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We can write the thermodynamic potential for FFLO theory as

Ω =
∆2

g
−
∑
G−1

T ln
(

1 + e−
1
T G

−1
)

, (1)

where G−1 are the eigenvalues of the Nambu-Forkov Green’s function G−1. This matrix takes the form

G−1 =

(
ξk+q,↑ ∆

∆ −ξ−k+q,↓

)
, (2)

whose eigenvalues may be evaluated to second order in ∆ as

G−1 = {ξk+q,↑ +
∆2

ξk+q,↑ + ξ−k+q,↓
+O(∆4),−ξ−k+q,↓ −

∆2

ξk+q,↑ + ξ−k+q,↓
+O(∆4)}. (3)

Substituting these into the thermodynamic potential, and regularising by the value of Ω at ∆ = 0, we find

Ω =
∆2

g
−
∑
k

(
∆2

ξk+q,↑ + ξ−k+q,↓
Θ(ξ−k+q,↓)−

∆2

ξk+q,↑ + ξ−k+q,↓
Θ(−ξk+q,↑)

)
+O(∆4)

=
∆2

g
−
∑
k

∆2

ξk+q,↑ + ξ−k+q,↓
(1−Θ(−ξk+q,↑)−Θ(−ξ−k+q,↓)) +O(∆4)

=
∆2

g
−
∑
k

∆2

2|ξ+|
(1−Θ(ξ− − |ξ+|)−Θ(−ξ− − |ξ+|)) +O(∆4)

=

(
1

g
−
∑

k/∈BR

1

2|ξ+|

)
∆2 +O(∆4)

= α∆2 +O(∆4), (4)

where ξ± = (ξk+q,↑ ± ξ−k+q,↓) /2, Θ(x) is the Heaviside step function, and the region BR is the ‘blocking
region’ shown by the blue region in Fig. 1, in terms of the symmetrized variable ξ+ and cos θ.

With a quadratic dispersion, we find the simple relationships ξ+ = 1
2k

2 + 1
2q

2 − µ̄ and ξ− = k · q− δµ ≈
kFq cos θ − δµ. This allows a simple change of variables from k to ξ+, giving

α =
1

g
− ν

∫
dθ

2π

∫ ωD

|ξ−|

dξ+
ξ+

=
1

g
− ν lnωD + ν

∫
dθ

2π
ln |ξ−|, (5)

and if we use the BCS gap equation 1 = gν ln 2ωD

∆0
to eliminate g, we find

α = ν

(
ln

2ωD

∆0
− lnωD + ν ln δµ+

∫ 2π

0

dθ

2π
ln

∣∣∣∣qkF

δµ
cos θ − 1

∣∣∣∣) . (6)
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Figure 1: The blocking region, BR

We evaluate the remaining integral in the box
below. Taking the result from there, we get

α = ν

ln
2δµ

∆0
+ ln

∣∣∣∣∣∣∣∣
1 +

√
1−

(
qkF
δµ

)2

2

∣∣∣∣∣∣∣∣
 , (7)

and so the second-order transition to the FFLO
state, at α = 0, occurs at

2δµ

∆0
=

∣∣∣∣∣∣∣∣
2

1 +

√
1−

(
qkF
δµ

)2

∣∣∣∣∣∣∣∣ , (8)

i.e. the maximum δµ where the FFLO state exists
is given by

δµ = ∆0, (9)

which corresponds to qkF = δµ = ∆0. Compare
this to the case in 3D, where the transition occurs
at qkF = 1.2δµ.
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Integral 1 We wish to evaluate the integral

I(Q) =

∫ π

0

dθ ln |Q cos θ − 1|, Q > 0.

First, note that

I(Q) = <
∫ π

0

dθ ln(Q cos θ − 1),

and then let us differentiate I(Q) with respect
to Q, to obtain

I ′(Q) = <
∫ π

0

dθ
1

Q− sec θ
.

Changing variables to u = sec θ, we have

I ′(Q) = <
∫
u∈(−∞,−1]∪[1,∞)

du
1

Q− u
1

u2
√

1− 1
u2

,

which is an integral that Mathematica finds
quite easy, returning

I ′(Q) = <


π
(
−1+Q+

√
−1+ 2

Q+1

)
Q(Q−1) , 0 < Q < 1,

π

(
1+ i√

Q2−1

)
Q , Q < 1.

The integral we were searching for is then

I(Q) =

∫
dQI ′(Q) = <

 π ln
(

1 +
√

1−Q2
)

+ C, 0 < Q < 1,

π
(
i arctan

√
Q2 − 1 + lnQ

)
+D, Q > 1,

where the constants C and D are determined by
the conditions that I(0) = 0 and that I(Q) is
continuous across Q = 1. These conditions give
immediately that C = −π ln 2, and so I(1) =
−π ln 2 and D = −π ln 2 as well. Taking the
real part, we obtain the solution

I(Q) =

{
π ln

1+
√

1−Q2

2 , 0 < Q < 1,

π ln Q
2 , Q > 1,

= π ln

∣∣∣∣∣1 +
√

1−Q2

2

∣∣∣∣∣ .
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