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ABSTRACT 

Contemporary deep learning approaches still struggle to bring a useful improvement in the field 

of drug discovery due to the challenges of sparse, noisy and heterogeneous data that are typically 

encountered in this context. We use a state-of-the-art deep learning method, Alchemite™, to 

impute data from drug discovery projects, including multi-target biochemical activities, 

phenotypic activities in cell-based assays, and a variety of absorption, distribution, metabolism, 

and excretion (ADME) endpoints. The resulting model gives excellent predictions for activity and 

ADME endpoints, offering an average increase in 𝑅2 of 0.22 versus quantitative structure-activity 

relationship methods. The model accuracy is robust to combining data across uncorrelated 
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endpoints and projects with different chemical spaces, enabling a single model to be trained for all 

compounds and endpoints. We demonstrate improvements in accuracy on the latest chemistry and 

data when updating models with new data as an ongoing medicinal chemistry project progresses. 

INTRODUCTION 

Machine learning and, more recently, deep learning methods, are becoming well established and 

have been successful in a variety of scientific and commercial applications 1,2. However, in the 

field of drug discovery, training on sparse and often noisy data requires extensive modification to 

existing algorithms to deliver useful results 3–5. Recent advances are showing promise using deep 

learning to predict properties including solubility 6,7, drug induced liver injury 8, target activities 

9,10, and many other endpoints 11,12. While each of these models may be individually good, they 

are tailored to predict only one specific endpoint, or group of closely related endpoints. A great 

deal of human time is also invested to optimize the hyperparameters 13 and architecture 4 of each 

model to prevent problems such as overfitting 11,14 and instability with different sizes of dataset 15. 

Additionally, the training of deep neural networks can be slow 11,13 and may require significant 

investment in hardware 9. 

Many modern applications of deep learning in drug discovery are exploring new areas such as 

compound generation 16–18 and compound synthesis 19. Meanwhile, realizing the goal of a fully 

generalized deep learning quantitative structure-activity relationship (QSAR) model that can be 

applied to general pharmaceutical project data, on both large and small scales, with minimal human 

intervention, has not received the same degree of attention. There are many pre-deep learning 

QSAR methods 20 including decision trees and random forests 21–23, radial basis functions 24, 

support vector machines 25,26 and Gaussian processes 27–29. Intermediate neural network methods 
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have a long history, including artificial neural networks (ANN) 11,30 and general regression neural 

networks (GRNN) 31. 

So far, despite all this effort, attempts to apply traditional deep learning methods such as deep 

neural networks 9,10 and deep belief networks 7,32 to prediction of experimental drug discovery 

endpoints, in a practical way that helps a project progress, have resulted in only small improvement 

over traditional QSAR modelling methods 33 such as random forests, with an average increase in 

𝑅2 coefficient of determination of only 0.043 − 0.051 9 . Most recently, increases have been seen 

in the case of graph convolutional networks 34 which can add average increases of 0.14 to 𝑅2 

values 35. Significant improvements over ‘conventional’ machine learning are generally only seen 

in large datasets, or in the case of multitask learning where there are strong correlations between 

the endpoints 5. The reason this increase is not larger is likely due to challenges that arise when 

using pharmaceutical data in conventional approaches. These are problems arising from sparse, 

noisy, heterogenous and dynamic data, that prohibit deep methods from adding their full value. 

In this paper, we describe an application of a deep learning method for data imputation, 

Alchemite™, to an ongoing drug discovery project. While originally developed and proved in the 

context of materials discovery 36–39, success has been seen in an example application of this method 

to a challenging, public domain benchmark data set of kinase activity data 40,41.  In this benchmark, 

Alchemite was shown to outperform a range of QSAR methods, including a multi-task deep neural 

network trained using TensorFlow 42, and collective matrix factorization 43. Furthermore, this 

benchmark demonstrated Alchemite’s ability to focus on the most confident predictions with a 

commensurate improvement in accuracy. 

While applications to benchmarking data provide proof of concept and a robust comparison with 

other methods, these data sets are not representative of the full range of data encountered in the 
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context of drug discovery projects. In particular, the aforementioned kinase data set comprises 

only target activity data (expressed as pIC50 values). In this work, we extend our previous work to 

apply the Alchemite algorithm to heterogeneous drug discovery data in a project-based context 

and explore the temporal evolution of data throughout the project to solve the challenges outlined 

above. We will briefly discuss the challenges in solving the practical issues encountered when 

modelling drug discovery data using other methods.  

Prediction and Imputation 

There are distinct differences between the problems of predicting an endpoint based on a 

complete set of inputs, e.g. a QSAR regression model, and imputing an endpoint with sparse data, 

e.g. filling in the gaps in data for an experimental endpoint. Figure 1 shows a comparison of these 

two methods. A QSAR regression model is a function of a full set of complete inputs, i.e. molecular 

descriptors that can be calculated for every compound. The sparsity of drug discovery data 

prevents assays and experimental values - which may not always be present - to all be used as 

inputs for this kind of model. The subset of compounds that has all experimental values present is 

generally quite small, and even if a model were to be trained on these data, new measurements 

must be made for all inputs in order to make a new prediction. On the contrary, an imputation 

model can take all existing data (both molecular descriptors and target experimental endpoints) as 

inputs to the model and fill in the missing values using whatever data may be present. If the model 

is correctly designed, it does not suffer the same limitation from missing values as the prediction 

model. If data are present, they can be used, and if they are missing they can be predicted. 
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Figure 1. Comparison of a QSAR model (here a random forest) with the deep imputation process 

(Alchemite), which takes both complete descriptor columns and incomplete assay columns as 

input. These are used by the deep learning network to fill in the missing values in the assay data 

columns with an error bar for each data point. 

The challenges of Modelling Drug Discovery Data 

For an algorithm or method to get the most out of drug discovery data, it should address a few 

challenges with which common methods often struggle: 

Missing Data 

If one considers all of the compounds and assays in a large pharmaceutical company's corporate 

collection, typically only a small fraction (< 1%) of the possible compound-assay endpoint 

combinations have been measured in practice. Public domain databases are also sparsely 

populated; for example, the ChEMBL 44 data set is just 0.05% compete. Even in the context of an 

ongoing project, only a small proportion of compounds will be progressed for more detailed 
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studies, such as measurement of absorption, distribution, metabolism, and excretion (ADME) 

properties. We have seen above that the design of an imputation model can use sparse experimental 

columns as inputs to a deep algorithm. One limiting factor for the application of deep learning is 

the lack of support for this kind of missing data in contemporary methods 45,46. If inputs are not 

always present, simple implementations of common algorithms such as neural networks cannot 

give sensible answers without significant alteration 46,47. Recent developments, such as the method 

presented in this study, have taken deep imputation a step further, working comfortably on datasets 

with <1% of data present 40. 

Uncertainty and Confidence 

Experimental data are inherently noisy. Even good-quality pharmaceutical data may have up to 

one log unit of variability 26, and some values could be incorrect for due to experimental errors or 

artefacts 48.  Furthermore, a failure to take uncertainty from noisy predictions into account can lead 

to wasted time and missed opportunities through misdirection. Conversely, using uncertainties 

correctly can lead to optimized decisions and a mitigation of risk 49. A practically useful algorithm 

should handle explicit uncertainties in the input experimental data and also give a measure of 

uncertainty in predictions they output. 

Heterogeneous Data 

In the course of drug discovery projects, datasets will be generated using a wide variety of assays 

which cover target and phenotypic activities, ADME properties, toxicity and physicochemical 

properties of compounds of interest. Endpoints may be correlated if they are for the same target 

under different conditions, related targets or measurements of the same property in different 

tissues. More complex assay endpoints, such as phenotypic responses in cell-based assays, may be 

correlated with multiple, simpler endpoints such as target activities, membrane permeability, 
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solubility and protein binding. When these mixed results are separated out into separate endpoints, 

the columns in the data matrix become increasingly sparse, making correlations harder to use 

without special techniques built for extremely sparse data, for example by Whitehead et al. 40. 

Another method that has attempted this is the pQSAR 2.0 method of Martin et al. 41,50. However, 

previous methods such as pQSAR have focused on combining similar types of endpoint only, for 

example all pIC50 values. Few, if any, methods have yet attempted to make use of correlations 

from heterogeneous data with a variety of different scales and distributions, but this is solved 

automatically in an imputation model as described in Figure 1. 

The Temporal Evolution of a Project 

Drug design projects evolve with time as the hit- and lead-optimization processes result in an 

exploration of chemical space beyond the compounds for which data was previously available. 

The chemical space of interest may jump as series are discarded or focus during late lead 

optimization. Compound activity and other properties will improve as the project nears its goal, 

increasing the range of values. Specific assays may become concentrated and data rich when an 

issue is being focused on, while other assays become sparser when an issue is presumed to have 

been addressed or no-longer relevant. If a model is to be deployed across an entire project data set, 

or even across multiple projects, it should be able to handle a multi-scale approach and seamlessly 

transition from early hit-based screening to lead development, retraining as more data become 

available.  

The majority of machine learning methods are based around interpolation of training values. A 

successful method should continue to add value after the chemistry has evolved. Many models 

cannot handle temporally split test data 51 and this is an important validation for whether a method 

can add real value to an ongoing project. 
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In the following Methods section, we will describe the Alchemite method and the data sets to 

which it was applied in this study. In the Results and Discussion section we will present the results 

of applications in the context of an ongoing drug discovery project and the four challenges outlined 

above. Finally, we will draw some conclusions and discuss potential future work.  

METHODS  

The Alchemite method is a deep and iterative multiple imputation method that is a novel 

adaptation of a neural network in which all inputs are also outputs 36–40. A detailed description of 

the underlying algorithm is given by Verpoort et al. 38 and more recently by Whitehead et al. 40. 

Additional information and description of the algorithm is given in the supplementary information  

The goal is to solve for the weights and biases of a neural network where some outputs of the 

neural network in the first iteration(s) are potentially used as the inputs of subsequent iterations. 

This is solved iteratively in the context of a fixed-point equation 𝑓(𝒙) = 𝒙. For the inputs to the 

first iteration, missing values are replaced by the mean of the available values of the corresponding 

endpoint. An iterative expectation maximization algorithm is applied 52 to converge the weights of 

the network. 

In the applications described herein, the model will have 𝑁 inputs and outputs, of which 𝑁 =

𝑁𝑑 + 𝑁𝑒; where 𝑁𝑑 is a number of molecular descriptors and 𝑁𝑒 is the number of experimental 

assay endpoints. The matrix columns corresponding to the descriptor inputs will be complete 

because these can be computed in advance for any molecular structure. However, the assay 

endpoint columns may be sparsely occupied; some, or even most, of the potential experimental 

data may be missing. The output is a complete matrix of assay endpoints in which the missing 

values have been imputed (the process illustrated in Figure 1). 
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In this work, 200 networks are trained, with the data rows carrying different weights. This is 

substantially more than in previous work 36–38, and leads to an ensemble of predictions for each 

missing value in the dataset. The mean of these 200 predictions can be used as the predicted value. 

The standard deviation of the 200 predictions is used as a measure of uncertainty in that value, 

giving an error bar for each predicted cell in the imputed matrix.  

The hyperparameters of the network were optimized using a five-fold cross validation within 

the training set data only 53. The tree-structured Parzen estimator 54 from the python library 

hyperopt 55 was used. The algorithm uses a combination of Bayesian inference and non-parametric 

density estimation to optimize the so-called expected improvement 54,56. Hyperparameter 

optimization was applied to the number of inputs for each endpoint, the number of iteration layers 

(convergence loop in Figure S2), and the iterative mixing ratio alongside the hyperparameters of 

the neural network (Figure S1). 

Molecular Descriptors  

In this work the number of molecular descriptors was  𝑁𝑑 = 330. The descriptors used included 

whole-molecule properties such as molecular weight, lipophilicity, and polar surface area; and 

structural fragments defined by SMARTS 57. These descriptors were calculated with the Auto-

Modeller™ module of the StarDrop™ software 58 and have previously been used to train 

successful QSAR models 59. However, any set of numerical descriptors can be used as input.  

QSAR Methods for Comparison  

In this work, the Alchemite models will be compared against QSAR models generated with the 

Auto-Modeller module in StarDrop 58. For each endpoint, individual models were trained using 

four common QSAR methods: Partial least squares (PLS), which describes the target property as 
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a linear combination of latent variables 60 ; Radial basis functions (RBF), a simple but effective 

data driven method which approximates the target quantity as a linear combination of basis 

functions centered around the training points 61; Random forests (RF), which trains the split criteria 

for a collection of 100 randomized decision trees to minimize the variance in predictions  62; and 

Gaussian process (GP) with fixed hyperparameters, a Bayesian method that draws models using 

the posterior distribution of a multivariate Gaussian with a parametric correlation matrix over the 

training set 28.  

Data Sets  

Data cleaning was required. Qualified data (i.e. value containing the symbols >, <) were removed 

from the data set because preliminary investigations demonstrated that simple inclusion of these 

data with no qualifier symbol produced less-stable models. Some of the raw data were transformed 

onto scales and distributions more amenable to modelling: IC50 values were transformed by taking 

the negative log of the IC50 in molar concentration (pIC50); percentage columns underwent a logit 

transform such that logit(𝑥) = ln⁡(𝑥(1 − 𝑥)−1), The base 10 logarithm was taken of other ADME 

endpoints that varied over multiple orders of magnitude. Summary tables and series information 

are provided in the Supplementary Materials for compounds in all datasets. Distributions of 

experimental data and molecular characteristics are also provided along with experimental 

protocols for ADME endpoints. 

Initial data  

Two real project data sets, Project A and Project B, were provided by Constellation 

Pharmaceuticals 63; including rows equating to anonymized compounds, and columns containing 

sparse experimental data for a heterogeneous mixture of activity, cell, and ADME endpoints. 

Project A had already finished; no new data would be added. Project B was an ongoing project; 
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the data were provided in batches and models iteratively trained as the project evolved. The targets 

for the project were unrelated but some of the types of ADME data were present in both projects. 

After the modelling work was completed more details have been published about Project A which 

developed inhibitors for EP300/CBP Histone Acetyltransferase (HAT), further details can be 

found in the references 64–66. 

 

Table 1. A summary of the initial data received for Projects A and B. The ADME assays were 

shared between the datasets. The number of endpoints of each type for each project are shown. 

The data for each endpoint were sparse and the percentage filled of data points of each type that 

had been measured is also shown. 

 Number of 

Compounds 

Bioactivity Assays Cell Assays ADME Assays 

Number % 

Filled 

Number % 

Filled 

Number % 

Filled 

Project A 1241 3 45 2 15 8 16 

Project B 338 5 55 0 N/A 8 3 

 

The initial data are summarized in Table 1. The activity endpoints included 3 target bioactivity 

columns over 2 target isoforms, and 2 cell-based assay columns for Project A; and 5 bioactivity 

columns over three isoforms for Project B. The targets of Projects A and B were enzymes from 

unrelated protein families, and there should be no correlation between target activities or cross-

target activity for compounds designed for each target. The ADME endpoints included kinetic 

solubility, permeability measured in a parallel artificial membrane permeability assay (PAMPA), 

human and mouse plasma protein binding (PPB), human and mouse liver microsome intrinsic 

clearance (HLM Clint, MLM Clint), and reversible cytochrome P450 (CYP) 2D6 and 3A4 

inhibition.  
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The data were split into an 80% training set and a 20% independent test set. The split was 

stratified randomly over rows to find the set of training/test rows that had approximately equal 

data sparsity for all columns simultaneously. This was required because the ADME columns were 

so sparse that many purely random splits would leave an empty test column. 

Unified vs. Individual Models  

To compare the stability of models under different partitioning of the data the following 

additional models were trained for comparison with a single, unified model of all data across both 

projects: 

1) Only activity data from Project A 

2) Only the activity data from Project B 

3) All of the Project A data 

4) All of the ADME data from Project A and Project B 

5) All of the data from both Project A and Project B 

Temporal Data  

At the start of the study, the Project B data set contained 338 compounds. As the study 

progressed, another 874 compounds were added to Project B, sorted by the date on which they 

were synthesized and registered in the database, which correlates with the measurement time of 

assay results. This allowed a temporal split to be made 51. The new compounds were split into 

three blocks of ~300 compounds, with block 1 being the oldest and block 3 being the newest 

compounds in the project. The final block often had higher activities and more relevant ADME 

data.  

Three data splits were generated to allow the construction of three temporal models. Model 1 

which used all of the initial data (from Table 1) as a training set, Model 2 which used all of the 
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initial data and the first block of temporally split compounds, and Model 3 which used all of the 

initial data and the first two blocks of temporally split compounds. All three models were validated 

against the final unseen block of compounds so that an independent comparison could be made.  

Model Assessment 

The quality of the models was assessed using the coefficient of determination (R2), in the range 

(−∞, 1], (N.B. This should not be confused with the Pearson correlation coefficient which is in 

the range [−1,1]). The coefficient of determination is defined as 

𝑅2 = 1 −
∑ (𝑓𝑖 − 𝑦𝑖)
𝑁
𝑖=1

2

∑ (𝑦𝑖 − �̅�)𝑁
𝑖=1

2 , 

where  �̅� is the mean of the observed data points, 𝑦𝑖, and 𝑓𝑖 is the model prediction of data point 

𝑦𝑖. In addition, the root mean squared error (RMSE) of the results for each endpoint is considered: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

. 

RESULTS AND DISCUSSION 

Initial Comparison with QSAR Methods 

We compared the multi-target Alchemite method with conventional QSAR models of single 

endpoints. The QSAR models are based only on molecular descriptors because they cannot use 

incomplete experimental data as input.  

Table 2. Comparison of Alchemite model performance against single-endpoint machine learning 

methods for QSAR on the independent test set for the initial data received from Constellation 

Pharmaceuticals. The bold result is the best method in the row. 

Endpoint Name 

(Merged Data Set) 

RF 

(𝑹𝟐) 

RBF 

(𝑹𝟐) 

GP 

(𝑹𝟐) 

PLS 

(𝑹𝟐) 

Alchemite 

(𝑹𝟐) 

𝑹𝟐 Boost 

Over Second-

best Method 
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CYP2D6 % Inhibition 0.26 0.37 0.40 0.08 0.63 + 0.23 

CYP3A4 % Inhibition 0.26 0.24 0.21 0.15 0.3 + 0.04 

HLM Clint  0.11 0.07 -0.18 -0.08 0.43 + 0.32 

Kinetic Solubility 0.44 0.54 0.54 0.40 0.50 - 0.04 

MLM Clint 0.37 0.51 0.49 0.31 0.54 + 0.03 

PAMPA Permeability 0.24 0.18 0.28 0.19 0.21 - 0.07 

ADME PPB% Human 0.60 0.56 0.58 0.48 0.72 + 0.12 

ADME PPB% Mouse 0.47 0.49 0.53 0.56 0.63 + 0.07 

Project A Bio. 1 0.50 0.46 0.48 0.53 0.94 + 0.41 

Project A Bio. 2 0.63 0.56 0.67 0.64 0.79 + 0.12 

Project A Bio. 3 0.50 0.25 0.46 0.54 0.92 + 0.38 

Project A Cell 1 0.62 0.72 0.71 0.73 0.84 + 0.11 

Project A Cell 2 -0.29 -1.2 -0.48 -0.27 0.57 + 0.84 

Project B Bio. 1 0.44 0.43 0.38 0.30 0.65 + 0.21 

Project B Bio. 2 0.46 0.52 0.40 0.28 0.82 + 0.30 

Project B Bio. 3 0.53 0.45 0.44 0.37 0.82 + 0.29 

Project B Bio. 4 0.46 0.44 0.44 0.30 0.62 + 0.16 

Project B Bio. 5 0.56 0.57 0.53 0.47 0.71 + 0.14 

 

From the results in Table 2 we can see that Alchemite adds significant predictive value over 

single-endpoint QSAR methods, when comparing the results on the 20% held out test set for the 

initial data. On average for an individual endpoint Alchemite adds 0.2 to the 𝑅2 value of the next 

leading method (range -0.07 to 0.84) and outperforms the best QSAR model on 16 out of 18 

endpoints. Where there is not an improvement, the performance is effectively equivalent to the 

best QSAR result. 

Figure 2 shows the best QSAR model from the four types shown in Table 3, N.B. it is strictly 

speaking unfair to compare the best of the test set results against Alchemite, as it would not be 

known a priori which model was best. Despite this, Alchemite is still significantly better than this 
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result in almost all endpoints across both activities and ADME varieties. On average the 𝑅2 for 

QSAR models is 0.44, and on average the 𝑅2 for Alchemite models is 0.65. 

In particular, we can see that the Project A Cell 2 (cell proliferation) results cannot be predicted 

with conventional QSAR methods; a negative R2 indicates a performance that is worse than 

random (i.e. shuffling the test labels). This is likely because cell activity not only depends on target 

protein activity, but also on the compound reaching the target which will be strongly influenced 

by physicochemical and ADME properties. However, assay-assay correlations are strong so when 

the biochemical assay and ADME results, such as solubility and permeability, can be used as inputs 

to the model with Alchemite, there is a significant improvement in the ability to predict cell-based 

activity, even though the majority of data are not available for most compounds. 

 

 

Figure 2. Comparison of the results on the independent test set for the best of four QSAR methods 

(blue) with an Alchemite model (orange) built with all of the training data from the initial data set. 

Comparison of a Single, Unified Model with Individual Models  
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Table 3 shows a breakdown of the 𝑅2 performances of models constructed with different subsets 

of the initial data, as described under “Unified vs Individual Models” in the Data Sets section 

above. There is excellent agreement between models generated with different combinations of 

project data sets and endpoints, showing that it is not necessary to train individual models for 

different projects or objectives; the single model of both projects and all data performs equivalently 

to models built on the individual subsets. 

The average coefficient of determination is particularly high on activity models with 𝑅2 = 0.81 

for the project which has complete lead optimization (Project A), and 𝑅2 = 0.73 for the new 

project which is in hit-to-lead (Project B). The ADME 𝑅2 values are good, considering the data 

sparsity (only 16% present) and complexity of the endpoints. The summary statistics for the model 

with all of the data are similar to the average of the two models. 

Table 3. Summary of five model types to check how robust the algorithm is to data partitioning. 

Cells with N/A represent combinations which cannot be measured because of the data split 

definition. 

Model ADME Average 𝑹𝟐 Activity Average 

𝑹𝟐 

All Average 𝑹𝟐 

Project A Activity N/A 0.81 0.81 

Project B Activity N/A 0.73 0.73 

Project A All 0.52 0.82 0.63 

All ADME Data 0.50 N/A 0.50 

All Data 0.50 0.77 0.65 

 

We further drill down into the relative performance in Figure 3 where we compare the models 

built on individual data sets (i.e. only Project A or only Project B) versus a model constructed on 

both data sets simultaneously. We can see for cell and bioactivity assays that the predictive power 
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of both types of model is virtually identical. On average, the quality of the models is also the same 

for ADME endpoints, although there is increased variability. It should be noted that the individual 

project model for ADME properties was only built and tested on Project A because there were 

insufficient ADME data for Project B with which to build and test an individual  model, while the 

model built on All Data is built and tested on both Projects A and B. Therefore, these models are 

compared on different test sets. 

 

Figure 3. A breakdown of independent test 𝑅2 values across endpoints in the initial dataset. For 

endpoint marked with * the individual project model for ADME properties was built and tested on 

Project A only. 

Selecting the Most Confident Predictions 

An ensemble of predictions is generated for each missing element of the data matrix and the 

distribution of this ensemble can take many shapes. The mean and the standard deviation of this 

distribution gives a unique prediction and error bar for each missing value, where the error bar 

represents one standard deviation about the mean. In the case where descriptor values, or sparse 

experimental inputs for a new compound extrapolate beyond the training data, the error bar will 
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grow to show the algorithms has limited knowledge of that region of chemical space. Figure 4 

shows an example scatter plot of the predicted versus observed activity, Project B Bioactivity 2 

pIC50, for the independent test set of the initial data. We can see the uncertainty estimates as error 

bars in the y-axis, which intersect with the identity line in almost all cases. The only significant 

outlier (red point) has correctly been assigned a large uncertainty, indicating that the model has 

determined this to be a low-confidence prediction. 

 

 

Figure 4. A plot of predicted versus observed Project B – Bioactivity 2 values for the independent 

test set of the initial data predictions. The error bars show one standard deviation in the predicted 
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value and the dotted line shows the identity line of perfect fit. One clear outlier is highlighted in 

red, which is correctly assigned the highest uncertainty in prediction. 

We can exploit our knowledge of the uncertainties in the predicted values by disregarding those 

with the highest uncertainty. We would expect the remaining, more confident, values to have a 

higher accuracy. In Figure 5 we analyze the impact of discarding the predictions in increasing 

order of confidence (i.e. the predictions with the largest error bars will be discarded first). The 

RMSE is plotted on the y-axis of the graph, such that low values indicate more accurate 

predictions. The orange line shows that, as the least confident predictions are removed, the RMSE 

falls sharply, confirming the expected behavior. For this model we can predict around 80% of 

results with an RMSE of approximately 0.1 log units.  
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Figure 5. Plot of RMSE of predicted test results when predictions with lowest confidence are 

removed. The orange line shows the performance of the Alchemite model. For comparison, the 

black dotted lines show the minimum and maximum RMSE achievable as the least- and most-

accurate results are removed, i.e. the order which minimizes or maximizes the RMSE (N.B. in 

practice this order is not known without measuring against the test set). The blue shaded region 

and dashed line indicate the expected results from randomly removing results. For this endpoint, 

Alchemite accurately identifies the least confident results, leading to a large improvement in 

RMSE when only discarding a few of the predictions. 

Temporal Learning and Validation.  

We will now focus on the additional compounds provided from Constellation Pharmaceuticals 

as Project B progressed. Results in this section correspond to the models trained on blocks of data 

as described under “Temporal Data” in the Data Sets section. 

Figure 6 shows the average 𝑅2 of Models 1, 2, and 3 (bold, black line) and the individual 

endpoint 𝑅2 values for the same models (fine, colored lines), for predictions on an independent 

test set corresponding to the most recent block of compounds and associated data. The average 𝑅2 

increases linearly, showing constant improvement with additional project data. The breakdown 

shows a reduction in the variance of model performances, and a general tendency for models to 

pass above the 𝑅2 = 0.7 line (a threshold for a very good model). Initially only activity models 

are above this line, by the third model even ADME properties are being predicted with this high 

level of accuracy. A small number of endpoints do not increase in performance, notably the CYP 

inhibition endpoints that are some of the sparsest and most complex ADME endpoints in this 

dataset. 
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Figure 6. The coefficient of determination (𝑅2) of Models 1, 2 and 3 on an independent test set 

corresponding to the most recent block of compounds and associated data (Block 3), as more data 

are added temporally across the project. Bold, black: the average coefficient across all endpoints. 

Fine, colors: The coefficient for each endpoint with some examples given. 

To deliver further insights we now focus in on the model predictions for human plasma protein 

binding (Figure 7). There are two classes of compounds in the test set: 1) many moderate binders 
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and 2) four strong binders. Model 1 has limited ability to distinguish between these two classes, 

with a great deal of overlap in the error bars. With only 19 more training points in Model 2, the 

predictions for the strong binders improve and the error bars allow the compounds to be more 

confidently distinguished. By the third model, with 42 further training points, the 𝑅2 has increased 

significantly and the model can distinguish all four compounds. 

 

Figure 7. Plots of predictions with error bars by Models 1, 2 and 3 (left to right) for human protein 
plasma binding on the independent test set corresponding to the most recent compounds and 
associated data (Block 3). 𝑅2 values, training set sizes and the identity (black) and best fit (grey) lines are 
shown on each plot. The logit transform was applied to the percent bound data. cleaning12 compounds 
have 𝑙𝑜𝑔𝑖𝑡(𝑃𝑃𝐵) ≤ 2 which corresponds to 𝑃𝑃𝐵 < 88%⁡and 4 compounds have 𝑙𝑜𝑔𝑖𝑡(𝑃𝑃𝐵) > 4, 
which corresponds to 𝑃𝑃𝐵 > 98%. The highest 2 compounds have 𝑙𝑜𝑔𝑖𝑡(𝑃𝑃𝐵) ≥ 5.5 which 
corresponds to 𝑃𝑃𝐵 > 99.6%.  

 

We now focus on the data rich Project B bioactivity 2 endpoint, shown in Figure 8. There are 

more training points for this activity column and the models 1,2, and 3 progressively improve from 

𝑅2 = 0.73 through to an excellent model with 𝑅2 = 0.93. The uncertainties in the predictions for 

actives reduce greatly by the third model due to the large amount of training data. There were very 

few examples of training activity greater than 8, thus the model begins to extrapolate effectively 

on the far-right hand side of the plot. 
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Figure 8. Plots of predictions with error bars by Models 1, 2 and 3 (left to right) for the Project B 

Bioactivity 2 endpoint on the independent test set corresponding to the most recent compounds 

and associated data (Block 3). 𝑅2 values, training set sizes and identity (black) and best fit (grey) 

lines are shown on each plot. 

Figure 9 shows the breakdown of the accuracy of model predictions on an independent test set 

for models generated and tested with all of the data received. For a consistent comparison with the 

initial model, an 80:20 stratified split was applied, as for the initial data set. The average 𝑅2 from 

the best of four QSAR methods for each of the endpoints was now 0.50, which had improved from 

the previous value of 0.44. This shows that the QSAR methods had used the additional information 

to improve the model quality. The final Alchemite average 𝑅2 was 0.72, which had improved from 

0.65 for the initial set, providing an average improvement of 0.22 over QSAR models on this final 

data set. 

Notably, there are now five bioactivity models at or above the excellent 𝑅2 = 0.9 threshold. 

Alchemite has retained strong models for Project A endpoints as more data are added for Project 

B. 
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Figure 9. Comparison of the results on the independent test set for best of four QSAR methods 

(blue) with an Alchemite model (orange) built with all of the training data using an 80:20 stratified 

random split on the final data set. This plot can be compared to Figure 2 to inspect the improvement 

in models with more data.  

CONCLUSIONS 

We have demonstrated a flexible deep learning algorithm that can be used for wide scale and 

general-purpose data imputation in the context of an ongoing drug discovery project. It can handle 

multiple, potentially unrelated inputs and build stable models that outperform conventional QSAR 

methods by using incomplete experimental data as input to learn transferrable assay-assay 

correlations. It is also notable that this method still outperforms QSAR in the limit of a smaller 

data set, representative of a medicinal chemistry project. This contrasts with other deep learning 

methods which have seen more marginal improvements and generally require much larger 

datasets.  
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We considered the application of this method in relation to the challenges of dealing with sparse, 

noisy and heterogeneous data in the context of an evolving drug discovery project.  

We have seen that an Alchemite model can be trained for data spanning multiple projects and a 

variety of diverse endpoints and the quality of predictions was very similar when compared to 

separate models. This shows promise in its ability to capture information at multiple levels of 

resolution in a single model. The most notable examples where imputation added much greater 

value over QSAR were for complex endpoints, such as cell-based assays, that likely required a 

combination of experimental and descriptor inputs to make a meaningful model.  

Furthermore, we showed that the confidence estimates in individual predictions enable the most 

accurate predictions to be identified for individual endpoints. This outcome has now been seen in 

both homogeneous data 40 and for heterogeneous data in this study. 

Finally, we illustrated the application of Alchemite to evolving project data, demonstrating that 

as more data become available the model can be retrained resulting in rapidly improving accuracy 

on the most recent chemistry and experimental data. This enables the application of these models 

to augment an ongoing project and guide the next most valuable experiment to perform, in order 

to yield maximum possible benefit. 

Supporting Information:  

The supporting information includes a description of the data set in terms of chemical diversity, 

chemical series, distributions and tables of common chemical properties and assay values. 

Although the code for the Alchemite is not in the public domain due to IP restrictions, readers are 
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