Complex Networks



Introduction

Brief historical overview:

1736 Graph theory (Euler)

1937 Journal Sociometry founded
1959 Random graphs (Erdés-Rényi)
1967 Small-world (Milgram)

late 1990s “Complex networks”



Complex Networks Research

Rapidly increasing interest over the last decade, since
much more network data available now:

* Internet
* Biological networks, e.g.
— Genetic networks
— Food webs
e Social networks (e.g. Facebook, Twitter)
e Transport networks
e Mobile phone networks

Many show very similar features!



Describing a network formally

N nodes and E edges,

where E < N(N-1)/2

Yy

N=7,E=9

Note: In graph theory language this graph is of order 7 and size 9.



Directed networks

More edges: E < N(N-1)
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Much more complex topology.



Adjacency matrix

The most convenient way of describing a

network is the adjacency matrix aj;.

01010
10111
01000
11001
01010

A link between node 1 to node j is recorded by a
‘1" in the ith row and the jth column.



Adjacency matrix

Undirected networks
have a symmetric
adjacency matrix

ai]' = a]'i.

Directed networks in
general have

asymmetric a;.
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Self-interactions

@;D 1

Networks also can have self-interactions, which
correspond to the diagonal entries a;;.

If we allow self-interactions, we can have up to

E = N? edges.



Weighted networks

In a weighted network a real number is attached to each
edge, so that we obtain a real adjacency matrix, usually

denoted as w;;.

03010
30258
02000
15007
08070
00000O
30250
00100
14007
08000



Distance matrices

Something worth noting:

Detine any distance measure on a set of
objects.

This leads to a distance matrix, which is
just the adjacency matrix of a fully
connected weighted network.



Degree

In an undirected network the degree k; of a node
i is the number of nodes i is connected to:

ki—Z]- ai]-—Z]- El]'i
01010
10111
01000
11001
01010

Herek1=2,k2=4,k3=1,k4=3andk5=2.



In-degree and out-degree

In a directed network the in-degree k" of a node
1 is the number of directed edges pointing to
node i:

ki(m) = Z] 61]'1'

while the out-degree k{*" of a node i is the
number of directed edges pointing from node 1:




In-degree and out-degree

Thus, in a directed network, nodes can be
highly connected, yet also isolated (e.g. in terms
of sending or receiving information.)
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Citations

The network of scientific citations provide examples
illustrating two extremes:
O
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High in-degree and low out-degree:

—_—» )—

much-cited research article

\

Low in-degree and high out-degree:

N

Book or review article



Strength

In a weighted, undirected network the strength is the
sum of the weights for the edges connecting to a node:

Hences;=4,s,=18,s5;=2,s,=13 and s; = 15.



Erdds-Rényi networks

Random graphs studied by Paul Erdés and Alfred
Rényi (1959):

Uniform probability p of two nodes i, being connected.

Two ditferent realizations for N =5 and p = 0.5.



Erdds-Rényi networks

Some properties of E-R networks:

Average number of edges (= size of graph):
E=pN(N-1)/2

Average degree:

(k)=2E/N=p(N-1)=pN



Erdds-Rényi networks

The degree distribution Py is a quantity of great interest in
many networks, as we shall see later.

For E-R networks, in the limit of large N, it is given by:

N -1
P, =( . )p"(l - p)¥



Scale-Free networks

In a scale-free network

a) Many nodes have few connections and a few nodes
have many connections.

b) This observation holds on the local and global scale
of the network.

In other words, there is no inherent scale.



Scale-Free networks

Formally this translates into a power-law degree distribution:

P(k) =k
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Image: Barabdsi and Albert, Science 286, 510 (1999)



Scale-Free networks

Typical values of exponent y observed:

Network y
Co-authorship 1.2
Internet 2.1

Yeast protein-protein 2.4
Word co-occurrence 2.7



Preferential attachment

Presented by Barabasi & Albert [Science 286, 509 (1999)]:

Probabilistic network growth model which produces
scale-free networks.

Add new node and attach it to m existing nodes, where
the probability of attaching it to a particular node i is:

plzkl/Z]k]



Preferential attachment

Nodes: N=N,+t
Edges: E=mt

Since one node and m edges are added per timestep.
What is the degree distribution for the B-A model?

Can get an answer by considering k as a continuous
variable.



Preferential attachment

The variation of degree with time is given by:

ok . mk. k.

l l

—mpl Ek 2mt 2_t

which for a node i joining at time ¢; has the solution:

n
k(t)=m_|—

\7,




Preferential attachment

By considering the probabilities:

m’t
P(k<k)=P(t, >— P
and given that at time ¢:
m’t m’t
P(t, > ) 1-P(t, = —5
k
m’t/k’ 2 1

Il
~—
P
T
= |3
=
+



Preferential attachment

Hence we arrive at:

oP(k;, <k) 2m’t
ok (N, + )k’

P(k) =

which gives us a scale-free degree distribution with a
power-law exponent of -3, in other words y = 3.

Modified preferential attachment models lead to other y
values.



Arbitrary degree distributions

Newman et al. proposed a model to obtain random
graphs with arbitrary degree distributions, by using a
generating function approach.

Go(x) = Zi py x*

Phys. Rev. E 64, 026118 (2001)



Generating function approach

The generating function

Go(x) = Zi pr x*

contains all information about the distribution of py,
since

pe=(1/K) "G/ datt | o



Generating function approach

Many properties of the network can be derived from
this generating function, such as

- Average degree: <k) =X, k p = Gy'(1)
- Average number of second-nearest neighbours:

{(kana? = Go (1)
(But this doesn’t generalize simply)

- Clustering coefficient (we will come to this later)



Assortativity

Assortativity describes the correlation between the degree
of a node and the degree of its neighbours.

Networks in which highly connected nodes are linked to
other nodes with a high degree are termed assortative.
Such networks include social networks.

Networks in which highly connected nodes are only
linked to nodes with a low degree are termed
disassortative. Such networks include the World Wide Web
and biological networks.



Assortativity Coefficient

One way of measuring assortativity is to determine the Pearson
correlation coefficient between the degrees of pairs of connected
nodes. This is termed the assortativity coefficient r:

r=(1/0,) Zjc jk (e — q;q1)

where g; and g, are the distributions of the remaining degrees™ j
and k, when following a randomly selected edge. This can be
defined in terms of the degree distribution p; as:

(k + 1)pk+l

EJPJ
and where eji 1s the joint probab1l1ty distribution of pairs of nodes

with remaining degrees j and k at either end.

“remaining degree = degree minus one (the edge connecting the nodes)




Assortativity Coetficient

The value of r lies between:

-1 (disassortative) and 1 (assortative).

Some values for real networks:

Physics coauthorship:
Company directors:

Internet:
Marine food web:

0.363
0.276

-0.189
-0.247



Nearest-neighbour degree

The nearest neighbour degree k,,, of a node i is the average
degree of the neighbours of i.

The average nearest neighbour degree {k,,” is k,, averaged
over all nodes of the same degree k.

Assortativity can also be measured by plotting the average
nearest neighbour degree {k,,” as a function of the degree

k.

An increasing slope indicates assortativity while a
decreasing one signals disassortativity.



Distance

The distance between two nodes i and j is the length of
the shortest path connecting the two nodes.



Diameter

The diameter of a network is the largest distance in the network - in
other words it is the length of the longest shortest path connecting
any two nodes.

Note: Fully connected networks (like the one on the right) have
diameter D = 1.



Clustering coetficient

The clustering coefficient measures how densely connected the
neighbourhood of a node is.

It does this by counting the number of triangles of which a given node i is
a part of, and dividing this value by the number of edge pairs.

¢ =[2/k;(k;- 1)] ij Ajj Ajkc ik
Often the clustering coefficient is averaged over the entire network:
C=(1/N) 2 [2/k; (ki- D] a; ay a

Where N is the number of nodes.



Small-world networks

Watts and Strogatz (1998) consider a locally connected network
and randomly rewire a small number of edges.

Regular Small-world Random

p=0 » p=1
Increasing randomness

Image: Watts and Strogatz, Nature 393, 440 (1998)

The probability of rewiring p “tunes’ the network between a regular
lattice (p = 0) and a random (Erd&s-Renyi) graph (p = 1).



Small-world networks

As the rewiring probability p increases, the average distance
between two nodes falls drastically, while the clustering remains
largely unchanged until p gets a lot larger.
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Small-world networks

Examples of small-world networks:

Lactual Lmndom Cuctual Cmndom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080  0.005

Neural network 2.65 2.25 0.28 0.05

Watts and Strogatz, Nature 393, 440 (1998)



Small-world networks

Thus small-world networks are signified by small
average distances, similar to random graphs, but much
higher clustering coefficients than random graphs.

Such networks are termed small-world, in analogy to the
“small-world phenomenon” which proposes that,
roughly speaking, every person is connected to every
other person by at most six connections.

The small-world property cannot be detected at the
local level, as the random rewiring does not change the
clustering coefficient.



Betweenness

The rather awkward word betweenness is a measure of the
importance of a node or edge.

The most widely used is shortest-path betweenness:

Consider a pair of nodes, and all shortest paths between them.
For any given edge or node in the network, we can determine
the fraction of these shortest paths which pass through it. The

shortest-path-betweenness is the sum of these fractions over
all pairs.

Other forms include random-walk betweenness and current-flow
betweenness.



Betweenness: an example

While betweenness of a given node or edge is calculated
over all pairs of nodes, consider the contribution
associated with one particular node (s below):

(a) In a tree, the betweenness
is rather straightforward.

(b) In a network with loops,
the betweenness becomes

more complicated, e.g.
25/6=1+1+1+1/2+1/3+1/3

leaves

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection

Betweenness can help us to detect communities in networks.

Famous: The Zachary Karate Club network

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection

Newman and Girvan (2002) proposed a simple algorithm:
1)  Calculate the betweenness of all edges in the network.
2)  Remove the edge with the highest betweenness.

3) Recalculate the betweenness.

4)  Continue at 2) until no edges are left.

The disconnected components of the network form a suggested
partition into communities at each iteration.



Community detection

The network fragmentation achieved using this process suggests
many possible partitions of the network into communities. Which
one is the best one?

Image: Newman and Girvan, PRE 69, 026113 (2004)



Community detection

The network fragmentation achieved using this process suggests
many possible partitions of the network into communities. Which
one is the best one?

Image: Newman and Girvan, PRE 69, 026113 (2004)



Modularity

The modularity of a network measures the quality of a
given partition of the graph into sets S..

[t does so by comparing the total number of connections
within a set to the number of connections which would
lie within this set by chance.

- which

Given n, sets, consider the n. X7, matrix ;i
contains the fraction of the total number of edges which
connect communities i and ;.



Modularity

Thus the total fraction of edges connecting to nodes in set i is:
a;, = Z] eij

And if the edges were independent of the sets S;, then the
probability of an edge connecting two nodes within the same set
would be

ai = 2, €j; )?

The actual fraction of edges internal to a set is ¢;;, so that the
summed difference of the two gives us a measure of modularity:

Q=3 [ei- (I )]



Using modularity

When using the betweenness-based Newman-Girvan algorithm to
find communities, the modularity Q can be used to evaluate which
partition is the most meaningful:

modularity

Image: Newman and Girvan, PRE 69, 026113 (2004)



Network vulnerability

In many real-world networks it is of interest to measure
the network’s vulnerability to attacks or random failure.

One of the best-known results in this context is the
observation that the degree of proteins in a protein-
protein interaction networks is positively correlated with
the lethality of the protein.

This implies that the highest-degree nodes are the ones
whose removal would cause the most disruption.

Jeong et al., Nature 411, 41 (2001).



Network vulnerability

Betweenness is also a useful measurement of the
vulnerability of a network node or edge.

The removal of an edge or node with high betweenness
is likely to disrupt the dynamics of flow across the
network significantly.

In fact the strategy of removing nodes according to the
Newman-Girvan algorithm is also one which damages
the network very effectively (Holme et al., 2002).



Network vulnerability

Scale-free networks are very robust against random removal of
nodes, but very vulnerable to any targeted attacks.

Random graphs on the other hand are equally sensitive to both
forms of disruption.
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Hierarchical networks

Scale-free networks generated using preferential
attachment have low clustering coefficients.

Some networks such as metabolic networks however
have high clustering coefficients as well as scale-free
topologies.

New category of networks: Hierarchical networks,
characterized by a scale-free structure of densely
connected modules.



Hierarchical networks

Hierarchical networks can be formed by
simple algorithms such as the following:

1) Start with a module (small graph) with
a central node and peripheral nodes.

2) Make m copies of the module.

3) Connect the central nodes of the copies
to each other.

4) Connect the peripheral nodes of the
copies to the central node of the original.
5) This is the new module, with the
original central node as its central node.

6) Repeat from 2).

Image: Ravasz et al., Science 297, 1551 (2002)



Hierarchical networks

In hierarchical networks we
observe:

C(k) ~ k1

In other words we have small
densely connected modules
(small k, large C), connected
through hubs (large k, small C).

Several metabolic networks
show this behaviour (see right).

Image: Ravasz et al., Science 297, 1551 (2002)



Rich clubs

The so called rich-club phenomenon describes a network in which a
small number of nodes with high degree are densely connected with
each other.

The rich-club coefficient is calculated as follows:

1) Rank the nodes by degree, and normalize this rank by dividing by
the total number of nodes N. This normalized rank is r.

2) The rich-club coefficient ¢ (r) is the fraction of realized edges
among the nodes of rank r or lower (i.e. higher in the ranking).

number of edges among nodes with rank <r
rN(rN —-1)/2

Zhou & Mondragon. IEEE Comm. Lett. 8, 180 (2004).

¢(r) =




Rich clubs

But this is not enough. Since hubs are more likely to be connected to
each other we need to compare the rich club to that of a randomized
network with the same degree distribution.

We can achieve this e.g. using double-edge swaps.

Dividing by the randomized coefficient gives us a normalised
coefficient.

¢(r)
¢rand0m (7")

¢N(l”) =

If this is greater than 1 we have a rich club.

Colizza et al., Nat. Phys. 2, 110 (2006).



Rich clubs

Some real-world networks show rich clubs and some do not:
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Colizza et al., Nat. Phys. 2, 110 (2006).



Network motifs

Network motifs are subgraphs of a few nodes which
appear in directed networks more often than would be
expected by chance.
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Network motifs

To evaluate whether their number is higher than would be expected
by chance, the networks are randomized by swapping two inputs or
two outputs.

réal network randomized networks
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Image: Milo et al., Science 298, 824 (2002)

This gives rise to a network with the same in- and out-degrees as the
original network.



Superfamilies

Alon (2004) showed that the frequency signatures of network motifs
classify networks into superfamilies.
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Superfamilies

What does this mean? Feed-forward loop is important in transcription
networks and other regulatory networks.

o @

22%9-/°

Triad Signfénce Profile

= TRANSC-E.COLI
—&— TRANSC-YEAST

«~ TRANSC-YEAST-2
—— TRANSC-B.SUBTILIS

oo,

o
[=}
3
N
©
[}
N
=
E
o
=z

)’ E X

o Wt

—=— SIGNAL-TRANSDUCTION
—— TRANSC-DROSOPHILA

www.a

www.b

to—>be

not<«—or

—&— TRANSC-SEA-URCHIN
—=— NEURONS
-0.5

—=— WWW-1 N=325,729
o~ WWW-2 N=277,114
—— WWW-3 N=47,870

~=— SOCIAL-1 N=67
—&— SOCIAL-2 N=28
—+— SOCIAL-3 N=32

Tf’ —=— LANGUAGES: ENGLISH
&~ FRENCH
0 | - SPANISH
4~ JAPANESE
l .05/ —*— BIPARTITE MODEL
1 5 10 11 12 13
Aniligilverlienls
ATy QWF LA

Image: Milo et al., Science 303, 1538 (2004)



Superfamilies

...and feedback loops seem to be bad?
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Transition matrix

A transition matrix can be detined by:
N=K!A

where K is the diagonal matrix with the degrees k; on
the diagonal:

kii = 6; ki = 0y Xy a

and where A is the adjacency matrix.



Transition matrix

In a transition matrix, all edges emanating from one node are
divided by the degree, which corresponds to giving them a
uniform probability.

01010
10111
= 01000
11001
01010

1713 113 0 0 13
O 12 0 12 O

1/2 g?\ 0O 120 12 0
‘11 1714 0 174 14 1/4
uz'(\‘”E N=|1 0 10 00

The transition matrix thus describes the way a random walker
would traverse the network, if we left-multiply a row vector.

More about this later.



Transition matrix

We can write N also as:
N = ﬂij/ ki

Because all the entries in a row of N add to one, any constant
vector b given by:

bi =c Vi
will be a (right-)eigenvector of N with eigenvalue 1:

(Nb)izZ]'n"b':Z]'Elijbi/ki:(:z]'ai]’/ki:C:bi

byl

. sothat N b =Db.

since k; = %; a;;



Transition matrix

Although N is not symmetric, all the eigenvalues x of the transition
matrix are real, since:

Nx=AX (eigenvector equation)
Left-multiplying both sides by K!/2 gives:
K'/2N x = K72, x
Introducing x” = K!/2x and thus x = K'1/2x” we get:

KU/2N K12 x = K1/2 ) K-1/2 x’



Transition matrix
(cont’d)

We had:
KU/2N K1/2x = K1/2 ) K1/2 x’

And since N = K1 A (RHS) and K'/2 K-1/2 = T (LHS) we get:
K12AKY2x =) x

So that the eigenvalues A of N are shared by the symmetric matrix
K-1/2 A K/2 and hence must be real.



Transition matrix

But a constant vector is only an eigenvector of N if the network is
connected.

If a network consists of n disjoint subgraphs (or n connected
components), we get a degeneracy of n eigenvalues equals to 1.

The corresponding eigenvectors have constant entries
bi =C
for nodes i that are part of the component, and

bi — 0
for all other i.



Transition matrix

Division of a network into two connected components:

OO0 = =
- - O O O

These two eigenvectors of N correspond to the
degenerate eigenvalues A = 1.



Transition matrix

The largest eigenvalue N can have is A = 1.

One way of obtaining the eigenvector x corresponding to
the largest eigenvalue of a matrix N is to raise it to the
power of m where m - « and apply it to (almost) any
vectory.

N"y = x as m —» oo

Since any vector can be expressed in terms of an
eigenvector expansion, the eigenvector(s) with the
largest eigenvalue eventually dominate. Which of the
eigenvectors with eigenvalue 1 we end up with depends
on our starting vectory.



Laplacian matrix

The Laplacian matrix is a similarly useful matrix defined by:

L=K-A
01010
10111

A=| 01000
1100 1
01010
2-10-10
1 4 -1 -1 -1
L=K-A=| 0-1 10 0
1-10 3 -1
0-1 0-12



Laplacian matrix

The matrix L can also be written as:

from which we can quickly deduce that constant vectors b with b; =
¢ are eigenvectors of L with eigenvalue 0:

ii U "b':CZj@jki-CZjClijZO

y=

since k; = %, a;;.



Laplacian matrix

Hence the eigenvectors which identified connected components
with A =1 in N correspond to A = 0 eigenvectors of L.

With L we can also identify communities - meaning subgraphs
which to a good approximation form separate connected
components and are only linked by a few connections.

The degeneracy of A = 0 eigenvalues is broken and we get one
trivial eigenvector which is entirely constant as well as the first
non-trivial eigenvector with A close to zero, which for m
communities is split into m sets of equal or almost equal values.



Eigenvector centrality

Eigenvector centrality is another way of assessing the
importance of a node in a network. It is constructed as
follows:

Consider a measure of importance x; of every node i,
which fulfills the following condition:

We want the importance of each node to be proportional to the
sum of the importance of its neighbours.

This is a recursive, and thus very elegant, definition.



Eigenvector centrality

One way of writing this is:

X; o< Zi xl‘A

] i

With a constant of proportionality 1/ this becomes the
eigenvector equation:

AX=xA

Hence an eigenvector of the adjacency matrix gives us the
importance values of each node.

But which eigenvector?



Eigenvector centrality

It is the eigenvector with the largest eigenvalue, since - according to the
Perron-Frobenius theorem - this is the only one guaranteed to be entirely
non-negative.

We know how to get this eigenvector: By raising a matrix to a power m
where m - o, this time the adjacency matrix.

Applying the adjacency matrix to a constant vector of ones will be
equivalent to every node passing a ‘vote’ to every neighbour.

When applying the adjacency matrix again, let every node pass as many
‘votes’ as it has received to each neighbour.

While the total number of votes grows, the normalized distribution of
votes will become more and more similar to the eigenvector of the largest
eigenvalue, which gives us the eigenvector centrality.



The PageRank algorithm

Now consider our transition matrix we discussed earlier:
N=K1A

What we did before was to right-multiply N, but if we lef--multiply it
by a row-vector v, then this gives us the average occupancy of a set
of random walkers with initial configuration v, after one time step.

As we apply the matrix N to this vector repeatedly, we model the
probability distribution of the walker, which eventually becomes the
left-eigenvector of the largest left-eigenvalue and the equilibrium
walker occupancy across the network.



The PageRank algorithm

The PageRank algorithm which powers the Google search engine is
very similar to this:

The only difference is that the adjacency matrix A is now directed,
and its entries are normalized by the out-degree k)

1 PR = g/ ko

or
NCR = Koy 'A



The PageRank algorithm

Thus we can again consider a random walk on the network,
governed by this time by the transfer matrix N"R), with the
eigenvector solution

p = pN®
Where the entries of eigenvector p are the PageRank values.

The PageRank values can be considered as the long-term
distribution of random walkers across the network.

Note that we need to cut out any dangling nodes with zero out-
degree (of which there are many in the WWW).



The PageRank algorithm

Solving an eigenvalue problem for a matrix with billions of rows
and columns like the WWW would be, is impossible analytically.

What is done in practice, is to apply the power method which we
have mentioned before - in other words to apply the matrix N(R)
iteratively.

However, there is a danger of the evolution being trapped due to
subgraphs such as this one:



The PageRank algorithm

The way to avoid these trapped states is to make random jumps to
other nodes possible, with a small probability.

This corresponds to creating a new transfer matrix
N’®PR) = g N(R) + (1 - a)E

where E is a matrix with ¢; = 1/N with N being the number of
nodes and 1-a being the probability of a random jump.

The eigenvector of this matrix N’(PR) corresponds to the original
PageRank proposed by Sergey Brin and Larry Page in 1998.



The PageRank algorithm

A few things worth noting:

e The random jump capability is sometimes also interpreted as an

attenuation or damping factor, representing the fact that a random surfer on
the web will stop clicking at some point.

* The modified matrix N’TR) without trapped states is called irreducible and
there exists a unique solution for the power method, which is the
eigenvector corresponding to the largest eigenvalue.

ePageRank vectors are usually normalized to 1, which is why the
PageRank equation is sometimes written as:

PR(v;)=(1-d)/N+d Z; PR(v]-)/L(v]-)

where PR(vj) and L(v;) are the PageRank and out-degree of vertex j.



A new impact factor

The PageRank algorithm has been applied to other systems apart
from the World Wide Web.

Most notably, a paper by Bollen, Rodriguez and Van de Sompel
(BRV) applies it to the network of journal citations in order to
create a new kind of impact factor.

Traditionally the impact factor as defined by the company ISI is
simply the average number of citations per paper which a journal
receives over the preceding two years.

This is quite a crude measure, since it does not reflect the quality of
the citations.



A new impact factor

An important difference between the WWW and journal citations
is that the network of journal citations is a weighted matrix w;;. This
leads to a definition of the weighted PageRank transfer matrix

NWPR) ag:

wPR) _ out

Si(out) — 2] wij

is the out-strength of node i.

What this means is simply that the random walker now is more
likely to go to some journals than others, proportional to their relative
share of citations. Other than that the algorithm is the same.



A new impact factor

The BRV paper distinguishes popularity of a journal,
which is simply its number of citations, or in-degree,
and the prestige.

The ISI impact factor is an indicator of the popularity of
a journal, while the PageRank indicates its prestige.

BRV suggest a combined measure which is the product
of the two:

Y(v;) = IF(v;) X PR (v;)



A new impact factor

Ranking journals by the Y-factor gives an intuitively
sensible picture:

ISIIF PR, Y-factor

rank || value Journal || value (x 10°) Joumal || value(x 10%) Journal
1] 5228 ANNU REV IMMUNOL 16.78 NATURE 5197 NATURE
2 || 37.65 ANNU REV BIOCHEM 1639 J BIOL CHEM 48.78 SCIENCE
3 || 36.83 PHYSIOL REV 1638 SCIENCE 1984 NEW ENGL J MED
4 || 35.04 NAT REV MOL CELL BIO 14 49 PNAS 1534 CELL
5| 3483 NEW ENGL J MED 841 PHYS REV LETT 14 88 PNAS
6 || 3098 NATURE 5.76 CELL 10.62 J BIOL CHEM
7 || 30.55 NAT MED 570 NEW ENGL JMED 849 JAMA
8 || 29.78 SCIENCE 467 J AM CHEM SOC 778 LANCET
9 [ 28.18 NAT IMMUNOL 446 JIMMUNOL 756 NAT GENET
10 || 28.17 REV MOD PHYS 428 APPLPHYSLETT 653 NAT MED

from: Bollen et al., Scientometrics 69 (3) (2006)



A new impact factor

Popular and prestigious journals in physics™:

Popular: ISIIF 1,PR,, < 40%-tile Prestigious: ISIIF |, PR,, > 90%-tile
Journal title ISITIF PR, x 10° 1IFA || Journal title ISITF PR, x 10° IFa
1 [ ANNUREV NUCL PART S 8.67 635 7.11 || PHYSREV LETT 704 841 —-152
2 | SOLID STATE PHYS 7.00 385 546 || J APPL PHYS 217 259 —1.50
3 | PROG NUCL MAG RES SP 597 653 441 || PHYSREVE 220 234 —-127
4 | ATOM DATA NUCL DATA 463 594 308 || APPL PHYS LETT 4.05 428 -105
5 | CRIT REV SOLID STATE 444 311 291 || JPN J APPL PHYS 1.17 0.83 —-103
6 | ADV ATOM MOL OPT PHY 411 6.16 255 || NUCLINSTRUMMETHA 1.17 0.57 —0.81
7 | PROG SURF SCI 374 631 2.19 || JPHYS A-MATH GEN 136 0.61 —0.65
8 | CHEM VAPOR DEPOS 207 529 0.52 || JPHYS—CONDENS MAT 1.76 093 —0.52
9 | RIVNUOVO CIMENTO 1.70 321 0.17 || J CHEM PHYS 295 232 —0.50
10 | J NONLINEAR SCI 162 6.10 006 || PHYS FLUIDS 1.57 0.62 —0.45

from: Bollen et al., Scientometrics 69 (3) (2006)

*ranked by IF, , the deviation from the ISI IF linear regression
shown as a solid line in the IF vs. PR, plot.



Also very
interesting:

PR,, vs. IF

A new impact factor
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A new impact factor

While there is some correlation between the ISI IF and
weighted PageRank, there are significant outliers which
fall into two categories:

Popular Journals - cited frequently by journals with
little prestige: high ISI IF, low weighted PageRank

Prestigious Journals - not frequently cited, but when
they are, then by highly prestigious journals:

low ISI IF, high weighted PageRank



Boolean networks

Often we are not only interested in the topological
properties of a network, but also in its dynamical
properties.

Dynamic processes take place on many networks. The
nodes interact and their state changes as a result of
these interactions.

One of the simplest models of a dynamical network is
the Boolean network.



Boolean networks

A Boolean network is directed, and each node is in one
of two states, 0 or 1.

Furthermore, each node has a set of rules which tell it
its state depending on the states of its neighbours in the
network.

This set of rules is called a Boolean function and consists
of a bit string of length 2¥ where k is the number of
inputs (i.e. the in-degree) of the node.



Boolean networks: Example

Consider a three node directed network where each
node is in state 0 or 1, for example:

node 2

£

node 1 node 3

Now we need a dynamic rule for each node which tells
it what state to be in, depending on the state of the
nodes it gets inputs from.



Boolean networks: Example

Node Y has one input, coming from node 1. e

Node X can be in state 0 or in state 1. @i.:‘(D

node X node Z

And node Y can respond accordingly, in four different ways:
State of node X: 0 1

Responses of node Y:

(independent of node X)
(copy node X)

(do the opposite of node X)
(independent of node X)

e e )
_ O = O



Boolean networks: Example

Thus node Y has four possible rules of length two: 00, 01, 10 and 11.

Such rules which list a response for every possible input are called
Boolean functions.

In general a node with k inputs (i.e. in-degree k) will have a Boolean
function of length 2.

node Y
BF: 11
O)\ Hence our Boolean network is fully specified it
—r® we add three Boolean functions of length one,
node X node Z two and four to nodes X, Y and Z, respectively.

BF: 0 BF: 1010



State space

A Boolean network of n nodes can be in one of 2" states. As the
rules are applied at each time step, the state of the network moves
through state space.

X input: 01 0/‘ > 1

Y response: 01 6

Y

* N
L. 0—»1

no input X input: 0011 0
X response: 0 Y input: 0101 A
Z response: 0110 d—»0



Attractors and basins

The state space of a
given Boolean network
is partitioned into one
or more attraction
basins, each of which

lead to an attractor cycle.

X input: 01
Y response: 01

2

Z input: 01 Y input: 01
X response: 01 Z response: 01

X input: 01
Y response: 01

A

no input X input: 0011

X response: 0 Y input: 0101
Z response: 0110

X

.
00
.0 .0
4 .
1= 0° 01
!
.
40H1
1 /0
. .
00— 11
41‘
1
|
40
.
<0 "0
'1- 1 |
) '1.
A 0
oo |
. '0.
0 "1
.0



Basin entropy

An interesting measure of dynamical complexity which has been proposed
by Shmulevitch & Krawitz (2007) is the basin entropy of a Boolean network.

This is simply the entropy S of the basin size distribution, so that for a N
node network whose 2N states are divided into M attraction basins of size b;
we have:

S =-2 (b;/2N)In (b;/2N)

We have low entropy when there is only one basin, and high entropy when
there are many similarly sized basins.

The authors su%gest that the entropy S is a measure of the dynamical
complexity of the Boolean network.



Basin entropy

We can calculate the basin entropy for the 13 motifs in Alon’s original
analysis, and show that the observed frequency is inversely proportional to
the dynamical complexity.

—~
S
=

z-score
(observation)

/
W
5
)

—~
S
~

basin entropy

S,y (theory)
coo
Who—o

~
(9
~

cycle lengths
C, (theory)

O,

2- \
4- -~
6,

8,

LANLADAANANN

1 23 45 6 7 8 9101112 13

Ahnert, S. E., & Fink, T. M. A. Journal of the Royal Society Interface, 13(120), 20160179 (2016).



Kauffman networks

Kauffman networks (1969) are a particular class of Boolean
network, in which:

1) N nodes are connected randomly such that each node has in-
degree K.

2) The Boolean functions of length 2X on each node are also
random.

Random Boolean networks (RBNs) are sometimes termed
NK networks (not to be confused with Kauffman’s NK model).



Kauffman networks

The most interesting Kauffman networks have K = 2. In this case we have
16 possible Boolean functions, which we can divide into four categories:

Frozen: 0000, 1111

Canalyzing (C1): 0011, 1100, 0101, 1010

Canalyzing (C2): 0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111
Reversible: 0110, 1001

The frozen functions ignore both inputs.

The canalyzing ones ignore one input completely (C1) or at least
some of the time (C2).

The reversible ones never ignore any inputs, and are thus the only
ones which do not lose information.



Kauffman networks

Kauffman networks as a whole can be in two phases, frozen and
chaotic:

Frozen phase - Any perturbation travels on average to less than one
node per time step.

Chaotic phase - Any perturbation travels on average to more than
one node per time step.

In the chaotic phase the distance between two states increases
exponentially with time, even if they are very close to start with.

Networks on the boundary between the frozen and chaotic phases
are termed critical.



Critical networks

At K =2, we need a perturbation to be passed on with probability p =1/2
for the network to be critical, since we have two inputs and want to pass on
a perturbation to one node on average.

eFrozen functions pass perturbations on with zero probability,
e Canalyzing functions pass a perturbation on with probability p =1/2, and
e Reversible functions with unit probability.

Hence Kauffman networks with K = 2 are critical if frozen (0000, 1111) and
reversible (1001, 0110) functions are selected with equal probability.

This is the case, for example, if the Boolean functions are drawn from a
uniform random distribution.



Dynamical node classes

In terms of their dynamical behaviour, the nodes also fall into
categories:

Frozen core - these nodes remain unchanged

Irrelevant nodes - these nodes have only frozen nodes as their
outputs

Relevant nodes - all remaining nodes

The relevant nodes completely determine the number and size of
attractors in the network.



Scaling laws

Much work has been done on the scaling of dynamical properties
with network size, most notably the number of attractors and the
number of relevant nodes.

For many years it was believed that the number of attractors in an
N-node Kauffman network scales as N'/2, but recently it the scaling
was shown to be superpolynomial (Samuelsson & Troein, 2003).

The number of relevant nodes has been shown to scale as N?2/3,

These scaling behaviours can only be detected in very large
computer simulations, with N > 10°.



The feed-forward loop

A fundamental building block of dynamical, regulatory networks

is the feed-forward loop:

It has:
- one node with out-degree 2 and in-degree 0
- one node with out-degree 1 and in-degree 1
- one node with out-degree 0 and in-degree 2



The feed-forward loop

We have already seen evidence that the fopology of the feed-
forward loop occurs in transcription networks and neural
networks. But what about the dynamical behaviour?
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The feed-forward loop

In transcription networks each network edge can represent an
activation or inhibition. In other words nodes can switch each other
on and off.

Activation and inhibition are represented as...

o—>0
o—0

...respectively.

We will talk more about the biological details of this later.



The feed-forward loop

Hence we can draw eight different feed-forward loops:

ANVANP NV
JARWARPANVAN



The feed-forward loop

In order to study the different dynamics this results in, we need to
model the way in which these nodes switch each other off and on.

In the case of gene regulation, the following model is appropriate:

First, consider three genes, X, Y and Z, linked by activation or
inhibition:
Y

L.

Each of these has a concentration, which is akin to an activation level.



The feed-forward loop

We have two external switches, S, and S,, which can be off (0) or
on (1).

S, Y
---- -
: Z:"
\\‘
®
X Z

The concentration of X, denoted by x, is fully controlled by S, :

x=S5,



The feed-forward loop

Sy Y
----- >
\\‘
o
X Z

The concentration of Y, denoted by v is controlled by S, via

y*=y S,, but also by x. For the two cases of activation and
repression we have:

.

Ly dr=b, BTG TR (1 (e k)] -
.

LS dyldi=b B (Ut (x k)] - ayy



The feed-forward loop

Y

@
, ./1:‘. z dy | dt =by+ B, [ [k )T/ (0 + (e /o)) = 0y y

Y

/N dy | dt=b,+ B,T1/ (1+ (x/ k)] -

x @—>i@® ;

where b, is the basal rate of Y production, «, is the decay rate, and
the rest of the equation is based on the Hill equation, with H as the
Hill coefficient and B, and k,, as constants.

For the dynamics we will consider, we set H = 2.

Note that the repressor case is the activator with —H.



The feed-forward loop

S, Y
______ ~e
) L:"
\\‘
®
X Z

The concentration of Z, denoted by z, is dependent on x and v.

Here we consider an AND-type logic function (but others, such as
OR are also possible).

Altogether we have four possible responses, corresponding to the
four scenarios:



AN
AN
Y
AY

The
fe
ed-forward
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P

dz /| d
t _
=b, +
z :Bz [(x
[k )H
dz | d N
) + (
b,+ B, [1/(1 o
dz [ d +(x/k N
t: bz + [( XZ)H)] [(y* /k )H + (]/* / ky )H)]
B, [(x/k N -
B 1+ (y* a,z
+ (x [ k)] .
, [1/(1 ZZ
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x [ k)] [1/(
1+
(y*/k
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where y* =
_ys
y-



The feed-forward loop

Before we look at dynamics in detail, let us distinguish two basic

types of feed-forward loop among the eight possible:

ANVANN AN
JARWARVARVAN



The feed-forward loop

Coherent and incoherent:

VANVANPIVAN
VANVA NP AVA

A loop is coherent if the sign of the XZ interaction is the same as the
combined sign of the XY and YZ interactions.



The feed-forward loop

I VAN
A A

All coherent loops act as a delay circuit, relative to a simple XY
and XZ co-regulation.

J Input Sx
Sy Y Sy Y 0 o
_____ >0 teag
X \ Sx

\\‘ s\\‘

o—>i® O O

X z X z
(thin line) (thick lines) Time [Life Time)

The delay is sign-sensitive, as it only affects the on-switching.
Mangan, S., & Alon, U. PNAS, 100(21), 11980-11985. (2003).



The feed-forward loop

In only two of the four coherent loops does the steady-state of Z
depend on both S, and S,. Contrast one of these two with one of
the other two:



The feed-forward loop

VAl

Interestingly, one of these two coherent loops with dependency
on S, and S, is much more prevalent in real transcription
networks than all the other coherent loops.



The feed-forward loop

VAP
Val A

All incoherent loops act as a accelerator circuit, relative to a simple
XY and XZ co-regulation.

1 [.
s, Y s, Y 0
_____ *. ‘~---.>.
\\\‘ \\\‘ .
o—>i0® o O ~
X z X z oM
(thin line) (thick lines) '

Time [Life Time]

The acceleration is sign-sensitive, as it only affects the on-switching.
Mangan, S., & Alon, U. PNAS, 100(21), 11980-11985. (2003).



The feed-forward loop

FaN
A

Again only two of the four loops have a steady-state of Z that depends
on both S, and S,. Contrast one of these two with one of the other two:

Yo e Z=S5,ANDNOT S,

\\\‘ \\\‘
o LV



The feed-forward loop

VAN

Here too we find that one of these two loops with dependency
on S, and S, is much more prevalent in real transcription
networks than all the other incoherent loops.



Evolution and modularity

Biological and engineered networks are very often modular, as
modular organization makes it easy to construct complex network
to solve a given task.

Modular networks are however most often not optimal for a given
task.

When creating and changing a network through some
evolutionary process, we would like modularity to emerge
spontaneously, i.e. without top-down constraints.



Evolution and modularity

In order to study this question, Kashtan and Alon propose a
particular model of evolving networks.

But first of all we need a measure of the modularity for our
evolving networks. Recall the Newman-Girvan modularity
measure:

Q=2 [eii'(zjeij)z]

where ¢; is the fraction of edges running between sets i and j. In
order to allow for different null models and for the purpose of
normalization, Kashtan & Alon define a modified version:

Qm — (Qreal - Qrand) / (Qmax - Qrand)

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Qm — (Qreal - Qrand) / (Qmax - Qrand)

where
Qreal is the actual modularity,

Qrand 18 the modularity of a randomized version of the network
(e.g. with the same degree distribution as the original), and

Qumax is the maximum modularity achieved with a modularity-
maximizing fitness function, over a large number of runs.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

The network Kashtan and Alon use is a network of logic gates, and
more specifically, NAND gates.

The NAND gate performs the NOT AND operation, and therefore
responds to two inputs X and Y with the following Z:

X Y
X Y Z

0 0 1

NAND 0 1 1
\[/ 1 0 1
1 1 0

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

We want this network to solve a task,
performed on four inputs X, Y, Z, and W.

We can evolve the network by swapping
connections and accepting or rejecting
those swaps depending on the resulting
fitness of the network.

The fitness is the fraction of correct output
states obtained for all possible 16 input
states.

Note that the NAND gate is universal, so
that any logical operation can be performed
by a network of NAND gates.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Real biological networks, such as the transcription network of the
bacterium E. coli and the neural network of C. elegans show a high
modularity Q,, of around 0.5.

However, when we evolve our NAND-network to find a network
which implements the task

Gl =(XXORY) AND (Z XOR W)

so that G1 = 0 unless XYZW is 0110, 0101, 1001, or 1010, we get a
low modularity of about Q,, = 0.12.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

There are many solutions, i.e. many
networks that solve this task, all with

low Q..

One resulting network which solves
the task is shown on the right.

Note that our task itself was modular:

G1 =(XXORY) AND (Z XOR W)

But the network is not.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Now consider the following two evolutionary targets:
G1 =(XXORY) AND (Z XOR W)
G2 = (X XOR Y) OR (Z XOR W)

which means that G2 = 1 unless XYZW = 0000, 0011, 1100, or 1111.

Let us evolve the network towards both...

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Now consider the following two evolutionary targets:
Gl =(XXORY) AND (Z XOR W)
G2 = (X XORY) OR (Z XOR W)
which means that G2 = 1 unless XYZW = 0000, 0011, 1100, or 1111.
Let us evolve the network towards both...

...by randomly flipping between them!

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

The result are two highly modular (Q,, = 0.54) and very similar networks:

(X XOR Y) AND (Z XOR W) (X XOR Y) OR (Z XOR W)

X X - i w X Y ok w
two
mutations E\?f
ouT ouT

As a result, each time we flip the target, the network adapts within a
few iterations.

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Interestingly the target flipping also speeds up the overall discovery
time of the solution:

We take about 10000 generations to find a solution for G1 by itself...

Fixed goal evolution

max fitness
mean fitness

044 ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Generation

Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

...but only around 2000 generations to find both G1 and G2 when
flipping between them!

Modularly varying goals evolution

1 v
‘ i : 13
| A | '
I .
0.9+ '
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Kashtan & Alon, PNAS 102, 13773 (2005).



Evolution and modularity

Hence modularity appears to spontaneously evolve when a system is
faced with a modular, changing environment.

The challenges which a biological organism is likely to encounter are
likely to be modular in the sense that they involve similar subtasks
and occur repeatedly, with minor variations.

This makes the target-flipping model a feasible representation of an
effective response to a changing environment, and a plausible
explanation of the modularity observed in biological networks.

Kashtan & Alon, PNAS 102, 13773 (2005).
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Social networks

Zachary Karate Club data set

Wayne W. Zachary published an article in 1977 describing a
Karate Club whose members formed two factions.

This was because they disagreed whether their instructor
should receive a pay rise.

After the instructor was fired, the club split as some joined him
at a new club.



Social networks

Properties of the Zachary Karate Club data set:

34 nodes = people
78 undirected connections = friendships*

*defined as consistent social interactions outside the club.

Note that while there were about 60 members in the club, only
34 had friends within the club, leaving the other members as
disconnected nodes in the graph (and therefore irrelevant).



Social networks

In the original paper, Zachary also
produced a weighted version of the
network, recording the strength of
interactions between individuals.

He then used the maximum-flow-
minimum-cut algorithm to
(successfully) predict the two parts
which the club would split into.

Newman and Girvan (2002) managed
to predict the split for the unweighted
version using their community

. . Image: Newman and Girvan, PRL 69, 026113 (2004)
detection algorithm.



Max-flow-min-cut

The maximum-flow-minimum-cut or max-flow-min-cut theorem simply states
that the flow in a network is limited by the smallest bottleneck.

A cut is a set of edges which separates the O
nodes into two sets, one containing the source soures
and one containing the sink.

. sink

The smallest bottleneck corresponds to the
minimum cut.

In unweighted networks the size of a cut is the /
number of edges.

In a weighted network the size of a cut is the \
sum of the edge weights.



Max-flow-min-cut

The maximum flow between source and sink across the whole
network cannot exceed the capacity of the minimum cut.

/
/

\

IZEl0,

The minimum cut is what Zachary used to predict the split of
the Karate Club.



Social networks

In some cases, social networks are also directed, e.g.:

— Study by Bruce Kapferer of interactions in an African tailor shop
with 39 nodes, where friendship interactions (undirected) and
work-related interactions (directed) were studied.

— Study by McRae of 67 prison inmates, in which each inmate was
asked to name other prisoners he was friends with. This matrix too

is directed.

Generally speaking even directed social networks usually turn out to
be fairly symmetric, which is not too surprising.

If people are free to choose whom they interact with they most likely
will not bother with someone who does not reciprocate the
interaction.



Bipartite graphs

Bipartite graphs have two types of
nodes and there are no edges
between the same type of node.

Bipartite real-world networks
include collaboration networks
between scientists (papers), actors

(films), and company directors
(boards).

Often these networks are converted
using a one-mode projection with
fully connected subgraphs.

H

Image: Newman et al., PRE 64, 026118 (2001)



Collaboration networks

A particular class of social networks are collaboration networks.

These are bipartite graphs because we have:

actors

a) People, who belong to

b) Collaborations, such as films,
scientific papers or company

boards.
flims



Collaboration networks

In order to analyze them we transform them into a simple network
between people by connecting all members of a collaboration to each
other.

This is why collaboration graphs have a high clustering coefficient.

Image: Newman et al., PRE 64, 026118 (2001)



Collaboration networks

Collaboration networks however also show short average path
lengths.

This, together with their high clustering coefficient makes them
small-world networks.

They are not scale-free however, and seem to closely match models
with a scale-free distribution with an expontial cutoff:

P(k) = ke

The finite cutoff may reflect the finite size of the time window from
which the data is collected.



Collaboration networks

Finally, recall that
collaboration networks are
assortative, meaning that
highly connected nodes are
connected to other highly
connected nodes.

This is quite unusual - many
real-world networks are
disassortative, as high-degree
nodes connect to low-degree
ones.
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Image: Newman, PRL 89, 208701 (2002)



Social networks: Summary

Social networks tend to be undirected even if the direction is actually
recorded.

Collaboration networks form an important subset of social networks.
They are originally bipartite, and their one-mode projection is:

— small-world
— assortative

— not scale-free

Collaboration networks are studied much more than other social
networks because it is easy to gather large data sets of this kind.



Biological networks

There are many different types of networks in biology:

—  Transcription networks

—  Protein-protein interaction networks
—  Metabolic networks

—  Neural networks

—  Food webs

... among others.



Transcription networks

upstream downstream
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Transcription networks
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Whether or not a gene is
transcribed at a given point in
time depends on proteins called
transcription factors, which bind
to the promoter region.

Activators enhance transcription
while repressors inhibit it.
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Transcription networks

Since transcription factors themselves are also proteins encoded by genes we
can get a transcription factor which activates another transcription factor, etc.

Hence we can construct a network where the nodes are genes and a directed
edge
X>Y

means that the product of gene X is a transcription factor which binds to the
promoter region of gene Y, or shorter, that

gene X controls the transcription of gene Y.

This is the kind of network we studied in the context of the feed-forward loop.



Transcription networks

The in-degree and out-degree distributions of transcription
networks are very different.

Some transcription factors regulate large numbers of genes, and
are called global requlators. This means we can get high out-degrees.

In fact, the out-degrees follow a scale-free distribution P(k) ~ k 7.

On the other hand, no gene is regulated by many other genes.
Therefore there we only get low in-degrees.



Transcription networks

And as we know, feed-forward loops are particularly prevalent in
transcription networks.
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Accelerating networks

Many organizational and regulatory networks require global
integration. What this means is that, as the network grows, we have to
make sure that it remains highly connected.

Examples include gene regulatory networks, supercomputer wirings,
and stock exchanges.

If the connectivity of a network, measured as the fraction of possible
edges that are realized, is to remain constant, then this means that the

number of connections between N nodes has to grow proportional to
the number of possible edges, which is N(N-1)/2.

In other words, the number of edges has to grow quadratically with the
number of nodes. Such networks are called accelerating networks.



Accelerating networks

This quadratic growth is indeed observed in:

a) supercomputers

b) gene regulatory networks (number of regulatory genes as a
function of the total number of genes) in single-cell organisms
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Accelerating networks

What this means however, is that such networks are likely to hit a
growth ceiling.

This is because in any physical network the nodes have a finite
capacity to connect to other nodes. In other words the network has a
maximum degree k..

Hence, if the number of edges is given by E = alN?, the average
degree is given by
ki, =2E/N=2aN

and since k,, < k,,,, the network cannot grow larger than

Nmax — kmax/ 20,



Accelerating networks

Mattick and Gagen suggest that this growth ceiling is overcome by
technological or biological innovation.

Most biological organisms fall into two basic categories, prokaryotes
and eukaryotes.

Prokaryotes are single-cell organisms such as bacteria.
Eukaryotes are (more or less) everything else, including us.

Prokaryotes show a quadratic growth of the number of regulatory
genes. Mattick and Gagen claim that eukaryotes developed when
prokaryotes hit the growth ceiling, forcing the development of new
regulatory mechanisms, such as the use of non-coding DNA.

Mattick & Gagen, Science 307, 856 (2005)



Boolean cell-cycle network

The fundamental cycle of cell division that occurs in all living matter is
termed the cell-cycle.

I
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Go nd - g Two diploid
DNA cells
replication —
Mitosis

Images: Wikipedia



Boolean cell-cycle network

Underlying the cell-cycle is a regulatory network of genes, switching
each other on and off. We can measure which genes are switched on at
which times, using microarrays.
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Boolean cell-cycle network

These measurements tell us that a number of genes are activated at
each stage of the cell-cycle, and that these genes are activated in
succession.
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Orlando, D. A. et al. Nature, 453(7197), 944-947 (2008).



Boolean cell-cycle network

The protein cyclin-CDK has long been
thought to play a crucial role in
regulating the cell cycle oscillations.

However, if we knock out cyclin-CDK,
we find that 70% of genes oscillating
with the cell-cycle still oscillate.

To model this cyclin-independent
oscillation, we can isolate the
transcription factors among these
genes that oscillate independently of
cyclin, and draw a directed network of
regulation.

Orlando, D. A. et al. Nature, 453(7197), 944-947 (2008).



Boolean cell-cycle network

These nine genes switch on
successively, in five distinct
groups (different colours).

By casting this network as a
Boolean network with (mostly)
AND functions, one finds a
robust attractor cycle of size
five which dominates the state
space with an attraction basin
covering 80% of the 512 states.

Orlando, D. A. et al. Nature, 453(7197), 944-947 (2008).



Protein-protein networks

In protein-protein networks we are interested in the direct interactions
between proteins.

Unlike transcription networks, protein-protein networks are undirected.

They have a scale-free degree distribution, and therefore a small number
of highly connected nodes, or hubs.

These hubs have been shown experimentally to correspond to
biologically essential proteins. Removing these is lethal for an organism.

This is often referred to as the equivalence of lethality and centrality in
proteins, where centrality here is simply the degree.



Protein-protein networks

We can distinguish two types of

. . . a
hubs in protein-protein
interaction networks: .
Party hubs, which interact with 3 E
several other proteins Party hub:
simultaneously. Date hub; same time
different time and space
and/or space
Date hubs, which interact with
several other proteins
sequentially.
q y Party hub;
same time
and space

Image: Han et al., Nature 430, 88 (2004)



Protein-protein networks

We can distinguish party hubs and date hubs by looking at a set of confirmed
protein-protein interactions and observing which pairs of genes are expressed
together.

The similarity of gene expression is measured using the Pearson correlation
coefficient.

Compendium Stress response Cell cycle
n=2315 | n=174 | n=77

O - N LW & WO
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1 © = N W &

-10 =05 0 05 1.0 =10 =05 0 0.5 1.0 =1.0 =05 0 0.5 1.0

Image: Han et al., Nature 430, 88 (2004)

We observe a bimodal distribution for proteins of degree k > 5 which indicated a
separation of date hubs (low similarity) and party hubs (high similarity).



Metabolic networks

Metabolic networks are networks of molecular interactions within
the biological cell, which makes them very general.

By comparing these networks for 43 organisms, Barabasi et al.
established that they have

— ascale-free degree-distribution, but also

— a high clustering coefficient scaling as C(k) ~ k',
which suggests modularity.

In order to explain the discrepancy they came up with the model
of hierarchical networks, which we discussed in lecture 2.



Neural networks

The complete neural network of the worm C. elegans has been
mapped, giving valuable insights into the topology of real
neural networks.

It is a directed network of 280 nodes and 2170 edges.

Image: Wikipedia



Neural networks

The network falls into the superfamily of transcription and
signal transduction networks with a high frequency of feed-
forward loops.

This makes sense as neural networks, like transcription
networks, are also complex control circuits.

The neural network of C. elegans is also small-world as it has a
high clustering coefficient and a short average path length.



Rich clubs

The neural network of the worm C. elegans also has a rich club. We
can think of this as a control center of the neural network.

—C. elegans §(k)

'_'¢ random

S q’(k)r.orm

e Gy
[CI N

-

G 4
o o

1o

&
P

Rich-club coefficient ¢(k)

8

Ol-

40 60 80
Degree (k)

o
3

Towlson et al., |. Neurosci. 33, 6380 (2013).



Rich clubs

Interestingly the rich club is split between the head and the tail of
the worm. At first sight this is odd as it requires many long-range
connections, which are ‘expensive’ to build and maintain.
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Rich clubs

But it turns out that the rich club is fully formed before the worm
hatches and grows. Furthermore the worm starts moving once the
rich club is complete, but long before all of the motor neurons are

created.
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Food webs

Food webs are ecological networks in which the nodes are species
and directed edges signify which species eats which other species.

Typically these networks have tens or hundreds of nodes and
hundreds or thousands of connections.

(Picture: UK Grassland Food Web, www.foodwebs.org)



Food webs

In food webs we have:

top
— top level species which are
purely predators and thus have in-
degree zero,
intermediate

— intermediate species which are
both predator and prey, and which .

have non-zero in- and out-degree,
and
— basal species which are only prey,
O

and which therefore have out-
degree zero.

O basal



Food webs

Food webs are characterized by set of properties, such as:

the fraction of top, intermediate and basal species

the standard deviation of generality and vulnerability,
which are out-degree and in-degree, divided by average
degree.

the number, mean length and standard deviation of the
length of food chains

the fraction of species that are cannibals or omnivores.

All of these properties of networks can be reproduced using
a simple model known as the niche model.



Food webs

The niche model maps the hierarchy of species to the unit
interval and allows a model food web with N species and E
edges to be constructed by drawing, for each species:

— arandom number n; uniformly between 0 and 1.

— arandom number r; between 0 and 1 from a beta
distribution with mean E/N? (= overall connectivity).

— arandom number ¢; between r;/2 and ..

\/\/YI

a[i»
0 | 1
Ci

The species i at n; eats species in the range r;, centred around c;.

Williams, R. |., & Martinez, N. D. Nature, 404(6774), 180-183 (2000).



Biological networks: Summary

Transcription networks:
directed, low in-degree, scale-free out-degree, feed-forward loops

Protein-protein networks:
undirected, scale-free, ‘party hubs’ and ‘date hubs’

Metabolic networks:
undirected, scale-free, high clustering coefficient, modular, ‘hierarchical’

Neural networks:
directed, small-world, feed-forward loops

Food webs:
directed, three-tier structure, predicted well by niche model



Human Disease Network

The bipartite network of diseases and disease-related genes is also
known as the diseasome.
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Human Disease Network

The one-mode projection of the diseasome onto diseases gives us a
weighted network of diseases, in which the weights indicate the

number of shared disease genes.
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This is the Human Disease Network (HDN).

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network

We can equally perform a one-mode projection onto disease
genes, and create a Disease Gene Network (DGN).
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Human Disease Network

The Human Disease Network forms a giant component with 516
out of 1284 disorders.
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Human Disease Network

There are eight times as many connections between disorders of
the same class than we would expect by chance.

Goh et al. PNAS 104, 8685 (2007).



Human Disease Network

Looking at the Disease Gene Network, we find that ten times as
many interactions as would be expected by chance are shared
between this network and a network of protein-protein interactions.
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Goh et al. PNAS 104, 8685 (2007).



Human Disease Network

Recall that in protein-protein networks the biological essentiality of
proteins is correlated with their degree in the network - we discussed this
under ‘Vulnerability’.

However, most disease genes are non-essential, and have a low degree,
making them peripheral in the network.

A likely reason for this is that an essential disease gene with a central
position in the protein-protein interaction network would be too
disruptive, and prevent the carrier of the disease from surviving long
enough to pass on the gene.

This hypothesis is confirmed by an exception to this rule: Disease genes

activated by mutations during the life of the organism, such as some
cancer-related genes, are more likely to be high-degree.

Goh et al. PNAS 104, 8685 (2007).



Functional Brain Networks

We have already encountered structural neural networks in C. elegans.
In recent years neurologists have started to investigate functional neural
networks, and in particular, functional brain networks.

These are often constructed using functional magnetic resonance imaging
(fMRI), which is capable of providing a 3D snapshot of brain activity
every one or two seconds by measuring blood flow in the brain. The
spatial resolution is limited to voxels of a few cubic millimeters.

Science Museum | Oxford Centre for Functional Magnetic Resonance Imaging of the Brain



Functional Brain Networks

By measuring the activity across the brain over time (typically on the
order of 10-20 minutes) and by measuring the temporal correlation of
the brain activity between voxels, one can construct a weighted network
between brain regions (which can then be thresholded).
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Functional Brain Networks

This network turns out to be scale-free — a feature not observed in small
structural neural networks such as the C. elegans network.
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Functional Brain Networks

This network also turns out to be assortative, so highly connected nodes
are connected to other highly connected nodes — like social networks.

1 TI]]TU] LILELLLLLL

x X o " \.
107 » ¥, R

x
¥x P
0 Q .

LI

x X
X ¥ 3
X 2

average
nearest-neighbour degree

= X X X XR0000¢

x

x X
1 | |

L 11111l L 1 11111 |

10
10” 10" 10°

degree

Eguiluz et al. PRL 94, 018102 (2005).



Functional Brain Networks

Lastly, this network is also a small-world network, just like structural
neural networks such as the C. elegans neural network.

TABLE 1. Average statistical properties of the brain functional
networks.

re N C L <k> Y Crand Lrand

0.6 31503 |0.14 11.4| 1341 20 [43X107% 39
07 17174 |0.13 129 629 2.1 [37X107* 53
0.8 4891 |(0.15 6.0 412 22 [89X107% 6.0

Egquiluz et al. PRL 94, 018102 (2005).



Brain network rich clubs

Like the neural network of the primitive worm C. elegans, the fMRI
network of the human brain has also been found to contain a rich
club. This might point to a centralized organisation of brain activity.
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American Football network

Networks can be found in many places, even in American
football.

American football is organized into regional conferences.

Teams within the conferences all play each other, but any given
team will play far fewer matches with teams in other
conferences.

Therefore, overall rankings of all teams are often unsatisfactory
as they rely on “expert opinions’ or very complex and somewhat
arbitrary algorithms.

Even more confusingly, a couple of teams aren’t part of any
conference!



American Football network

A new approach:

We can draw a directed
network between teams,
where an edge signifies a
win in a match, pointing
from winner to loser.

Since a team can beat
another one twice in a
season, this network is

weighted.

The adjacency matrix is

A, with entries a;;.

X x é X ‘\\‘ :
X A - !“
X 9‘ M
Q- . es ’Ill‘°
v 4 D 1S
/ : h.® ©0@

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

The number of direct wins is now simply the out-degree:
out
kW = E a
J
where a; = 1 signifies that i has beaten j once.”

We can now however also consider indirect wins, which follow the
argument

“A has beaten B, and B has beaten C, therefore A must be stronger than C.”

“In the original paper the notation convention is reverse. Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

The number of these indirect wins is given by the number of second-

nearest ‘out-neighbours’:

out, 2™

In this example,

. O
kiout, pnd _7 OA,})\ O\‘

ik

O

o

=3 O

o o ©

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

This can be generalized to a total win score w; defined as:

2
W, = Eaij + /S'Eal.jajk + 3 Eal.jajka,d +K
j jk

ki

where fis a constant. This series will only converge if:
-1
ﬁ < )\“max

Since the maximum eigenvalue 4,,,, is the maximum factor by which the
entries of a vector can increase after multiplication by the matrix A.

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

We can rewrite the win score as:

Wl':Eaij-l_ﬁE z] ]k+/3 E l] ]kakl+|<
J Jk

Kl
= Eaif 1+/32ajk +/322ajka,d +K
j k I
= Eaij(1+/3wj)
J

out
=k + [J’E aw;
J

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

Similarly, we can define a loss score as:

2
[ = Eaﬁ + ﬁzakjaﬁ + 3 Ealkakjaﬁ +K
. m

- jkl

= E 1+ ﬁzakj + Bzzalkakj +K | a,
j k ki

= E(1+/3wj)aﬁ
j

n T
=k + [D’Ealjwj
J

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

We can then define a fotal score s; as:

Si=w; - I;

which we will use to rank the teams.

Our equations for the win and loss scores in vector form are:

w=kout+ BAw

1=Kkin+ g ATI]

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network
w=kout+ BAw
1=Kkin+ BATI

Solving these equations for w and 1 we get:
w=(-pA)1kont

1=(I- BAT)1 kin
But which f should we choose?

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

We already know that S has to be smaller than A,

Importantly, A, is zero if the network has no directed loops.

This is because the adjacency matrix of a network without loops
‘transports’ all vector entries to nodes with out-degree zero, where these
entries are set to zero (as there are no self—loops).

If the network does have loops we have a choice of

0<B<Adpax?

Let us look across a range of 8 and see how the algorithm performs.

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

The algorithm performs well for a broad range of 5, and best
around = 0.8 4,1
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American Football network

The only problem is we do not know A, until we have whole
network, and we might want to use 3 to calculate results for the
partial network.

But we can estimate A,,,, using a network with randomly assigned
wins and losses, as this will provide an upper bound on the true
Amax, being a network with more cycles.

Consider the number of paths n(l) of length [, starting at a given
node. It is important to realize that, in the limit of large /,

Amax @approaches n(I+1) / n(1)

i.e. it is the factor by which the number of paths increases if we
increase the path length by one. This is equal to the

average out-degree of a node reached by following a random edge.
Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

It is not simply the average out-degree, since out-degree and in-
degree can be correlated, and by walking along the edges of the
network we are much more likely to walk into a node with high in-
degree.

Our probability of walking into a node with in-degree k;, = i from a
randomly selected edge is

pwalk(k,, = i) =i P(kj,=1) N /| E =1 P(ki, = 1)/ <kjn>
Note that <k, > = <k, = E/N in directed networks.

Hence the probability of out-degree k,,; = j of a node we walk into is:

Zi P(kout :j | kin — l) Pwalk(kin — l)

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

And the average out-degree of such a node, which corresponds to 4,,,, is
Aonax = 24 J P(Kour= 1 ki = 1) P¥(kin = i)
= 2] Plkow= 1 kin=1) i Plkin=1) | <ki>
= 21 Pkour=J , kin=1) / <kip>

:zij ijp(kout:jlkin:i) / zijiP(kout:]./kim:i)

So we need the joint distribution P(k,=j, ki, = i) for a random directed
network with a fixed total degree distribution p; since the total number
of games played by each team is fixed.

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



American Football network

If the edge directions are chosen randomly, the joint in- and out-degree
distribution takes the binomial form

P(kout = ] 7 kin — l) = 2:(%) (i+j)Ci Pi+
Plugging this into

2’max: 21] Z] P(kout:j/ kin: l) / 21] 1 P(kout:j/ kin: l)

gives, after some algebra:
Amax = (<k?> - <k>) [ 2 <k>

where k =i + j is the total degree of a node. Hence we can now choose
B, calculate the score vector and predict American football!

Park & Newman. | Stat Mech-Theory E, P10014 (2005).



THE END

Thank you for coming]!



