2D FFLO theory: location of second order phase transition
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We can write the thermodynamic potential for FFLO theory as
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where G~! are the eigenvalues of the Nambu-Forkov Green’s function G~ !. This matrix takes the form
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whose eigenvalues may be evaluated to second order in A as
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Substituting these into the thermodynamic potential, and regularising by the value of 2 at A = 0, we find
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where &4 = (§kiqt £ E—ktq,.) /2, O(z) is the Heaviside step function, and the region BR is the ‘blocking
region’ shown by the blue region in Fig. 1, in terms of the symmetrized variable £, and cos 6.

With a quadratic dispersion, we find the simple relationships £, = %kQ + %qQ —pand & =k-q—du~
krgcos @ — §p. This allows a simple change of variables from k to £, giving
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and if we use the BCS gap equation 1 = gvln 2‘*”3 to eliminate g, we find
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We evaluate the remaining integral in the box
below. Taking the result from there, we get
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and so the second-order transition to the FFLO
state, at a = 0, occurs at
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i.e. the maximum du where the FFLO state exists
is given by
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which corresponds to gkp = o = Ay. Compare
this to the case in 3D, where the transition occurs
at qu = 1.25/},.
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Figure 1: The blocking region, BR



Integral 1 We wish to evaluate the integral

1(Q) = /Oﬂd91n|Qcos6 1, @>o.

First, note that
I(Q) = §R/ df1In(Q cosb — 1),
0

and then let us differentiate 1(Q) with respect
to Q, to obtain
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Changing variables to u = sec, we have
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which is an integral that Mathematica finds
quite easy, returning
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The integral we were searching for is then
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where the constants C' and D are determined by
the conditions that 1(0) = 0 and that 1(Q) is
continuous across Q = 1. These conditions give
immediately that C = —mIn2, and so I(1) =
—nmIn2 and D = —7wIn2 as well. Taking the
real part, we obtain the solution
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