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THEORETICAL PHYSICS I

Answers

1 A bead with mass M slides, without friction, along an infinite fixed coil
which constrains the bead’s cylindrical coordinates, (rB, θB, zB), to be (a, θB, bθB).
A massless spring with zero natural length and spring constant k connects the
bead to an unconstrained particle with mass m and cylindrical coordinates (r, θ, z).

(a) [book work] If the free particle is at coordinates (r, θ, z), and the bead is at
θB, show that the Lagrangian for the system is:

L =
1

2
m

(
ṙ2 + ż2 + r2θ̇2 +

M

m
(a2 + b2)θ̇2B

)
− 1

2
k
(
a2 + r2 − 2ar cos(θ − θB) + (z − bθB)2

)
.

The “free” particle has kinetic energy

KEm =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
The bead has kinetic energy

KEB =
1

2
M
(
a2 ˙θB

2
+ ż2B

)
,

but the bead’s z coordinate is simply zB = bθB so this is

KEB =
1

2
M
(
a2 ˙θB

2
+ b2θ̇2B

)
.

The length of the spring, l, is given by Pythagoras,

l2 = (r cos(θ)− a cos(θB))2 + (r sin(θ)− a sin(θB))2 + (z − zB)2.

Expanding out recalling zB = bθB this gives the potential energy

V =
1

2
kl2 =

1

2
k(r2 + a2 − 2ar(cos(θ) cos(θB) + sin(θ) sin(θB) + (z − bθB)2)

=
1

2
k(r2 + a2 − 2ar cos(θ − θB) + (z − bθB)2).
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The Lagrangian is thus

L = KEm +KEB − V

=
1

2
m

(
ṙ2 + ż2 + r2θ̇2 +

M

m
(a2 + b2)θ̇2B

)
− 1

2
k
(
a2 + r2 − 2ar cos(θ − θB) + (z − bθB)2

)
however the a2 term is an irrelevant constant, so this matches the given L.

(b) [book work] There are four coordinates, and hence four Euler-Lagrange
equations.

d

dt

∂L

∂θ̇
=
∂L

∂θ
=⇒ d

dt

(
mr2θ̇

)
= −kar sin(θ − θB)

=⇒ 2mṙθ̇ +mrθ̈ = −ka sin(θ − θB)

d

dt

∂L

∂ṙ
=
∂L

∂r
=⇒ mr̈ = mrθ̇2 − kr + ka cos(θ − θB)

d

dt

∂L

∂ż
=
∂L

∂z
=⇒ mz̈ = −k(z − bθB)

d

dt

∂L

∂ ˙θB
=

∂L

∂θB
=⇒ M(a2 + b2)θ̈B = kar sin(θ − θB) + kb(z − bθB).

(c) [new] The potential is of the form V (r, θ − θB, z − bθB). The helical symmetry
reveals itself because θ → θ + c, θB → θB + c, z → z + cb leaves the length of the
spring, and hence V , unchanged. It requires a simultaneous rotation and elevation
of both masses.

The kinetic energy does not depend on θ, z or θB, so the Lagrangian is also
in the form L(ṙ, θ̇, ż, θ̇B, r, θ − θB, z − bθB). We thus have

∂L

∂θB
= −∂L

∂θ
− b∂L

∂z
.

Applying the Euler=Lagrange equations this yields

d

dt

(
∂L

∂θ̇B

)
= − d

dt

(
∂L

∂θ̇

)
− b d

dt

(
∂L

∂ż

)
so the quantity

J =
∂L

∂θ̇B
+
∂L

∂θ̇
+ b

∂L

∂ż

is conserved.
Evaluating this for the Lagrangian in this case, the conserved quantity is

J = mr2θ̇ +M(a2 + b2)θ̇B + bmż,
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and conservation means J̇ = 0.

(d) [new] Since the particle is released from rest and M is negligible, J = 0. We
thus have

r2θ̇ = −bż

Integrating both sides with respect to time, we get∫ T

0

r2θ̇ dt = −b
∫ T

0

ż dt = −b∆z.

Using the chain rule, the lhs can be transformed to∫ t=T

t=0

r2dθ = −b∆z.

so we have

∆z = −2

b

(
1

2

∫ t=T

t=0

r2dθ

)
.

If the particle’s trajectory is projected into the horizontal (r, θ) plane, it forms a
closed loop, and A = (1/2)

∫
r2dθ is the area of this loop.

[Of the last three marks, one will be given if the candidate offers a correct but
non-geometric interpretation relating ∆z to the time integral of the angular
momentum.]

2 (a) [book work] Given the Lagrangian density

L = −1

4
FαβF

αβ ,

where Fµν = ∂µAν − ∂νAµ, one obtains two Maxwell’s equations for a free
electromagnetic field from the Euler-Lagrange equations:

∂L
∂Aα

= 0 = ∂µ

[
∂L

∂(∂µAα)

]
.

The derivative

∂

∂(∂µAα)
FδγF

δγ = F δγ ∂

∂(∂µAα)
Fδγ + Fδγ

∂

∂(∂µAα)
F δγ.

The two terms are in fact equal, and by permuting indices each of these is equal to

2F δγ ∂

∂(∂µAα)
∂δAγ = 2F µα .
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The Euler-Lagrange equations therefore reduce to the 4-vector relation

∂µF
µα = 0 .

These are just the (inhomogeneous) Maxwell equations:

∇ ·E = 0 , ∇×B = ε0µ0
∂E

∂t
,

where we used ∂0 = ∂/∂(ct),

F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


and the fact that c2 = 1/µ0ε0.
[Not for credit] The other two Maxwell’s equations can be derived directly from
the structure of the Fµν tensor, using the so-called Bianchi identity

∂λF µν + ∂νF λµ + ∂µF νλ = 0

which gives ∇ ·B = 0 and ∇×E = −∂tB.

(b) [part book work, part new] From the given form of the electromagnetic
stress-energy tensor

T µν = −F µ
λF

νλ − gµνL
and from the form of the Lagrangian density given above, we obtain

∂µT
µν = −(∂µF

µ
λ )F νλ − F µ

λ (∂µF
νλ) + 1

4
gµν(∂µFαβ)Fαβ + 1

4
gµνFαβ(∂µF

αβ)

= −(∂µF
µλ)F ν

λ − Fµλ(∂µF νλ) + 1
2
Fαβ(∂νFαβ) .

The first term vanishes because of the Euler-Lagrange equation for a free
electromagnetic field, ∂µF

µα = 0.
In the second term, we can relabel the mute indices µ→ α and λ→ β for

simplicity and use Bianchi’s identity

∂νFαβ + ∂αF βν + ∂βF να = 0

to arrive at

∂µT
µν = −Fαβ(∂αF νβ) + 1

2
Fαβ(∂αF νβ + ∂βFαν)

= 1
2
Fαβ(−∂αF νβ + ∂βFαν)

= 1
2
Fαβ(∂αF βν + ∂βFαν) = 0 ,

where we used (repeatedly) the fact that the electromagnetic tensor is
antisymmetric, and we finally noticed in the last line that the term in round
brackets is instead symmetric in α↔ β.
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(c) [part book work, part unseen] The Lagrangian density for the interaction
of a complex scalar field φ with the electromagnetic field Aµ is

L = (Dµφ)∗(Dµφ)−m2φ∗φ− 1
4
F µνFµν ,

where Dµφ = (∂µ + iqAµ)φ and (Dµφ)∗ = (∂µ − iqAµ)φ∗. Writing out the
Lagrangian density in terms of φ, φ∗ and Aµ explicitly, one obtains

L = (∂µφ
∗ − iqAµφ

∗)(∂µφ+ iqAµφ)−m2φ∗φ− 1
4
F µνFµν

= (∂µφ
∗)(∂µφ)− iqAµ(φ∗∂µφ− φ∂µφ∗) + q2AµA

µφ∗φ−m2φ∗φ
−1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

The Euler–Lagrange equations for Aµ give

∂L
∂Aν

− ∂µ
(

∂L
∂(∂µAν)

)
= 0 ⇒ −iq(φ∗∂νφ− φ∂νφ∗) + 2q2Aνφ∗φ+ ∂µF

µν = 0

⇒ ∂µF
µν = iq(φ∗∂νφ− φ∂νφ∗)− 2q2Aνφ∗φ

One can then verify that

Jν ≡ iq [φ∗Dνφ− φ(Dνφ)∗]
= iq[φ∗(∂νφ+ iqAνφ)− φ(∂νφ∗ − iqAνφ∗)]
= iq(φ∗∂νφ− φ∂νφ∗)− 2q2Aνφ∗φ .

(d) [part book work, part unseen] For the local transformations φ′ = e−iqα(x)φ
and A′µ = Aµ + ∂µα, one has δφ = −iqαφ, δφ∗ = iqαφ∗ and δAµ = ∂µα. Thus, by
Noether’s theorem, ∂µj

µ
N = 0, where

jµN =
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗ +
∂L

∂(∂µAν)
δAν

= iqα [φ∗Dµφ− φ(Dµφ)∗]− F µν∂να
= αJµ − F µν∂να.

Therefore, one has

∂µj
µ
N = α∂µJ

µ + (∂µα)Jµ − (∂µF
µν)(∂να)− F µν∂µ∂να

= α∂µJ
µ

since ∂µF
µν = Jν and F µν = −F νµ. Therefore, Noether’s theorem implies that

∂µJ
µ = 0.

3 Consider the Klein-Gordon Lagrangian density for a complex scalar field in
Minkowski space, coupled to an external vector potential Aµ and to a
time-dependent driving force f(t):

L = (∂µφ
∗) (∂µφ)−m2φ∗φ+ ieAµ [φ∂µφ∗ − φ∗∂µφ] + f(t) (φ+ φ∗)
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where Aµ = (V (r), 0, 0, 0) and V (r) is a real function of the space coordinates r
but is independent of time.

(a) [book work] In order to obtain the Euler-Lagrange equations, we need to
compute

δL
δφ∗

= −m2φ− ieAµ∂µφ+ f(t)

∂µ
δL
δ∂µφ∗

= ∂µ [∂µφ+ ieAµφ] = ∂µ∂
µφ+ ie (∂µA

µ)φ+ ieAµ∂µφ

For the given vector potential we readily see that ∂µA
µ = 0 and the corresponding

Euler-Lagrange equation of motion can be written as

∂µ∂
µφ+ 2ieAµ(r)∂µφ+m2φ = f(t),

and equivalently for φ∗.

(b) [new] The Green’s function G(r, r′; t, t′) is a solution of the above equation of
motion when the right hand side is replaced by δ(t− t′)δ(3)(r − r′). In order to
find the corresponding equation in Fourier space, let us substitute the transform

G(r, r′; t, t′) =

∫
dω

2π

∫
d3k

(2π)3
G(k;ω) e−iω(t−t

′)+ik·(r−r′)

in the equation[
∂µ∂

µ + 2ieAµ(r)∂µ +m2
]
G(r, r′; t, t′) = δ(t− t′)δ(3)(r − r′) .

The left hand side becomes∫
dω

2π

∫
d3k

(2π)3
[
−ω2 + k2 + 2eV (r)ω +m2

]
G(k;ω) e−iω(t−t

′)+ik·(r−r′)

where we used ∂µ∂
µ = ∂2t −∇2 and Aµ(r)∂µ = A0∂t.

We then multiply both left and right hand side of the equation by

eiω0(t−t′)−ik0·(r−r′), and integrate over t and r. The right hand side gives
straightforwardly 1. The left hand side has two contributions:∫

dω

2π

∫
d3k

(2π)3
[
−ω2 + k2 +m2

]
G(k;ω)

∫
dt

∫
d3r e−i(ω−ω0)(t−t′)+i(k−k0)·(r−r′)

=
[
−ω2

0 + k20 +m2
]
G(k0;ω0)∫

dω

2π

∫
d3k

(2π)3

[
2eω

∫
d3r V (r) ei(k−k0)·(r−r′)

]
G(k;ω)

∫
dte−i(ω−ω0)(t−t′)

= 2eω0

∫
d3k

(2π)3
V (k0 − k)G(k;ω0)

A

(TURN OVER



7

where we used the fact that∫
dt e−i(ω−ω0)(t−t′) = 2πδ(ω − ω0)

∫
d3r ei(k−k0)·(r−r′) = (2π)3δ(3)(k − k0)

and

V (k0 − k) =

∫
d3r V (r)ei(k−k0)·(r−r′)

We can then combine these results (and change variables k, ω → k′, ω′ and
k0, ω0 → k, ω) to obtain the expression in the exam paper:[

−ω2 + k2 +m2
]
G(k;ω) + 2eω

∫
d3k′

(2π)3
V (k − k′)G(k′;ω) = 1 .

(c) [part book work, part new] As instructed in the exam paper, we then
consider the case where V (k − k′) = −(2π)3 iγ δ(3)(k − k′):[

−ω2 + k2 +m2 − 2eγiω
]
G(k;ω) = 1 .

It is straightforward to invert the equation and obtain G(k;ω), from which we get

G(k; t, t′) =

∫
dω

2π

e−iω(t−t
′)

−ω2 − 2eγiω + k2 +m2

The location of the poles can be obtained by solving

ω2 + 2eγiω − k2 −m2 = 0 → ω1,2 = −eγi±
√
k2 +m2 − e2γ2

•If k2 +m2 > e2γ2, the square root term is real and the two poles appear in
the lower half of the complex ω plane, a distance eγ below the real axis points
±
√
k2 +m2 − e2γ2.

•If k2 +m2 < e2γ2, the square root term is purely imaginary and the two poles
sit on the imaginary axis of the complex ω plane. Since

√
e2γ2 − k2 −m2 is

always smaller than eγ, the two poles lie again in the lower half plane, slightly
above and slightly below the point −ieγ.

•Finally, if k2 +m2 = e2γ2, the integral has a double pole at the point −ieγ on
the imaginary axis.

The location of the poles is illustrated schematically in the figure.
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(d) [book work] When k2 +m2 > e2γ2 (left panel in the figure above), the two
poles are

ω1,2 = −eγi±
√
k2 +m2 − e2γ2 ≡ −eγi± ω̃ .

In order to compute

G(k; t, t′) = −
∫
dω

2π

e−iω(t−t
′)

(ω − ω1)(ω − ω2)

we use contour integration and Cauchy’s theorem. For t < t′, we need to close the
contour in the upper half plane (cf. the contribution eIm(ω)(t−t′)) and the integral
vanishes trivially since the contour does not encircle any poles. For t > t′, we need
to close the contour in the lower half plane thus encircling the two poles (in the
clockwise direction!):

G(k; t, t′) = −2πi

2π

[
−e
−iω1(t−t′)

ω1 − ω2

− e−iω2(t−t′)

ω2 − ω1

]
= i

[
e−iω̃(t−t

′)

2ω̃
− eiω̃(t−t

′)

2ω̃

]
e−eγ(t−t

′) =
sin [ω̃(t− t′)]

ω̃
e−eγ(t−t

′) .

4 A ferromagnet consists of a large number, N , of interacting vector spins,
{si}, which each have unit length but can point in any direction. Each spin
interacts with many other spins via an interaction energy E = −si · sj, which
favors alignment. We propose a Landau theory of the following form to study
m ≡ 1

N

∑N
i=1 si, the average magnetization of the system:

f = am+ bm2 + cm3 + dm4

where m = |m|.
(a) [bookwork] The energy has a rotational invariance: changing m→ R ·m
should not change the energy, for any rotation R, so the energy should be written
in terms of tensor-invariants of m. It should also be an analytic function. Thus we
have

f = b
∑
i

mimi + d
∑
i,j

mimimjmj

Thus a = c = 0 since they do not correspond to rotationally invariant analytic
terms.

For m→∞ not to be the ground state, with divergent negative energy, we must
have d > 0.

The parameter b controls the transition: b > 0 gives m = 0, the isotropic state,
b < 0 gives m 6= 0, the aligned state.

(b) [bookwork] The observed m is that which minimizes f , which requires

∂f

∂m
= 2bm+ 4dm3 = 0,

A
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which is solved by m = 0, and by m =
√
−b/(2d) =

√
(Tc − T )/(2Tcd). There is

no ± as |m| cannot be negative.

The m = 0 is the ground state for b > 0 (i.e. T > Tc) while m =
√

(Tc − T )/(2Tcd)
is the ground state for b < 0. Thus the plot looks like

0.5 1.0 1.5 2.0
T/Tc

0.2

0.4

0.6

0.8

1.0

|m|

The system breaks its spatial isotropy: the hamiltonian is isotropic, but the state
with finite |m| must “choose” a direction for m.

Inspecting the plot above, the transition is continuous.

A nematic liquid crystal is similar to a ferromagnet, in that it consists of lots of
rod shaped molecules each pointing along a vector si, which has unit length but
can point in any direction. However, in this case the molecules interact via an
energy E ∝ − (si · sj)2 which equally favors alignment or anti-alignment.

(c)[new] The ferro-magnet energy, E ∝ −si · sj favors alignment, whereas the
nematic energy, E ∝ −(si · sj)2, equally favors alignment or anti-alignment. Thus
the ferro-magnet aligned state has the spins all pointing in the same direction,
giving a finite 〈s〉, whereas the nematic ground state can contain equal numbers of
aligned and anti-aligned spins giving 〈s〉 = 0.

[bonus mark] The nematic energy does not actually distinguish between alignment
and anti-alignment, so the fully aligned state is also a ground state. However, on
combinatorial grounds there are many more ground states with 〈s〉 = 0, hence this
is what is observed.

(d) [new] Sαα = 1
N

∑N
i=1 (3siαsiα − δαα) = 1

N

∑N
i=1 (3(1)− 3) = 0

(e) [new] Substituting Sαβ = Q(3nαnβ − δαβ) into the provided energy (easy if you
remember it is symmetric, and hence diagonal in its principal frame) yields

f = 6aQ2 + 6bQ3 + 18cQ4.

A
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This is graphed for various values of b < 0 below:

- 0.5 - 0.25 0.25 0.5 0.75 1
Q

- 0.2

0.2

0.4

f b=0

increasingly 
negative b

If b = 0 this is a simple symmetric energy with a single minimum. As b is
reduced below 0 the energy loses symmetry, and eventually a second minimum
appears at positive Q. At some value of b it becomes the global minimum. The
transition is thus discontinuous.

(f) [new] f always has one minimum with f = 0 at Q = 0. The second minimum
will become the global minimum when it passes f = 0, so we examine

f = 6aQ2 + 6bQ3 + 18cQ4 = 0 (1)

=⇒ = aQ2 + bQ3 + 3cQ4 = 0

which as three solutions, Q = 0 (as expected) and

Q =
−b±

√
b2 − 12ca

6c
.

The point where we go from one to three solutions is the point when the second
minimum cuts the x axis, which occurs when b2 = 12ca.

So the transition happens when b = −
√

12ac, and the system jumps from Q = 0 to

Q =
−b
6c

=

√
a

3c
.

END OF PAPER
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