NATURAL SCIENCES TRIPOS Part 11

Wednesday 13 January 2016

THEORETICAL PHYSICS 1

Answers

1 A bead with mass M slides, without friction, along an infinite fixed coil
which constrains the bead’s cylindrical coordinates, (rg,0p, z5), to be (a,0p,b0p).
A massless spring with zero natural length and spring constant k& connects the
bead to an unconstrained particle with mass m and cylindrical coordinates (r, 0, z).

(a) [book work] If the free particle is at coordinates (7,0, z), and the bead is at
0p, show that the Lagrangian for the system is:

1 2 o M ;

L =5m (7“2 + 32 4 r20% + E(GQ + 62)9]23>
1

— 5/{: (a® 4+ r* — 2ar cos(§ — Op) + (= — blp)?) .

The “free” particle has kinetic energy

1 .
KEn = 5m (ﬁ 126% 4 z2>

The bead has kinetic energy
1 20 2 2
KEp =M (265" +23).
but the bead’s z coordinate is simply zp = bfg so this is
1 292 | 3242
KEp = §M(a 05" +b e)B).
The length of the spring, [, is given by Pythagoras,
I? = (rcos(f) — acos(fp))? + (rsin() — asin(0))? + (z — zp)°.

Expanding out recalling zp = bfg this gives the potential energy

V= %le = %k(rQ + a® — 2ar(cos(0) cos(0p) + sin(0) sin(0g) + (z — b0p)?)
1

= 51@(7"2 +a* — 2arcos(§ — 0g) + (2 — bg)?).



The Lagrangian is thus
L=KE,+KEg—-V

1 . M . 1
=gm (7'“2 + 224720+ —(a* + b2)9}29> - §k (a® 4+ r* — 2ar cos(§ — 0p) + (= — blp)?)
m

however the a? term is an irrelevant constant, so this matches the given L.

(b) [book work] There are four coordinates, and hence four Euler-Lagrange

equations.

doL  dL d /[ . .
prry il — " (mr (9) = —karsin(6 — 0p)
— 2m70 + mrf = —kasin(d — 6p)

d 0L oL .. 19
e = mi' = mr6” — kr + kacos( — 6p)
doL 0L .
T = mz=—k(z—blp)
d OL oL .- .
E_GG.B = %, = M(a® + b*)f0p = karsin(0 — 0g) + kb(z — blg).

(c) [new] The potential is of the form V(r,§ — 0p, z — bp). The helical symmetry
reveals itself because § — 0 + ¢, g — 0p + ¢, z — z + cb leaves the length of the
spring, and hence V', unchanged. It requires a simultaneous rotation and elevation

of both masses.
The kinetic energy does not depend on #, z or 0, so the Lagrangian is also

in the form L(r, 0,205,710 —0g,z— blp). We thus have

oL oL oL
o 00 0z’

Applying the Euler=Lagrange equations this yields
d(OLY __d (0L d (0L
dt \obz)  dt \of dt \ 0z

oL 0L oL
A0 00 0z

so the quantity

is conserved.
Evaluating this for the Lagrangian in this case, the conserved quantity is

J =mr?0 + M(a® + b*)0g + bmsz,
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and conservation means J = 0.

(d) [new] Since the particle is released from rest and M is negligible, J = 0. We
thus have

r20 = —bs

Integrating both sides with respect to time, we get

T T
/ r20 dt = —b/ zdt = —bAz.
0 0

Using the chain rule, the lhs can be transformed to

t=T
/ r?df = —bAz.
=0

2 (1 [
Az = —— —/ r2dd | .
b \2 )

If the particle’s trajectory is projected into the horizontal (r, ) plane, it forms a
closed loop, and A = (1/2) [ r?dd is the area of this loop.

so we have

[Of the last three marks, one will be given if the candidate offers a correct but
non-geometric interpretation relating Az to the time integral of the angular
momentum. |

2 (a) [book work]| Given the Lagrangian density

1
L=—=FgF",
4 B

where F},, = 0,A, — 0,A,, one obtains two Maxwell’s equations for a free
electromagnetic field from the Euler-Lagrange equations:

oL oL
oA, T {a@AaJ |

The derivative

0 0 0
- [ FY=F"_ " __F Fy,——— %7,
00,4 " 000,42 " T 0,4

The two terms are in fact equal, and by permuting indices each of these is equal to

0

0y
2F 0(0,A4)

DsA, = 2FHe
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4

The Euler-Lagrange equations therefore reduce to the 4-vector relation

O " =0.
These are just the (inhomogeneous) Maxwell equations:
OFE
VEZO, VXBZ&T(),U/OE,

where we used dy = 9/0(ct),
0 —-E,/Jc —E,/Jc —E./c

Fuy _ E{L’/C 0 _Bz By
~| B/ B. 0  -B,
E.Jc -B, B, 0

and the fact that ¢ = 1/uoeo.
[Not for credit] The other two Maxwell’s equations can be derived directly from
the structure of the F},, tensor, using the so-called Bianchi identity

PFW L OFM + ' FA =0
which gives V- B =0and V x E = —0,B.

(b) [part book work, part new| From the given form of the electromagnetic

stress-energy tensor
™" = —FKF"™ — g [

and from the form of the Lagrangian density given above, we obtain
@tTW = _(auFf)FV)\ - F)’f(a#F”)‘) + zl;gw(auFaﬁ)Faﬁ + zl;gWFaB(aﬂFaﬁ)
= —(0,F"FY — E\(0"F™) + LE,5(0" F*P).
The first term vanishes because of the Euler-Lagrange equation for a free
electromagnetic field, 9, F** = 0.

In the second term, we can relabel the mute indices © — a and A — S for
simplicity and use Bianchi’s identity

FFP + 9°FP + 9P FY® =
to arrive at
9T = —Fog(0°F"") + §Fap(9°F"" + 0" F*)
sFap(—0"F"7 + 0°F*)

= L1F(0°F" +9°F) =0,

where we used (repeatedly) the fact that the electromagnetic tensor is
antisymmetric, and we finally noticed in the last line that the term in round
brackets is instead symmetric in a <> 3.
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(c) [part book work, part unseen] The Lagrangian density for the interaction
of a complex scalar field ¢ with the electromagnetic field A, is

L= (Dug)"(D"¢) —m?*¢"¢ — {F"F,,,

where D,¢ = (0, +iqA,)¢ and (D,¢)* = (0, — iqA,)¢*. Writing out the

Lagrangian density in terms of ¢, ¢* and A, explicitly, one obtains

L =

Dud* — 1AL ) (¢ +iqArP) — mP¢*p — FHE,,
0u¢*) (0 ¢) — iqA,(¢*O"d — 9O ") + ¢ A A — mPP* ¢
—L(01nA” — 07 A" (0,4, — 8,A,).

—~

The Euler-Lagrange equations for A, give
8£ a»c o . *xqQU | UL * 2 AV |k 722
= 0 = ig(6°0"6 — 60"6") — 2PAG"
One can then verify that
iq[¢*D"¢ — ¢(D"¢)"]
iq[¢" (0”0 + 1g A 9) — ¢(0"¢" — iqA”¢")]
= ig(¢*0"¢ — ¢0"¢") — 2¢*A"¢"¢.

Jl/

(d) [part book work, part unseen] For the local transformations ¢’ = e717(*)¢
and A}, = A, + 9,0, one has 0¢ = —igag, 6¢* = iqag* and dA, = J,a. Thus, by
Noether’s theorem, 0,,j§ = 0, where

Y oL . oL
N = 50,0 %" 00,007 T a0,4) N
— iga[¢' D46 — $(Dr6)] — Fra,a
= aJt — F*9,a.

Therefore, one has

aujll\LI = oz@uJ“ + (auoz)(]“ - (@LF’“’)(&,a) - Fwauau@
= ad,J"

since 0, """ = J” and F* = —F"*. Therefore, Noether’s theorem implies that

B,J" = 0,

3 Consider the Klein-Gordon Lagrangian density for a complex scalar field in
Minkowski space, coupled to an external vector potential A, and to a
time-dependent driving force f():

L= (9,07) (0")) — m*¢"¢ + ie A, [90"¢" — 6"0"¢] + f(t) (¢ + ¢")
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where A, = (V(7),0,0,0) and V(7) is a real function of the space coordinates r
but is independent of time.

(a) [book work]| In order to obtain the Euler-Lagrange equations, we need to
compute

2 ntomien,o 1)
8#55625* — a‘u [8#¢+Z€A'IJ’¢] :aﬂa”¢+ie<aﬂAﬂ>¢+ieApaﬂ¢
i

For the given vector potential we readily see that 9,A* = 0 and the corresponding
Euler-Lagrange equation of motion can be written as

0,0"¢ + 2ie AP(r)D,6 + m’p = f(t),

and equivalently for ¢*.

(b) [new] The Green’s function G(r,r';t,t’) is a solution of the above equation of
motion when the right hand side is replaced by §(t — t')d® (r — /). In order to
find the corresponding equation in Fourier space, let us substitute the transform

3
Glr, v/t 1) = / / @k ) ¢tk

in the equation
[0,0" + 2ie A*(1)9, + m?] G(r, 7 t,t)) = 0(t — )0 (r — 7).

The left hand side becomes

d3k 2 2 2 —iw(t—t')+ik-(r—1")
—w? 4+ k4 2eV (r)w + m?] G(k;w) e

where we used 9,0" = 97 — V? and A*(r)d, = A°9,.

We then multiply both left and right hand side of the equation by
ein(t*t/)*"kO'(T*W), and integrate over ¢t and r. The right hand side gives
straightforwardly 1. The left hand side has two contributions:

3
/ / TH 2 1 ?) Gk w) / it / g it ity sitk ko) (1)

= wo + k2 +m } G(kO;WO)

d*k . / - /
/ / |?6W/d%‘ V(’I") ez(k—ko).(r—r ):| G(k:,w) /dte—z(w—wg)(t—t)

d*k
= 26&)0 / WV(ICO - k:)G(k,wo)
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where we used the fact that
/dt e~ Hwmw0) ) — 976 (1w — wy) /d37’ gitk—Ko)-(r—r") _ (27)36®) (k — ky)

and

Viko— k) = / &r V (r)eik—For(r=T")

We can then combine these results (and change variables k,w — k',w’ and
ko,wo — k,w) to obtain the expression in the exam paper:

3K
(2m)?

[—w? + kK + m?] G(k;w) + 26w/ Vik - K)GK; w)=1.

(c) [part book work, part new| As instructed in the exam paper, we then
consider the case where V(k — k') = —(27)3 iy 6®) (k — K'):
[—w? + k* + m® = 2eviw] G(k;w) = 1.
It is straightforward to invert the equation and obtain G(k;w), from which we get
dw e—iw(t—t’)
21 —w? — 2eviw + k2 + m?

G(k;t,t') =

The location of the poles can be obtained by solving

w? + 2eviw — k> —m? =0 — Wi = —evyi &+ k2 +m?2 — e2?

oIf k2 +m? > €242, the square root term is real and the two poles appear in
the lower half of the complex w plane, a distance ey below the real axis points
+ /2 +m? = .

olf k2 + m? < e?4?, the square root term is purely imaginary and the two poles
sit on the imaginary axis of the complex w plane. Since /€272 — k2 — m? is
always smaller than ey, the two poles lie again in the lower half plane, slightly
above and slightly below the point —iey.

eFinally, if k2 +m? = e?42, the integral has a double pole at the point —iey on
the imaginary axis.

The location of the poles is illustrated schematically in the figure.

Im Im ® Im ®

A A

> » >
° e Rew @® Re ® Re ®
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(d) [pbook work] When k% + m? > e?+? (left panel in the figure above), the two
poles are

wie = —eyl £ \/k:2 +m2—e2y?2=—eyit Q.
In order to compute

—iw(t—t")

Gkt 1) = —/dw ¢

271 (W — wy)(w — ws)

we use contour integration and Cauchy’s theorem. For ¢ < ¢, we need to close the
contour in the upper half plane (cf. the contribution elm(‘”)(t_t')) and the integral
vanishes trivially since the contour does not encircle any poles. For ¢ > ¢/, we need
to close the contour in the lower half plane thus encircling the two poles (in the
clockwise direction!):

2 e—iwl(t—t') e—iwg(t—t’)
G(k;t,t') = —— {— —
2w W1 — W2 Wy — W1
_ e—iw(t—t") B elw(t—t") et _ sin [0 (¢ — t')] v
2w 20 w

4 A ferromagnet consists of a large number, N, of interacting vector spins,
{s;}, which each have unit length but can point in any direction. Each spin
interacts with many other spins via an interaction energy F = —s; - s;, which
favors alignment. We propose a Landau theory of the following form to study
m = % Z.A;l s;, the average magnetization of the system:

f =am+bm? + cm® + dm*

where m = |m|.

(a) [pookwork] The energy has a rotational invariance: changing m — R-m
should not change the energy, for any rotation R, so the energy should be written
in terms of tensor-invariants of m. It should also be an analytic function. Thus we

have
f=0 Z m;m; +d Z MM ;m;
7 i,J

Thus a = ¢ = 0 since they do not correspond to rotationally invariant analytic
terms.

For m — oo not to be the ground state, with divergent negative energy, we must
have d > 0.

The parameter b controls the transition: b > 0 gives m = 0, the isotropic state,
b < 0 gives m # 0, the aligned state.

(b) [bookwork] The observed m is that which minimizes f, which requires

@_f = 2bm + 4dm? = 0,
om
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which is solved by m = 0, and by m = \/—b/(2d) = \/(T. — T)/(2T.d). There is
no =+ as |m| cannot be negative.

The m = 0 is the ground state for b > 0 (i.e. T > T.) while m = /(1. — T)/(2T.d)
is the ground state for b < 0. Thus the plot looks like

Im|

10}
0.8
0.6
0.4}

0.2}

e . — T/Tc
0.5 1.0 1.5 2.0

The system breaks its spatial isotropy: the hamiltonian is isotropic, but the state
with finite |m| must “choose” a direction for m.

Inspecting the plot above, the transition is continuous.

A nematic liquid crystal is similar to a ferromagnet, in that it consists of lots of
rod shaped molecules each pointing along a vector s;, which has unit length but
can point in any direction. However, in this case the molecules interact via an
energy F oc — (s; - sj)2 which equally favors alignment or anti-alignment.

(c)[new] The ferro-magnet energy, E o< —s; - s; favors alignment, whereas the
nematic energy, £ oc —(s; - 8;)?, equally favors alignment or anti-alignment. Thus
the ferro-magnet aligned state has the spins all pointing in the same direction,
giving a finite (s), whereas the nematic ground state can contain equal numbers of
aligned and anti-aligned spins giving (s) = 0.

[bonus mark] The nematic energy does not actually distinguish between alignment
and anti-alignment, so the fully aligned state is also a ground state. However, on
combinatorial grounds there are many more ground states with (s) = 0, hence this
is what is observed.

(d) new] Saa = % sy (3SiaSia — daa) = & Yoy (3(1) =3) =0

(e) [new] Substituting S, = Q(3nans — dap) into the provided energy (easy if you
remember it is symmetric, and hence diagonal in its principal frame) yields

f = 6aQ? + 6bQ* + 18cQ*.
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This is graphed for various values of b < 0 below:
f b=0
1},0
2o I‘Q?S].
N

04r

021

L L L L L L
-05 -0.25 0.25 0.5 0.75 1

-0.2

If b = 0 this is a simple symmetric energy with a single minimum. As b is
reduced below 0 the energy loses symmetry, and eventually a second minimum
appears at positive (). At some value of b it becomes the global minimum. The
transition is thus discontinuous.

(f) [new] f always has one minimum with f =0 at = 0. The second minimum
will become the global minimum when it passes f = 0, so we examine

f =6aQ?+6bQ* + 18¢Q* =0 (1)
— =aQ* +bQ° +3cQ* =0

which as three solutions, @ = 0 (as expected) and

b= V0?2 —12ca
— o )

Q

The point where we go from one to three solutions is the point when the second
minimum cuts the z axis, which occurs when b? = 12ca.

So the transition happens when b = —+/12ac, and the system jumps from ¢ = 0 to

—b_ a

Q:@_ 3¢

END OF PAPER



