NATURAL SCIENCES TRIPOS Part 11

Wednesday 17 January 2018

THEORETICAL PHYSICS 1

Answers

1 The action for a system consisting of a relativistic charged particle moving in
an electromagnetic field is given by

S = —/mCQdT—/eAde“,

where z# = (ct,x), A* = (¢/c, A), and 7 is the proper time.

(a) [book work]| Derive the equations of motion in terms of the electric and
magnetic fields, given by £ = —V¢ — %A and B =V x A, respectively.

We start from dt = ydr, where y~% =1 —v?/c%. We have that dz# = <=t
so that the lagrangian may be written as

me?

L:—T—e(gb—A-v).

The Euler-Lagrange equation is
d (OL\ 0L
dt \ov) oOx

8_L =ymv + eA
ov

a—L:—eV¢+evV-A,
ox

we get the Euler-Lagrange equation

Using

and

%(vmfv +eA)=—-eVop+evV-A.

4A(x,t) =2 A+ (v-V)A, such that this reduces to

Now, by the chain rule,

d 0
= (ymv) = —eVo — QEA +evV-A—(v-V)A



or
0
7 (ymv) = —eVep — eaA +evx (VxA).
Using the definitions of electric and magnetic fields, we obtain
d
7 (ymv) = e(E +v x B).

(b) [unseen calculation] Suppose that B = 0, that E is constant and that at
t = 0 the particle has velocity vg. Find the subsequent velocity of the particle.

When B = 0, we may integrate this equation directly to obtain
ymv = eEt + myyvg

where vy is the initial velocity and 7y the corresponding value of . Taking the dot
product of this relation with itself, we find that

|€Et + m70v0|2

21)2/62(: 72 _ 1) —

m2c?
such that
. |6Et + m70U0’2
T= m2c?
and so
eEt/m + vyvg
\/1 + |eEt—;*rgc'\éovo|2

(c) [unseen calculation] Find the limiting velocity of the particle as t — oo.

Ast — oo, Weﬁndthatv—>|E|

(provided its magnitude is less than c¢), the ultimate velocity is aligned with the
electric field, has magnitude ¢, and is aligned either parallel or anti-parallel to the
field, depending on whether the charge is positive or negative, respectively.

Note: an answer that simply states that c is the limiting velocity of any
particle subject to a constant force will receive 2 marks out of 3 because it does
not discuss the direction of the velocity.

c. No matter what velocity we start with

(d) [unseen calculation]| Suppose that instead E = 0 (and generically B # 0).
Show that ~, and hence the total speed, are constant.

In this case, we must solve the equation

d

= (ymv) = ev X B.
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If we first take the dot product with the velocity, then we find that

dvy

2

v —(ymv) =mc"— = 0.

g me) dt

Hence « and the speed are both constant. We thus may write the equation of
motion as Z_? = mﬁvv X B.

(e) [unseen calculation, similar to non-relativistic case] Suppose now that
E =0 and B is constant. Show that the time dependence of the perpendicular

velocity vector v, =v — B (%]23) is periodic and find the period.

Now differentiate with respect to time again, to get that

d*v e dv e\’ e\’
el L AVR - J B)xB=—-[— B?—- B(v-B)).
i mo i X (m7> (v x B) X <m7) (v (v-B))

In terms of the perpendicular component v; = v — B(v - B/B?), we get, by
resolving components, that
d2’U L eB 2
=—|—] v
dt? mry +

2mmry
eB

which represents periodic motion with period 7' =
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2 A massless rod of length ¢ makes an angle 6(¢) with the vertical, has a point
mass m at one end, and is in a constant gravitational field g = gy. The other end
of the rod is attached to a horizontal line with a frictionless hinge, and connected
to a point along the line by a massless spring of constant k and zero rest length, as
illustrated in the figure.

(0,0) k50

y (x(®),y(1)

Let us call s(t) the instantaneous horizontal displacement of the hinge from the
origin (i.e., the fixed point of the spring).

(a) [book work]| Introducing n(t) = s(t)/¢, the coordinates of the mass can be
written as
x =4{n+{sind y = {cosf.

Correspondingly, the kinetic energy is given by

T = %m {(fﬁ + 06 cos 6’)2 + (60 sin 0) 1 = %mEQ [7'72 + 6 + 201 cos 0]

and the potential energy by

1
V = —mglcosf + 51{:62772 )

We can then obtain the Lagrangian L =T — V| more conveniently rescaled
by a factor (mf¢?)~!:
g 1k

1 . .
L= [772+27'790089+92] +2cosh — ——n?,
2 14 2m

(b) [part book work, part new| To obtain the equations of motion of this
system we need to compute:

oL _ Kk

on m'
doL . d . . 9 .
%8_77_n+%(90089) =17+ 6Ocosf — H°sinf
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and

— = —jfsinf — %sin@
—— =0+ —(ncosf) =0+ 1ijcosd —nhsinb
Finally, the generic equations of motion are:

ﬁ—l—écos@—éQsinG—F%n:O
0 +1ijcos + $sinf = 0.

If we assume that the dynamical variables and their derivatives are small,
the equations of motion expanded to linear order can be written as

{ 6+ +wit =0
+7+win=0,

where w? = g/¢ and w? = k/m.

(c) [new] The expanded equations of motion imply a proportionality relation
between 7 and 6: 1 = (w2 /w?)6.

Assuming a solution of the form 6(t) = 6, sin(wt), we have to require the
form 7(t) = (w3 /w})by sin(wt). The two equations above are then linearly
dependent on one another and they are satisfied only if

—w? 2 W+ W =0,

2
2Wo
2

Wi

which gives w? = wiw}/ (Wi + w}).

In the limit k& — oo, w? — oo and 1 — 0, which in turn gives w? = w2. This

is consistent with the expectation for a pendulum where the top hinge is fixed
(infinite spring stiffness), in the approximation of small oscillations.
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3 (a) [bookwork]| Explain why a total derivative term in the Lagrangian (or
Lagrangian density) of a dynamical system does not affect the equations of motion
and may be discarded.

A total derivative in the Lagrangian or Lagrangian density can be integrated
to give a contribution on the boundary on spacetime, so does not affect the
variations used to derive the equations of motion, which are taken to vanish on the
boundary.

(b) [unseen calculation] A system is described by a real scalar field h(x,t) with a
Lagrangian density containing spacetime derivatives of h(x,t) up to and including
second order. Derive the corresponding Euler-Lagrange equations of motion.

The variation of the action may be written in terms of the Lagrangian

L(h,0,h,0,0,h) as
oL oL oL
=0S = [ da"oL = | dz* | —0h + ——00,h + ———00,0,h| .
0=0S / 'L / x LSh +58Mh Oy +58M8Vh 0,0, }

Integrating by parts and neglecting boundary contributions, we get,

5 5 5
O:/da:”l—ﬁ 9L 4 9,0,k }(m.

5h 150,k 60,0,h
For this to vanish for arbitrary dh, we require that
oL oL oL
0=—-0,——+0,0,——.
sh 5o T Sa00n

(c) [unseen calculation]| The height h(x,t) of a surface grown over the
x = (z',2%) plane by random deposition of atoms is described by the action

2
S:/d2wdt (%—yv%) ,

where v is a positive constant. Find the Euler-Lagrange equation of motion
governing the dynamics of h(x,t).

It helps to first expand out the quadratic terms and to notice that (after
integration by parts and neglecting a trivial boundary term) the cross-term
—20hV?h = +20VhVh = 4 (2v(Vh)?) is a total derivative and may be discarded.
Next, one may either use the formula formula derived in the previous part, or,
more simply, just use the usual Euler-Lagrange equations, integrating by parts
where necessary in order that only first-order derivatives appear. Doing so, we find

%:%
Sh
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and

oL 9o

(where we have freely integrated by parts) in order to arrive at the equation of
motion

h—12Vih =0.
(d) [unseen] What symmetries does the system possess?

The system is invariant under the discrete symmetry h — —h,spacetime
translations, and under rotations of .
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4 Consider the Lagrangian density of 1-dimensional elastic rod with density
p = 1 and elastic constant x = 1, namely

1[990\ 1 (06
E—a(a) —5(%)’

where ¢(x,t) is the local displacement field.

(a) [pbook work| The Euler-Lagrange equation of motion for the field ¢(x,t) are
given by

oo _voc_ . #o #o_

C0rdy Oty orz o2

(b) [book work] The total angular momentum tensor of the system is given by
JH = /da: MO — /da: [as“TO” —:E”TO"] ,

where MM = gtTM — x*TM and TH is the stress energy tensor.
In order to evaluate the stress energy tensor for the elastic rod described
above, we need the terms

oL ; oL

=% P00

/ 0, _ 10
o = — Po=d o= -d,

from which we obtain
T00:¢2_£:H TOIZ_Q'SQS/ TIOZ—QZB(ZS/ T11:¢,2+£:H.

By construction J* = J# and therefore we only need to compute J° since
JO = J11 =0 and J1° = —J°. For the rod we obtain

Jo — / d [—t¢’$— x?—[} .

The stress-energy tensor is symmetric upon exchanging the indices p and v
because, for the choice of density and elastic constant equal to one another, the
system is relativistic invariant, which is a higher symmetry than just space-time
translations. As a result, 9, M*" = 0 and the total angular momentum tensor is
the corresponding conserved charge.

(c¢) [new] Consider adding a viscous damping term to the equation of motion of
the rod, v9;0%¢ where 7 is a positive constant. Substituting the Fourier transform

G(z,t) = // Gk, w) e~ o=t %
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into the equation

0? 0? 0 0?
(—@ + @ + ’7@@) G($,t) = 5({17)5(t)

we obtain

// [w? — kK + ivk*w] Gk, w) e Femt C(lsTd;; = 6(x)d(t),

which in turn gives
1

w? — k2 +ivk2w

G(k,w) =

The denominator has roots
wip = —ivk?/2 £ /K2 — kiy2 /4.

(d) [mew] Assuming that k% < 4/42, the square root term in the roots is real and
both wy 2 lie below the real w axis, to the right and left of the imaginary w axis,
respectively.

To compute

—iwt
Gk, ) = / G(k,w)e—iwt;l—:: / : ¢ du

w—wy)(w —wy) 27

we can use Cauchy integration provided we close the contour in the upper half
complex w plane for ¢t < 0, and in the lower half plane for ¢ > 0 (indeed, the
exponential at the numerator is proportional to e™®)*). Both poles are in the
lower half plane, which is consistent with causality: G(t < 0) = 0.

For t > 0 we obtain

—iw1t —iwot 2 —iwit _ ,—iwat

Gk, t) = —i | -2 ¢ }: SE——
W1 — Wy Wy — W w1 — Wa 21
677k2t/2
=— Sin( /{;2—16472/415) :

k2 — k1y2/4

We can finally take the limit v — 0,
sin (kt)

G(k,t) = — o

and compute

ik Ak sin (kt) _,., dk
G(:v,t):/G(k,t)e k %:—/%e w2
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(Note that we were able to replace sin(|k|t)/|k| with sin (kt) /k by taking
advantage of the fact that ¢ > 0 and sin is an odd function of its argument.) 1]
Using the definition of the top hat function

1 [ si 4
—/ SIS mise g — TH(z),

™ S

we arrive at the result 2]
1 sins _, 1 T

Glot) = —o— [ 2 e/t as = — TH (2]

(%) 27 s © ° 2 t

This is consistent with the choice of initial conditions é(x)d(t): for t = 0, G(x,t)

does not vanish only at x = 0. Moreover, the edges of the support of G(z,t) are at

x/t = £1, propagating in space as x(t) = £t, namely with velocity 1 as expected

for an elastic rod that satisfies the condition p = k. 2]

END OF PAPER



