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We start with the definition of the thermodynamic potential Ω in terms of the eigenvalues G−1 of the
Nambu-Gorkov Green’s function G−1,

Ω =
∆2

g
−
∑
G−1

T ln
(

1 + e−
1
T G

−1
)

, (1)

where ∆ is the mean-field value of the anomolous average, or equivalently the bosonic Hubbard-Stratonovich
transform variable, g is the strength of the contact interaction, T is temperature, and for FFLO the matrix

G−1 =

(
ξk+q,↑ ∆

∆ −ξ−k+q,↓

)
, (2)

which has eigenvalues

G−1 = ξ− ±
√
ξ2
+ + ∆2, (3)

where ξ± = (ξk+q,↑ ± ξ−k+q,↓) /2. This means that the thermodynamic potential takes the form

Ω =
∆2

g
−
∑
k

√ξ2
+ + ∆2 + ξ− + T

∑
ς∈{+,−}

ln
[
1 + e−

1
T (
√
ξ2++∆2+ςξ−)

] . (4)

Noting the simple forms of ξ±, ξ+ = 1
2k

2 + 1
2q

2 − µ̄ and ξ− = k · q − δµ ≈ kFq cos θ − δµ in a quadratic
dispersion, where µ̄ = (µ↑ + µ↓)/2 and δµ = (µ↑ − µ↓)/2, we may convert the sum over k in Eq. (4) to an
integral, obtaining

Ω =
∆2

g
− ν

∫
dΩ

4π

∫ ωD

ωD

dξ+

√ξ2
+ + ∆2 + ξ− + T

∑
ς∈{+,−}

ln
[
1 + e−

1
T (
√
ξ2++∆2+ςξ−)

] , (5)

where the density of states ν = kF/2π
2.

Splitting this integral into two components, the first part may be immediately evaluated as∫
dΩ

4π

∫ ωD

ωD

dξ+

(√
ξ2
+ + ∆2 + ξ−

)
= ωD

√
ωD

2 + ∆2 + ∆2arcsinh
ωD

∆
+ 2ωDδµ. (6)
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[b] Name Condition θ ξ−
E qkF − δµ < −∆ [0,π] [−qkF − δµ, qkF − δµ]

S −∆ < qkF − δµ < ∆
[
arccos

(
δµ−∆
qkF

)
,π
]

[−qkF − δµ,−∆]

D qkF − δµ > ∆
[
0, arccos

(
δµ+∆
qkF

)]
∪
[
arccos

(
δµ−∆
qkF

)
,π
]

[−qkF − δµ,−∆] ∪ [∆, qkF − δµ]

Table 1: The blocking regions

The second part, at zero temperature, may be evaluated as

I = lim
T→0

∫
dΩ

4π

∫ ωD

ωD

dξ+T
∑

ς∈{+,−}

ln
[
1 + e−

1
T (
√
ξ2++∆2+ςξ−)

]
=

∫
dΩ

4π

∫ ωD

ωD

dξ+
∑

ς∈{+,−}

(
ςξ− −

√
ξ2
+ + ∆2

)
Θ

(
ςξ− −

√
ξ2
+ + ∆2

)

=

∫
dΩ

4π

∫ ωD

ωD

dξ+
∑

ς∈{+,−}

Θ (ςξ− −∆)

[
Θ

(√
ξ2
− −∆2 − ξ+

)
−Θ

(
−
√
ξ2
− −∆2 − ξ+

)](
|ξ−| −

√
ξ2
+ + ∆2

)

=

∫
dΩ

4π

∑
ς∈{+,−}

Θ (ςξ− −∆)

∫ √ξ2−−∆2

−
√
ξ2−−∆2

dξ+

(
|ξ−| −

√
ξ2
+ + ∆2

)

=

∫
dΩ

4π

∑
ς∈{+,−}

Θ (ςξ− −∆)

(
|ξ−|

√
ξ2
− −∆2 −∆2arccosh

|ξ−|
∆

)
. (7)

where Θ(x) is the Heaviside step function.

Figure 1: The blocking regions

To evaluate the remaining angular integral, we
start by noting that we may change variables from
the angles (θ,φ) to (ξ−,φ), giving dΩ = sin θdθdφ =
dξ−dφ
qkF

. The integration domain over ξ± is indicated
in Fig. 1: the blue regions are integrated over in this
second integral, and are referred to as the ‘blocking
regions’. The limits on the integral over ξ− these
blocking regions give rise to are summarised in Ta-
ble 1.

Heuristically, region E is when qkF is small com-
pared to δµ such that the blocking region covers
the whole angular extent of the integration region,
killing off superconductivity. In Fig. 1, the upper
limit of integration qkF−δµ lies within the left-hand
blue region, and the gap and right-hand region do
not exist.

Region S is when qkF is comparable to δµ, and
the blocking region covers all of the Fermi surface
except a ‘cap’ around the pole. In region S the upper
limit of integration lies within the gap between the
two blue regions in Fig. 1. When qkF becomes larger
than δµ we enter the region D, where blocking occurs
at both poles but leaves a band around the Fermi surface where superconductivity is supported. This is the
situation shown in Fig. 1.
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Integrating Eq. (7) over the three different regions gives the simple relationships

E : I =
∆3

2qkF

(
f

(
qkF + δµ

∆

)
− f

(
qkF − δµ

∆

)

−
(
qkF − δµ

∆

)
arccosh

(
−qkF − δµ

∆

)
−
(
qkF + δµ

∆

)
arccosh

(
qkF + δµ

∆

))
,

S : I =
∆3

2qkF

(
f

(
qkF + δµ

∆

)
−
(
qkF + δµ

∆

)
arccosh

(
qkF + δµ

∆

))
,

D : I =
∆3

2qkF

(
f

(
qkF + δµ

∆

)
+ f

(
qkF − δµ

∆

)

−
(
qkF − δµ

∆

)
arccosh

(
qkF − δµ

∆

)
−
(
qkF + δµ

∆

)
arccosh

(
qkF + δµ

∆

))
, (8)

where the function f(x) = 1
3

(
x2 + 2

)√
x2 − 1.

We may now draw everything together, and find the thermodynamic potential (regularised by its value
at ∆ = 0) as

Ω(∆)− Ω(0) =
∆2

g
+ ν

(
1

3
(qkF)2 + δµ2 + ωD

2 − ωD

√
ωD

2 + ∆2 −∆2arcsinh
ωD

∆

+
∆3

2qkF

(
H

(
qkF + δµ

∆

)
+H

(
qkF − δµ

∆

)))
, (9)

where the function

H(x) =

xarccoshx− 1
3 (x2 + 2)

√
x2 − 1, x > 1,

0, |x| < 1,
−H(−x), x < −1.

(10)

Using the BCS gap equation 1 = gνarcsinhωD

∆ ≈ gν ln 2ωD

∆0
we may also eliminate the ultraviolet cutoff

ωD, to give the final form for the FFLO thermodynamic potential,

Ω(∆)− Ω(0)

ν
=

1

3
(qkF)2 + δµ2 + ∆2

(
ln

∆

∆0
− 1

2

)
+

∆3

2qkF

(
H

(
qkF + δµ

∆

)
+H

(
qkF − δµ

∆

))
. (11)
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