be used to understand the in
vivo behavior and to extrapolate it to humans. PBPK defines a
compound’s overall PK by describing its distribution in
relevant organs (compartments), based on pharmacological
parameters such as organ size, blood flow, and tissue
composition in relation to the compound properties. The
approach can be used to model the compound concentration
in different organs as well as in different disease settings or
populations.12 However, it is not possible to readily apply this
methodology in a high-throughput manner.
Significant advances have been made in simulating human

in vivo PK from in vitro and preclinical in vivo data, and
recent work from AstraZeneca16 describes that “83% of
AstraZeneca drug development projects progress in the clinic
with no PK issues; and 71% of key PK parameter predictions
[64% of area under the curve (AUC) predictions; 78% of
maximum concentration (Cmax) predictions; and 70% of half-
life predictions] are accurate to within 2-fold”.
For practical purposes, the direct prediction of PK

parameters based on the chemical structure is desirable
since it may enable drug discovery scientists to move
compound prioritization from proxy properties, such as a
series of in vitro properties, to the more relevant in vivo
space.5,6

Several studies used machine learning approaches to predict
human and in vivo animal PK parameters.17−24 Wang et al.17

established quantitative structure−property relationship
(QSPR) models for four human PK parameters, including
volume of distribution at the steady state, clearance, half-life,
and fraction unbound in plasma, using a data set consisting of
1352 drugs (which is currently also the largest publicly
available data set of its type25). For clearance, the model
accuracy is better than for in vivo clearance models by other
groups, and this might be due to the fact that iv data were
modeled in this work, due to a bias toward compounds with
low clearance, and due to the way the data set was derived.
Also, more specific models for volume of distribution have
been described recently,18 based on random forest methods,
and evaluated using an independent test set of 213
compounds, which was found to compare favorably to

methods based on in vitro properties. Recently, machine
learning models, predicting from the chemical structure and
dose, for human PK parameters, Cmax, AUC and volume of
distribution (Vd), were built on a set of 1000 clinical
compounds and further validated on AstraZeneca clinical
data.19

Recently, deep learning and graph convolutional algorithms
have been applied to in vivo PK modeling. In a study on a
large data set of ∼1900 in vivo data points20 researchers at
Bayer modeled iv and oral drug exposure and oral
bioavailability in rats using a variety of hybrid modeling
approaches, including deep neural networks, linear mapping,
and PBPK models. Compounds were described as either (a)
six experimentally determined in vitro and physicochemical
properties, namely, membrane permeation, free fraction,
metabolic stability, solubility, pKa value, and lipophilicity;
(b) the outputs of six in silico absorption, distribution,
metabolism, and excretion (ADME) models trained on the
same properties; or (c) the chemical structure encoded as
fingerprints or simplified molecular input line entry system
(SMILES) strings. The authors found that exposure after iv
administration can be predicted similarly well using
experimental and predicted properties as the input. The
model errors for exposure after po administration were
generally higher, and the prediction from in vitro inputs
performs significantly better in comparison to their in silico
counterparts, which the authors attributed to the higher
complexity of oral bioavailability. Using graph convolutional
networks on data sets from Merck, the authors of another
study21 were able to show that their method, PotentialNet,
achieves a 64% average improvement and a 52% median
improvement in R2 over random forests across all 31 data sets
used in the study (which comprise a wide range of mostly
ADME-related endpoints plus in vivo dog and rat PK
endpoints). For in vivo endpoints, such as rat and dog
clearance data, only marginal improvements in performance
were seen. Using transfer learning and multitask learning,22

one recent model was pretrained on over 30 million
bioactivity data points, and then, four human PK parameters
for 1104 FDA-approved small-molecule drugs were modeled,
namely, oral bioavailability, plasma protein binding, apparent
volume of distribution at the steady state, and elimination
half-life. The multitask learning model generally has shown the
best performance for the endpoints modeled, although not
with a very large margin in some cases.
One key question is whether machine learning models for

in vivo PK properties perform better than extrapolating from
in vitro data using mechanistic IVIVE approaches. Kosugi and
Hosea compared IVIVE and machine learning approaches for
in vivo clearance prediction in rat23 on a structurally diverse
set of 1114 compounds with known in vitro intrinsic clearance
and plasma protein binding. The predictivity of machine
learning models was generally improved by incorporating in
vitro parameters as input features. On the other hand,
clearance prediction utilizing in vitro intrinsic clearance data
in combination with the WSM was found to perform
substantially worse compared to machine learning approaches.
Similar conclusions were obtained in a study by the same
authors, which compared machine learning models for the in
vivo AUC after po administration to the IVIVE approach
using a data set of 595 compounds.24 Both of these studies, in
agreement with our findings in the current work, suggest that
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in silico machine learning models for compound in vivo PK
properties are of practical value in drug design.
As exemplified above, there exists a prior art in the area of

modeling in vivo PK parameters based on the chemical
structure. Some endpoints, such as volume of distribution,
have been shown to be modelable across multiple studies,
while for other endpoints, such as clearance and in particular
bioavailability, results differ more widely, and they are
generally less satisfactory. However, what is common to the
above studies is that models were generally either based on
limited compound data sets and/or the number of PK
endpoints modeled was limited to a small number.
In this work, we describe machine learning models that

predict several rat in vivo PK parameters: F, CL, volume of
distribution at the steady state (Vss), AUC, Cmax, and t1/2, and
concentration−time PK curves. The models are trained and
validated on a large data set of more than 3000 compounds.
The combination of endpoints modeled and the quantity of in
vivo data used for training, to the best of the knowledge of the
authors, make it the most comprehensive model of its type,
both in the output property space and with respect to
chemical space coverage. Given the nonclinical nature of the
data set, the endpoint value ranges are wider than those for
successful drugs, ensuring better model coverage across the
value range. We explore state-of the-art AI approaches, such as
graph convolutional neural networks that encode the
molecular chemical graph structure,26 as well as traditional
machine learning algorithms utilizing molecular property
descriptors. In addition to chemical descriptors, the models
use several in vitro ADME properties as input features.
Various imputation approaches for missing in vitro data,
including utilizing corresponding in silico predictions or using
deep learning technology27 able to handle sparse and noisy
experimental data, were explored. In addition, we will describe
a deep neural network model for concentration−time PK
profiles and compare the accuracy of PK parameters estimated
from predicted PK curves versus the accuracy of PK
parameter model predictions.

2. METHODS
2.1. Data Set. In vivo rat PK data (iv and po

administration) were extracted from the internal AstraZeneca
database. To ensure data consistency, only data generated in
male Han Wistar rats since 2013, at a single investigation site,
were used. The data set focused on low-dose PK studies, that
is, the majority of compounds (>92%) were dosed <5 μmol/
kg iv and <10 μmol/kg po. At least two replicates (i.e., two
animals) for each administration route were available per
compound. Nine PK parameters were extracted for modeling;
five parameters corresponded to the iv route: AUC iv, Cmax iv,
t1/2 iv, CL, and Vss, and four parameters corresponded to the
po route: AUC po, Cmax po, t1/2 po, and F, defined as the
percentage of a po dose that reaches the systemic circulation,
given by the following equation

= · ·
i

k
jjjjjj

y

{
zzzzzzF

D
D

(%)
AUC

AUC
100po

iv

iv

po

where Div and Dpo are iv and po administered doses,
respectively. Cmax for an iv experiment corresponds to C0.
In addition, dose-dependent time−concentration curves

were extracted from the iv and po routes, spanning a time
period of 2 min to 24 h.

2.1.1. In Vivo Experimental Details. Male Han Wistar rats,
aged 6−8 weeks, were dosed either via the tail vein (iv) or
oral gavage (po). Compounds were dosed in cassettes of up to
five compounds at low doses (see above). Standard
formulations for iv administration were solutions containing
cyclodextrin or other solubilizing agents in acceptable
quantities, whereas for po administrations, suspensions using
hydroxypropyl methylcellulose (HPMC) were usually pre-
ferred. Blood samples were taken at predefined timepoints
after dosing, usually 10 occasions up to 24 h, collected in
ethylenediaminetetraacetic acid (EDTA)-containing tubes,
and centrifuged at 4000g for 5 min at 4 °C to obtain plasma.
Plasma samples were stored at −75 °C until they were
analyzed using liquid chromatography−tandem mass spec-
trometry (LC−MS/MS). The resulting time−concentration
profiles were evaluated using noncompartmental analysis
(NCA).

2.1.2. Data Curation. The AUC (μM*h), Cmax (μM), and
concentration values (μM) were scaled by the dose (μmol/
kg). Two formats of the data were consideredaggregated
(where the values of the PK parameter were averaged between
replicates) and non-aggregated (where each compound had
several replicate values for the PK parameter). The time−
concentration curves were non-aggregated (majority of
compounds had two curves per each administration route).
Compounds with the molecular weight higher than 750 Da
were excluded from the data set. The final data set consisted
of 3070 compounds.

2.1.3. Data Transformations. AUC iv and po [μM*h/
(μmol/kg)], Cmax iv and po [μM/(μmol/kg)], CL [mL/min/
kg], and Vss [L/kg] were log10-transformed. To be able to
include zero values in the analysis, a minimum cutoff value
amin was defined in the log-transformed space for each of these
parameters (based on the data spread): amin = −4 for AUC (iv
and po) and Cmax iv, amin = −5 for Cmax po, amin = −0.5 for
CL, and amin = −2 for Vss. No transformation was applied to
half-life (h) iv and po. F was first normalized by the maximum
value in the data set (F = 160%), normalized values below
0.01 were set to 0.01, and then, the logit transformation was
used, where logit y = log10(y/(1 − y)). Concentration values
in time−concentration profiles were log10-transformed, and no
amin cutoff was applied. The distributions of transformed PK
parameters are provided in Figure S1 of the Supporting
Information.

2.1.4. Experimental Variability of the Measurements. The
experimental variability present in the data was estimated by
calculating the standard deviation between replicate measure-
ments for each compound with more than two replicates and
taking the 95%-quantile of the distribution of standard
deviations as the estimate for the experimental noise/error.
95%-quantile was selected arbitrarily with the rationale to
capture majority of values for standard deviations without
considering more extreme values.
For the bioavailability parameter, it is not expected that the

bioavailability would be the same at high doses as that at low
doses. Since the data set focused on low-dose PK studies
(92% of compounds were dosed <5 μmol/kg iv and <10
μmol/kg po), we did not anticipate differences in bioavail-
ability values due to differences in doses, and the difference in
values was attributed to variability in subject/animal
responses. Therefore, all replicates per compound for all
doses were treated equally in the estimation of experimental
variability.
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2.1.5. In Vitro ADME Properties. Nine experimentally
obtained ADME and physicochemical properties were added
to the data set to be used as input features to the model.
These in vitro data points were collected prior to the in vivo
studies and are often implemented early in lead optimization.
The properties describe compound lipophilicity, solubility,
permeability, and active transport properties; intrinsic
metabolic clearance; and plasma protein and hepatocyte
binding:

• LogD
• Solubility [dried dimethyl sulfoxide (DMSO)]
• Caco-2 intrinsic permeability
• Caco-2 efflux ratio
• Human liver microsome intrinsic clearance
• Rat hepatocyte intrinsic clearance
• Rat plasma protein binding
• Human plasma protein binding
• Fraction unbound in rat hepatocytes

Log-transformed values were used for Caco-2 intrinsic
permeability, Caco-2 efflux ratio, human liver microsome, and
rat hepatocyte intrinsic clearance values. Rat and human
plasma protein binding, as well as the fraction unbound in rat
hepatocytes, were logit-transformed. If multiple measurements
existed for a compound, the replicate values were averaged by
using the arithmetic mean for log-transformed properties
(post-transformation) and the median for binding values.
Overall, about 25% of the in vitro values were missing in the
data set. The assay-dependent percentage of missing values
ranged from 6% (LogD) to 55% (fraction unbound in rat
hepatocytes). The distributions of the in vitro input features
are provided in Figure S2 of the Supporting Information.
Both human and rat in vitro clearance and plasma protein

binding were included as input features. This is because both
human and rat endpoints are relevant to PK concepts.
Another reason for the inclusion of human in vitro properties
was a different level of missing data in various properties. For
example, 19% of rat plasma protein binding values were
missing versus 11% of human plasma protein binding values.
By including human in vitro properties, fuller coverage was
ensured.
2.1.6. In Vitro ADME Experimental Details. In vitro

properties were measured in routine high-throughput assays:
LogD was measured using a shake flask method in 96-well
plates.28,29 Solubility was measured as thermodynamic
solubility from DMSO stock solution, where DMSO was
evaporated before analysis, again using a shake-flask
method.28,30 Caco-2 intrinsic permeability was measured in
the presence of a transporter inhibitor cocktail, considering a
pH gradient of a pH of 6.5 at the apical side and a pH of 7.4
at the basolateral side, whereas pH was 7.4 on both sides with
no inhibitor cocktail when measuring the Caco-2 efflux ratio.31

Intrinsic clearance was determined in high-throughput assays
using incubations of cryopreserved human microsomes or rat
hepatocytes at 37 °C for up to 60 or 120 min,
respectively.32−34 Plasma protein binding data were generated
using equilibrium dialysis.33,35,36 The fraction unbound in rat
hepatocytes was also determined using equilibrium dialysis.37

2.1.7. In Silico Predictions of In Vitro ADME Properties.
Predictions for the ADME and physicochemical properties
listed in Section 2.1.5 were added to the data set. The models
for these properties were developed using large internal data
sets (≥4000 compounds in smaller data sets and up to

160,000 compounds in the larger data sets). Models for the
Caco-2 intrinsic permeability and Caco-2 efflux ratio were
developed using the random forest algorithm with OESelma
molecular property descriptors38 (see Section 2.2.1). Scikit-
learn implementation was used for random forest.39 The rest
of the properties were modeled using a support vector
machine with signature descriptors40 and the conformal
prediction framework41 implemented in the CPSign soft-
ware.42,43 A temporal test set (10% of the data) was used for
validation, where a data set was split chronologically into
training and test sets and 10% of the latest data were reserved
for the test set. The approach represents a real-life scenario of
model usage. The models are regularly updated, with the
frequency of update varying between 1 and 6 months,
depending on the amount of data being generated for each
property. Model performance is monitored continuously by
predicting the new data before each model update. Details of
model performance and methods were described recently by
Oprisiu and Winiwarter.44

2.1.8. Missing Data Imputation. As mentioned in Section
2.1.5, around 25% of the in vitro ADME property values were
missing. Since the majority of machine learning algorithms
require all feature values to be present, two approaches for the
imputation of missing values were adopted. The first
approach, further on referred to as the “replace” approach,
was to replace missing in vitro values with corresponding in
silico predictions. The second approach was an imputation
approach built-in within the Alchemite method,27,45 referred
to as the “impute” approach, as described below in Section
2.3.5.

2.1.9. Training/Test Data Set Split. A temporal split was
used to divide the data into the training and test sets, that is,
around 10% of compounds (312 compounds) with the latest
synthesis date were separated into the test set. The test set
was not used during training and hyperparameter optimiza-
tion. Table 1 describes number of compounds in the training

and test sets for all endpoints. The multitask format here
refers to an approach where a single model is built for all nine
PK parameters.
The diversity of the chemical space of the training and test

sets was analyzed by considering Bemis−Murcko scaffolds.
Overall, the set contains 1845 scaffolds, with 1644 scaffolds

Table 1. Number of Compounds/Rows in the Training and
Test Sets for the Aggregated and Non-aggregated Data
Formats

endpoint N train N test

Aggregated Format
AUC iv 2686 312
AUC po 1822 261
F 1817 266
CL 2682 312
Cmax iv 2689 312
Cmax po 1899 273
t1/2 iv 2685 312
t1/2 po 1755 256
Vss 2686 312
overall (multitask format) 2758 312

Non-aggregated Format
concentration of dose−time profile iv 5895 632
concentration of dose−time profile po 4266 578

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Article

https://doi.org/10.1021/acs.molpharmaceut.2c00027
Mol. Pharmaceutics XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.2c00027/suppl_file/mp2c00027_si_001.pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.2c00027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


unique to the training set, 173 scaffolds unique to the test set,
and 28 scaffolds common between training and test sets. The
28 scaffolds represent less than 2% of the training set scaffolds
and correspond to 77 compounds (25%) of the test set.
Therefore, 75% of compounds in the test set have scaffolds
different from the training set scaffolds, indicating a low
overlap between the two sets.
2.2. Chemical Descriptors. 2.2.1. OESelma Molecular

Properties. The OESelma descriptors were generated by
AstraZeneca’s in-house program OESelma.38 They comprise
around 100 common 1D and 2D molecular descriptors related
to physicochemical properties, such as size, ring structure,
flexibility, atom types, hydrogen bonds, polarity, electronic
environment, partial atom charge, and lipophilicity, including
connectivity indices.46 Additionally, LogD and LogP (base-10
logarithm of partition coefficient) from ACDLabs47 and LogP
from Biobyte48 were included in the descriptor set. These
descriptors have been shown useful in QSAR modeling, see,
for example, studies by Bruneau,49 Wood et al.,50 and
Fredlund et al.31

2.2.2. Chemprop Graph Convolutions. In contrast to
traditional chemical descriptors, graph convolutional neural
networks learn how to represent molecules directly from
chemical structure in an end-to-end learning fashion.51,52 In
this study, the directed message passage neural network
framework (D-MPNN) Chemprop26 was used. Chemprop
consists of a message-passing phase that creates molecular
representations using a graph convolutional neural network
and a readout phase that learns and predicts the final
endpoints. The D-MPNN is initialized with a set of atom
features (atom type, number of bonds, formal charge, chirality,
number of bonded hydrogen atoms, hybridization, aroma-
ticity, and atomic mass) as nodes and bond features (bond
type, conjugation, ring membership, and geometric isomer-
ism) as edges in a graph representation. From the graph,
messages are created from the bond vectors, which
continuously update the molecular representation based on
the neighboring atom vectors. The weights and biases for this
network are updated during training, and the hyperparameters
are optimized as described in Section 2.3.1 covering the
readout phase.26

2.2.3. Signature Descriptors. Molecular signatures40 are
2D descriptors, which combine all atomic signatures of a
molecule. An atomic signature is a canonical representation of
the atom’s environment up to a predefined connectivity,
denoted as height. Signature CPSign implementation was
used42 with default settings. Signature heights were ranged
from 0 to 3.
2.2.4. StarDrop Descriptors. The descriptors were

calculated with the Auto-Modeller module of StarDrop
software53 using SMILES strings defining the structure of
each compound. A total of 330 descriptors were calculated,
including whole-molecule properties such as molecular weight,
LogP, and polar surface area; and 2D structural fragments
were defined by SMARTS strings.54

2.3. Description of Modeling Techniques. 2.3.1. Chem-
prop. The readout phase of Chemprop is a feed-forward
neural network.26 Five-fold cross-validation based on scaffold
splits was performed using the built-in hyperparameter
optimization functionality to optimize a set of hyper-
parameters: size of the layers in the convolutional neural
network, number of message-passing steps, dropout and
number of layers in the feed-forward networks. The scaffold

splitting ensures that each molecular scaffold, calculated using
the RDKit implementation of Bemis−Murcko decomposition,
only appears in one of the splits.55 As a result, the cross-
validation performance is based on an unseen chemical space,
which is similar to how models are used in an industrial
setting. ReLU (rectified linear unit) was chosen as the
activation function.56 Five models with the same architecture
but different parameter initializations were trained for 70
epochs and used as an assembly, providing uncertainty in
prediction as well as prediction values. The average of
predictions of individual ensemble models was taken as the
predicted value, and the standard deviation between individual
predictions estimated the uncertainty. The algorithm was used
to build both single-task and multitask models, where nine PK
parameters represented multiple tasks. In addition to the
graph convolutions, in vitro ADME properties with missing
values replaced with corresponding in silico predictions
(“replace” approach) were added to the final feature set.

2.3.2. Gaussian Processes Regression. Gaussian Processes
is a kernel-based Bayesian probabilistic method,57,58 which
was previously successfully utilized for ADME and PK
modeling.23,24,59−61 MATLAB 2019a implementation was
used in this work.62 Five kernel functions were explored:
exponential, squared exponential, rational quadratic, automatic
relevance determination (ARD) squared exponential, and
ARD exponential. For the rest of the hyperparameters, the
defaults were accepted. 10-fold random-based cross-validation
was used to supervise model performance. The algorithm was
used with OESelma descriptors and in vitro ADME properties
(“replace” approach for missing values).

2.3.3. Gradient Boosting Regression. Gradient tree
boosting is an algorithm that produces an ensemble of weak
decision trees and can be used both for regression and
classification. It is a generalization of adaptive boosting to
arbitrary differentiable loss functions. The boosting works in
an additive way, where weak learners are added one at a time
and the optimization is driven by a gradient descent-like
procedure. Gradient boosting regression as implemented
within Scikit-learn was used.39 Grid search with five-fold
random-based cross-validation was used to optimize hyper-
parameters and to supervise model performance in training.
The algorithm was used with OESelma descriptors and in
vitro ADME properties (“replace” approach for missing
values).

2.3.4. Support Vector MachineCPSign. CPSign algo-
rithm42 is a support vector machine (SVM) with signature
descriptors40 and a conformal prediction framework.41 The
radial basis function (RBF) kernel was used in the models
with default values for hyperparameters. Five-fold random-
based cross-validation was used to supervise model perform-
ance and to perform calibration.

2.3.5. Alchemite. Alchemite is an imputation and
prediction method designed to handle sparse input data that
have been used in a variety of chemistry and materials science
domains.27,45,63 It is a deep neural network method. In this
work, it was used to predict either PK parameters, in common
with the methods described above, or PK curves directly. In
both cases, Alchemite used an ensemble of 200 sub-learners
trained on random subsets of the available training data, with
the resulting prediction being the average of the ensemble’s
predictions and the sub-learners’ variance giving an estimate of
the uncertainty. Alchemite was run for predicting PK
parameters in the multitask format using three different
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classes of input data: the “ivo” approach used only in vitro
only data as the input, which were sparse and so was imputed
as part of the model training; the “ivis” approach used both
sparse in vitro data and complete in silico data as the input,
relying on Alchemite to identify the correlations between the
data sets to impute the gaps in the in vitro data; and the
“replace” method, where the missing in vitro values were
directly filled using in silico results (see Table 2). In all cases,
five-fold random-split cross-validation was used to optimize
hyperparameters using the Bayesian tree of Parzen estimators
algorithm.64

Alchemite was used to build models directly of PK
concentration−time curves as well as PK parameters. Both
iv and po dosing PK curves were modeled simultaneously,
using the “replace” approach to deal with the missing in vitro
data. Alchemite uses the measurement time as an additional
input when modeling curve data, creating a list of time points
for each curve and associating these with an equal-length list
of concentrations, in parallel for the iv and po curves. During
the training time, these lists are expanded into multiple
training data points on the fly, ensuring that curves with
different numbers of data points are weighted equally by the
algorithm (to avoid putting more emphasis on curves with
more measurement points). At the prediction time, an
arbitrary list of time points can be evaluated in parallel.
In the experimental concentration−time data, many points

were missing as the measured concentration fell below the
measurement tolerance: for modeling purposes, these points
were replaced by the minimum measured concentration in the
data set (4.3 × 10−6 μM/μmol/kg) to ensure that the model
was aware of the tendency to low concentrations at late times.
The log-concentration was modeled to provide accuracy over
multiple orders of magnitude of concentration.
2.3.6. Combinations of Algorithms and Descriptors. Not

all combinations of descriptors and modeling techniques were
investigated. Table 2 describes the approaches and algorithms
that were explored for PK parameter modeling and specifies
abbreviations used for various techniques. Neural network
(NN) methods, Chemprop and Alchemite, were used in a
multitask format. Chemprop was also used in a single-task
format, and this format was also utilized by the rest of the
algorithms. Only the Alchemite algorithm was used to model
concentration−time PK profiles (for details, see Section
2.3.5).
2.4. Evaluation of Uncertainty Estimates. Two metrics

were considered to evaluate the quality of different uncertainty
estimatesranking-based and calibration-based.65

2.4.1. Ranking-Based Confidence Curve. To construct the
confidence curve, the compounds were ordered by the
predicted uncertainty in a decreasing order. The compounds
with the highest uncertainty are gradually removed and the
RMSE (root mean squared error) is measured for the
remaining subset. The RMSE of the subset [(100 − n)% of
compounds with the lowest uncertainty] is plotted as a
function of the confidence percentile n.65 The so-called
“oracle” confidence curve represents a perfect situation, where
the true error is used to order the compounds. In the ideal
scenario, the confidence curve is as close as possible to the
oracle curve, which represents a lower bound. The area under
the confidence−oracle error, AUCO, which is defined as the
difference between the areas under the both curves, can be
used as a quality metric. T
ab
le
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2.4.2. Calibration Curve. In the calibration curve, the
actual values of predicted uncertainty are used as opposed to
the ranking order only. In interval-based calibration, it is
assumed that each prediction and its uncertainty correspond
to the mean and the standard deviation of a Gaussian
distribution defining predictive distribution. To build a
calibration curve, the confidence value is varied between 0
and 1. For each confidence value, the symmetric confidence
interval around the mean is defined (for a fixed confidence,
the interval around the mean would be different for each
compound because the standard deviation defined by
uncertainty is compound-dependent). Then, it is calculated
for how many compounds the observed values fall in the
corresponding confidence interval of the predictive distribu-
tion, that is, the empirical probabilities of belonging to each
interval. In a perfectly calibrated model, n % of the predictions
would fall in the n-th confidence interval, resulting is a
diagonal line for a perfect calibration curve. In a well-
calibrated model, the calibration curve is close to the diagonal
line. The area under the calibration error curve, AUCE, which
is defined as the absolute difference between the areas under
the calibration and perfect curves, can be used as a quality
metric.65

Two calibration curves, corresponding to two values of
uncertainty, were considered. In one case, the uncertainty
predicted by the model σm was used to construct the curve. In
the second case, the uncertainty due to variability in
experimental measurements, also called aleatoric uncertainty,
was added to the model uncertainty to define the total
uncertainty σtotal as follows

σ σ σ= +total
2

m
2

exp
2

where σexp is the experimental error.
2.5. Description of the WSM. Hepatic elimination

remains the primary route of elimination for drugs;66 hence,
IVIVE using the WSM is routinely applied.13,15,67,68 The
WSM is a mathematical model of the liver and requires
intrinsic clearance from hepatocytes or liver microsomes as

input parameters. If CL prediction accuracy is high and a
mechanistic understanding of compound CL in animals can
be achieved, this provides a level of confidence for
extrapolation to humans. Hepatic metabolic clearance is
calculated as follows using the WSM

=
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where CLint,u is the scaled unbound intrinsic clearance; fup is
the fraction unbound in plasma; Rb is the blood/plasma ratio,
and Qh is the hepatic blood flow.

2.6. Calculation of PK Parameters from Predicted
Concentration−Time Profiles. PK parameters were calcu-
lated from predicted concentration−time curves via NCA
using SimBiology App of MATLAB R2019a.62,69 Predicted
values that fell below half the minimum of the experimentally
observed values (4.3 × 10−6 μM/μmol/kg) were removed to
aim for consistency with the experimental results in the
treatment of low concentrations.

3. RESULTS AND DISCUSSION
3.1. PK Parameter Models. 3.1.1. Summary of Results.

The purpose of this work was to build an accurate and useful
model of the PK parameters and not to compare different
machine learning algorithms, descriptors, and approaches to
each other. Therefore, only selected combinations of
descriptors and modeling techniques were investigated
(described in Section 2.3.6 and Table 2).
The results of modeling efforts for the aggregated data

format are summarized in Figure 1 which shows the
coefficient of determination (R2) evaluated on the test set.
The detailed results including RMSE on the test set are shown
in Figure S3 and Table S1. Models with an acceptable
accuracy (R2 > 0.5) were achieved for the majority of the
endpoints, except for Cmax iv, t1/2 iv, and t1/2 po. Figure 1

Figure 1. Coefficient of determination (R2) on the test set for the nine PK parameters using different models built using the aggregated data
format. Alchemite (ivo) is an Alchemite multitask NN algorithm with in vitro features only and imputation (mulberry bars) and Alchemite (ivis)
is an Alchemite algorithm with in silico and in vitro features and Alchemite imputation of missing in vitro values (dark blue bars). The rest of the
techniques use in vitro features, where missing values are replaced with in silico values (“replace” approach). Alchemite (replace) is an Alchemite
algorithm (light blue bars), and Chemprop MT and Chemprop ST are Chemprop NNs in multitask and single-task modes (purple and green
bars, respectively), GBoost is a gradient boosting regression (gray bars), GPR is a Gaussian Processes regression (pink bars), and CPSign is an
SVM conformal regression (orange bars).
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shows that different techniques result in models of similar
accuracy and there is no single technique that exceeds other
methods across all endpoints. Alchemite (ivo) and Alchemite
(ivis) use the Alchemite method of imputation, based,
respectively, on in vitro data only and in vitro data
supplemented by in silico data. The rest of the models use
a “replace” approach, where missing in vitro values are
replaced with in silico values. The results (Figure 1) show that
the models using the “replace” approach generally outperform
models using imputation. Performance of the Alchemite (ivis)
model, which uses the built-in Alchemite imputation method
to impute missing in vitro parameters and also includes in
silico features, closely follows the performance of the “replace”
models; the R2 values are slightly lower than those of the
corresponding “replace” models, except for Cmax iv. For this
endpoint, the Alchemite (ivis) model showed the highest R2

value of all methods (R2 = 0.42), even though the difference
from the Alchemite (replace) method was minor, and Cmax iv
was one of the endpoints with overall less accurate models. It
is hard to know how much the “imputed” in vitro features are
used in the models since the highly correlated in silico features
are available in the descriptor set. (Building the model using
only in silico features showed equivalent performance. Data
are not shown here.) Alchemite (ivo) represents the
imputation of in vitro ADME values in the absence of
ADME in silico predictions and tests the power of a “true”
imputation approach in a scenario where predictive models of
in vitro properties are not available. It underperforms in
comparison with models using the “replace” approach. This
suggests that the in silico models trained on a large set of
ADME data are more accurate than relying on imputation
within a smaller project data set, which aligns with our
expectations.
Focusing on the models using the “replace” approach, for

the majority of endpoints, neural network algorithms
Alchemite (replace), Chemprop MT, and Chemprop ST
yield the best performing model with the exception of Cmax
po, where the Gaussian Processes model (GPR) provides the
best performance with R2 = 0.6 (see Figure 1 and Tables S1
and 3). The single-task neural network models provide
broadly equivalent performance to multitask models on
most of the endpoints; for Vss, Chemprop ST performed
better than others (R2 = 0.56). The traditional machine
learning algorithms, Gaussian Processes and gradient boosting,
closely follow neural network models in performance for most
of endpoints. The SVM with a conformal regression technique
(CPSign) underperforms for many endpoints. A possible
explanation is that the automatic model building procedure
used in CPSign is designed for the signature descriptors

andwithout adaptationis not so well-suited for other
descriptor types such as in vitro ADME properties. It should
be noted that there is a slight variability in performance of
models built by different runs for all techniques apart from the
GPR due to a different initialization of weights in neural
network methods and different (random) cross-validation
splits, which would in turn affect hyperparameter optimiza-
tion. Due to this variability, which was not fully captured, the
performance of all “replace” algorithms apart from the CPSign
can be considered equivalent.
The best model for each endpoint was selected based on

the lowest RMSE (selection on the highest R2 produces the
same results) on the test set, and the results are shown in
Table 3. The models where the difference between the RMSE
and the lowest RMSE did not exceed 0.005 were considered
of similar performance. While RMSE represents an error in
the log-transformed space, a corresponding fold-error provides
an estimation of error in the nontransformed space. The fold-
error is not applicable to half-life models since t1/2 iv and po
were not log-transformed. For bioavailability, the fold-error is
an upper-bound estimate since logit transformation was used
instead of log.
The Alchemite method was also applied to the non-

aggregated data set, where each compound had several
replicate values of the PK parameter. The results are shown
in Figure S4. The use of the non-aggregated data does not
present any advantages. For the majority of the endpoints, the
performance of models based on that format is slightly lower
than or equivalent to the performance of models based on the
aggregated format.
Since bioavailability and clearance represent the most

important PK parameters for decision making in projects,
the models for these are explored in more detail in the
following subsections.

3.1.2. Bioavailability Model. The best model for
bioavailability was produced using the Alchemite (replace)
method, a multitask deep neural network with 2D chemical
descriptors, where missing in vitro features were replaced with
in silico values. The Chemprop single-task model (Chemprop
ST) produced equivalent results (see Tables 3 and S1). The
model achieved a good performance on the temporal test set
of 312 compounds, with R2 = 0.55 and RMSE = 0.46. The
experimental error is estimated at 0.43 (in the logit-
transformed space). The RMSE of the model is close to the
level of experimental error. The achieved RMSE corresponds
to a roughly 2.9 fold-error in the nontransformed space and to
RMSE = 0.37 in the log-transformed space. The scatter plot of
predicted versus observed values for logit-transformed F is
shown in Figure 2. 65 and 84% of compounds are predicted

Table 3. Best Model for Each PK Parameter Together with the Coefficient of Determination (R2), RMSE, Fold-Error (in the
Nontransformed Space), and Percentage of Compounds with the Error within 2- and 3-Fold in the Nontransformed Space

PK parameter best model (s) R2 RMSE fold-error % within 2-fold error % within 3-fold error

AUC iv Chemprop MT = GPR 0.59 0.28 1.9 76 93
AUC po Alchemite (replace), Chemprop ST 0.55 0.61 4.1 54 68
F Alchemite (replace), Chemprop ST 0.55 0.46 2.9 65 84
CL Chemprop ST, Chemprop MT 0.63 0.26 1.8 78 94
Cmax iv Alchemite (ivis), Alchemite (replace) 0.42 0.22 1.7 87 97
Cmax po GPR = CPSign 0.60 0.56 3.7 44 60
t1/2 iv Chemprop MT 0.44 1.84 55 78
t1/2 po Chemprop MT 0.28 2.30 80 95
Vss Chemprop ST 0.56 0.27 1.8 78 93
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within 2- and 3-fold from the experimental value (in the
nontransformed space), respectively. The performance of the
model makes it well-suited to help decision making in early
drug discovery. To compare to the published results,
Schneckener et al.20 reported that a model for oral
bioavailability in rats achieved R2 = 0.18 and RMSE = 1.04
(in the log-transformed space); the model, based on ∼1900
compounds, utilized a deep neural network approach and a
chemical structure as the input (converted to descriptors using
a prebuilt neural network).
3.1.3. Clearance Model. Clearance is one of the most

challenging parameters to optimize in drug discovery. Low
clearance is desired for a drug candidate to achieve acceptable
duration of target engagement. The best model for CL was
produced using the graph convolutions neural network
method Chemprop applied in a single-task setting (Chemprop
ST), with the Chemprop multitask model (Chemprop MT)
producing equivalent results (see Tables 3 and S1). The

model achieved a good performance on the temporal test set
of 312 compounds, with R2 = 0.63 and RMSE = 0.26. The
RMSE of the model is only slightly higher than the
experimental error estimated at 0.18 (in the log-transformed
space) and corresponds to a 1.8 fold-error in the non-
transformed space. The scatter plot of predicted versus
observed values for log-transformed CL is shown in Figure
3A. 78 and 94% of the compounds are predicted within 2- and
3-fold error (in the nontransformed space), respectively.
This performance compares favorably to published results.

Feinberg et al.21 reported Pearson’s r2 = 0.275 for a rat CL
model built using a single-task graph convolution neural
network technique on a data set of ∼60,000 compounds
utilizing a temporal-split test set. A rat CL model based on
1114 compounds utilizing an RBF technique and several in
vitro ADME properties in addition to 2D descriptors achieved
R2 = 0.61 and RMSE = 0.31 on a cluster-split test set;23 it is
anticipated that the performance would be slightly lower on
the temporal-split test set.

3.1.4. Comparison with the WSM. The WSM is a standard
IVIVE tool for estimation of hepatic clearance. It is routinely
applied in decision making for compound prioritization and
progression for in vivo testing and also to gain an
understanding of the mechanism of clearance.13,67,68 In drug
discovery, and in the absence of other data, results from the
WSM are used as an approximation of the total clearance.
Figure 3 shows a comparison of predictions from the CL
model and WSM results on the test set of 312 compounds.
Predictions of the WSM are restricted by the rat liver blood
flow [Qh = 72 mL/min/kg32 or log10(Qh) = 1.86]; therefore,
the WSM predictions were available only for 259 compounds
of the test set. As seen from Figure 3B, the WSM model
significantly underpredicted the total clearance on this set,
achieving R2 = −0.11 and RMSE = 0.44. The squared
Pearson’s correlation coefficient, r2, between predicted and
observed values is 0.51, showing that the correlation is high
but the magnitude of the predicted values is underestimated.
The CL model provided much better accuracy with R2 = 0.63
and RMSE = 0.26, (r2 = 0.63). Therefore, the CL model
provides an accurate and useful tool for decision making in

Figure 2. Predicted vs observed values for logit(F) on the test set for
predictions made using the Alchemite (replace) model. The identity
line is a solid black line.

Figure 3. Predicted vs observed values for log(CL) on the test set for (A) predictions made using the Chemprop ST model and (B) predictions
made using the WSM (well-stirred model) (259 compound subset of the test set). The identity line is a solid black line, ±log10(2) lines
corresponding to a 2-fold error are dashed blue lines, and ±log10(3) lines corresponding to a 3-fold error are dashed green lines.
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early discovery to guide compound prioritization and

selection. Also, the CL model is not restricted by the liver

blood flow and can predict compounds with high clearance.

Its application is complementary to the WSM, and the

agreement or disagreement of predictions from both models

can inform on the mechanism of clearance.
3.1.5. Predicting Compound PK at the Point of Design. In

order to test whether the models can be used at the point of

Figure 4. Performance of the Chemprop MT model on the test set utilizing in vitro measurements for ADME features or corresponding in silico
predictions. RMSE on the test set is shown when in vitro values (mulberry bars), in silico predictions (navy bars), and pre-synthesis in silico
predictions (light blue bars) are used for ADME and physicochemical features.

Figure 5. Confidence curves and corresponding AUCO values for the CL endpoint obtained on the test set using predictions and uncertainty
estimates from different models(A) Alchemite (replace), (B) Chemprop MT, (C) GPR, and (D) CPSign. The oracle curve is a dashed black
line.
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design, before compounds are synthesized and when ADME
in vitro properties are not available, the performance of the
Chemprop MT model was evaluated on the test set in the
following two scenarios. First, in silico predictions were used
instead of measured in vitro values of ADME properties as
input features. In silico models for nine ADME and
physicochemical properties included as features in the rat
PK model are frequently updated since these properties are
measured for the majority of compounds early in the lead
discovery and optimization process. It is likely that the test set
compounds for the rat PK model were included in the training
sets of in silico ADME models. To ensure that the test set
compounds are completely “unseen” by the model, in the
second scenario, predictions generated with earlier versions of
the in silico ADME models were used instead of in vitro
measurements. Earlier ADME models were built before the
test set compounds were synthesized and are referred to as
“pre-synthesis”. The second scenario represents the model
predictions for virtual compounds at the point of design.

Figure 4 shows the performance of the model for the
default application when in vitro ADME values are used and
for the two scenarios. There is a small or no increase in RMSE
across all PK endpoints if in silico predictions are used instead
of in vitro values as the model input. If pre-synthesis in silico
predictions are used, there is an increase in RMSE between 5
and 30% depending on the PK parameter; for example, for the
CL endpoint, RMSE = 0.35 for pre-synthesis in silico
predictions in comparison with RMSE = 0.27 for in vitro
ADME values; for bioavailability F, RMSE = 0.57 and 0.47 for
pre-synthesis in silico predictions and in vitro values as inputs,
respectively. For Vss, the change in RMSE is very marginal
(RMSE = 0.31 and 0.28, respectively, for pre-synthesis in
silico predictions and in vitro values as inputs). Thus, the
model remains applicable and useful when applied at the point
of design, even if predicted compound ADME properties are
used as the input. This is of high practical relevance since now
some PK parameters in rat models can be predicted with

Figure 6. Calibration curves and corresponding AUCE values for the CL endpoint obtained on the test set using predictions and uncertainty
estimates from different models(A) Alchemite (replace), (B) Chemprop MT, (C) GPR, and (D) CPSign. The confidence curves based on the
model uncertainty and the total uncertainty are red and blue lines, respectively. The perfect calibration curve is a dashed black line. The AUCE
value corresponds to the total uncertainty.
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sufficient accuracy solely based on the chemical structure,
without the necessity for experimental measurements.
3.1.6. Confidence in Predictions. A good machine learning

model provides an estimation of uncertainty in predictions as
well as accurate predictions.70 The uncertainty quantification
can enable detection of out-of-domain examples and
identification of less reliable predictions. In this work, the
explored algorithms offer three different approaches for the
estimation of uncertainty. In the first approach, variability in
prediction is captured by generating an ensemble of
predictions. This approach is utilized by both deep neural
network methods, Alchemite and Chemprop, as well as by
GBoost, a decision tree ensemble method. The second
approach is inherent in GPR, a Bayesian algorithm that is
known to provide a useful quantification of uncertainty.58,71

The output of GPR is not only a single-point prediction but
also a probability distribution where the mean is used as the
prediction value and the standard deviation is the estimation
of uncertainty. The third approach is the conformal prediction
framework,41,42,72 utilized in the CPSign algorithm based on
SVM regression. These three approaches for uncertainty
quantification were compared for the example of the CL
endpoint. The quality of different uncertainty estimates was
evaluated using two metrics: ranking-based confidence curve
with the associated quantitative measure AUCO and
calibration curve with the associated quantitative measure
AUCE. The confidence curves for four different CL models
are shown in Figure 5. Clearly, all four confidence curves are
far from the perfect “oracle” curve, that is, the ranking order
by predicted uncertainty does not correspond to ranking by
the real error of prediction. The Chemprop MT method
curve, shown in Figure 5B, is closest to the “oracle” curve and
provides the best AUCO metric (AUCO = 0.145). Both
neural network ensemble methods, Chemprop MT and
Alchemite (replace), have better confidence curves than
GPR or CPSign methods. The calibration curves for the
four CL models are shown in Figure 6. For both neural
network methods, the uncertainty in prediction provided by
the model significantly underestimated the real uncertainty;
corresponding calibration curves are far from perfect
calibration. Addition of the aleatoric uncertainty (due to
variability in experimental measurements) to the model
uncertainty provides a better calibrated model, which is
defined by the total uncertainty (see the Methods section and
Section 2.4). Both Alchemite (replace) and Chemprop MT

benefit from the addition of the experimental uncertainty, as
shown in Figure 6A,B, respectively. GPR and CPSign models,
on the other hand, produce close to perfect calibration curves,
Figure 6C,D. For GPR and CPSign, the addition of the
experimental uncertainty was not needed, and the model
uncertainty estimation incorporates all sources of uncertainty
and represents the total uncertainty. The GPR technique
estimates uncertainty using a Bayesian approach and CPSign
involves empirical estimation via a conformal prediction
framework. The best calibration curve is provided by the
GPR model with AUCE = 0.026.

3.2. Models for PK Curve Data. 3.2.1. Accuracy of
Curve Prediction. Profiles of the accuracy in prediction of iv
and po concentration−time curves are shown in Figure 7,
summarizing the performance of the model on all the test set
compounds (312 compounds for iv dosing and 279 for po
dosing). Accuracy was evaluated using the coefficient of
determination, R2, between the experimental data and
predicted curves across all time points where both the
experimental data and predictions were above the limit of
detection, averaged over replicates for a given compound. The
prediction of iv dosing curves is good, with a median R2 of
0.82 (median RMSE = 0.41 log units), but the prediction of
po dosing curves is poor, with a median R2 of −0.78 (median
RMSE = 0.54 log units). This is likely to be due to po PK
being more complex than iv PK because it is strongly
influenced by additional mechanisms, such as intestinal
absorption and first-pass metabolism. These complex relation-
ships also manifest in higher variability in concentration−time
curves and hence a more difficult modeling task. We therefore
progress our analysis only of the iv dosing curves.
A set of typical concentration−time curves are shown in

Figure 8. Some general trends are noticeable: earlier time
points are generally predicted more accurately than later time
points, which is likely to be due to more values falling below
the measurement tolerance at later times, reducing the
amount of precise data for the machine learning model to
learn from. The uncertainties on the machine learning
predictions are correspondingly greater at later times,
providing reassurance that the uncertainty quantification in
the model is accurately capturing both this reduction in
training data and the increased extrapolation required due to
the larger time gaps between measurements at late times.

3.2.2. Calculation of Parameters from Curves. To enable
comparison with the results in Section 3.1, PK parameters

Figure 7. Profiles of accuracy in prediction of PK curves, with R2 calculated for time curves for which both experimental and modeled values are
available, averaged across replicates, for both iv dosing (A) and po dosing (B). Profiles are truncated at R2 = −2.
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were generated from the predicted curves and compared to
the (experimental) PK parameters used for modeling in

Section 3.1. These PK parameters had been generated from
the true experimental data using a semi-manual process

Figure 8. Selection of iv and po dosing curves: experimental data are shown in light blue, including multiple replicates per compound, and the
predicted curves are shown in dark blue, with the uncertainty in prediction shown by the vertical gray lines. Coefficient of determination measures
for the accuracy of prediction are given in each case. From the top left, these curves show a poorly modeled iv dosing curve (A); an averagely
modeled iv dosing curve (B); a well-modeled iv dosing curve (C); a poorly modeled po dosing curve (D); an averagely modeled po dosing curve
(E); and a well-modeled po dosing curve (F).
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involving cleaning of the underlying data; however, for all PK
parameters except Vss, the Pearson correlation between the
semi-manual generation and fully automated generation from
the raw concentration−time data using MATLAB exceeded
0.97, indicating that the semi-manual process made only small
differences to the PK parameter generation. The results for
the iv curves are summarized in Table 4 along with the

accuracy of the equivalent model predicting the PK
parameters directly. AUC and clearance are predicted with
equivalent accuracy when generating parameters from the PK
curves as when predicting the PK parameters directly, and
Cmax is predicted slightly more accurately when generating
parameters from the predicted PK curves, indicating that
curve prediction adds value to the analysis of PK. Arbitrary
further parameters may also be generated from a predicted
curve without requiring training of a new model, in contrast to
direct prediction of PK parameters where a new model is
required whenever the desired parameters change. Half-life
and Vss are predicted less accurately using the curves than
when predicted directly: this is likely to be because these
parameters are sensitive to the later time behavior of the
curve, which, as discussed above, is less accurately captured by
the model than the earlier time behavior, and in the case of Vss
also due to the difference between the automated and semi-
manual methods of generating PK parameters from curve
data. These results demonstrate that the machine learning
models not only accurately predict the iv curves directly but
also the derived PK parameters when a standard PK
calculation method is used.

4. CONCLUSIONS
In this work, we built the models for prediction of in vivo rat
PK parameters and concentration−time PK profiles from
chemical structure representations and experimentally meas-
ured ADME properties. We also performed evaluation of
multiple machine learning algorithms and approaches to
missing data imputation. We observed that models using the
“replace” approach generally outperformed models using
Alchemite imputation. In silico models trained on a large
set of ADME data gave more accurate outcomes than using
imputation within a smaller data set. Among the models using
the “replace” approach, different machine learning techniques
resulted in models of similar accuracy. The neural network
algorithms Alchemite and Chemprop yielded the best
performing models for the majority of endpoints, with the
traditional machine learning algorithms following closely in
performance.
Models with acceptable accuracy were achieved for the

most important endpointsclearance (CL), oral bioavail-

ability (F), and volume of distribution (Vss). The model for
CL, one of the most important and challenging parameters to
optimize in drug discovery, achieved a good performance with
R2 = 0.63 and RMSE = 0.26 (in log units). Furthermore, we
benchmarked this model against the WSM, which is routinely
applied in decision making for compound prioritization, and
showed that the CL model achieved much higher accuracy.
Therefore, the CL model provides a useful tool for decision
making in early discovery. The model predicts also values
higher than the liver blood flow and complements current
DMPK tools used for PK prioritization. The model for oral
bioavailability achieved R2 = 0.55 and RMSE = 0.46 (in log
units), with RMSE approaching the level of experimental error
in the data estimated at 0.43. Overall, sufficiently accurate
models were achieved for all the endpoints, except for Cmax iv,
t1/2 iv, and t1/2 po. We also demonstrated that the models
show only a small decrease in accuracy when only in silico
data are used; thus, they are useful at the point of design,
before compounds are synthesized, and before ADME in vitro
properties become available.
In addition to directly predicting in vivo rat PK parameters,

we built models of concentration−time profiles, enabling the
prediction of concentration scaled by dose at any time point.
The accuracy of PK curves prediction for iv dosing is good
(the median of individual curve R2 equals 0.82), but the
prediction of curves with po dosing is poor, perhaps due to
higher variability in po dosing curve data. PK parameters
estimated from predicted iv curves are only slightly less
accurate overall than those predicted by the PK models
directly, and the curve gives useful additional information.
We have utilized in vivo rat PK parameter predictions as

input features to machine learning models for prediction of
human PK parameters, AUC po, Cmax po, and Vdss iv, which
we have recently developed.19 The rat PK parameters are
among some of the most important features for the human
models.
The models provide a powerful way to guide the design of

molecules with optimal rodent PK profiles since they enable
the prediction of virtual compounds, and to drive prioritiza-
tion of compounds for in vivo assays including efficacy
experiments. Model usage is expected to reduce the need of
animal PK experiments during drug discovery. Furthermore,
the developed AI approach is a stepping stone for developing
models to predict human PK, ultimately leading to the design
of molecules with a desired multiobjective profile early in drug
discovery, which will increase efficiency and reduce compound
attrition.
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