
NATURAL SCIENCES TRIPOS Part II

Wednesday 15 January 2014 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks

allotted to each part of a question is indicated in the right margin

where appropriate. The paper contains six sides and is accompanied

by a booklet giving values of constants and containing mathematical

formulae which you may quote without proof.

1 A thin hollow cylinder of mass M and radius 2a can swing freely about a
fixed horizontal axis passing through the point O, as illustrated in the figure. A
second thin hollow cylinder of mass M and radius a rests on the inner surface of
the first cylinder, lying parallel to its length.
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(a) Assuming that no friction acts between the two cylinders and that the angular
velocity of the smaller cylinder about its own axis is fixed to zero throughout the
motion, derive the Lagrangian of the system as a function of the angles θ and φ.
Expand it to second-order assuming both angles as well as their time derivatives
are small and show that the result can be written as

L = 1
2
Ma2(12θ̇2 + φ̇2 + 4θ̇φ̇)− 1

2
Mga(4θ2 + φ2),

up to irrelevant additive constants. [9]
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(b) From the Euler–Lagrange equations, derive the equations of motion of the
system. Show that the natural frequencies of small oscillations are given by

ω2
±
=

(2±
√
2)g

2a
,

and describe the corresponding normal modes. [10]

(c) Assume now that friction acts between the two cylinders such that the smaller
cylinder rolls without slipping on the inner surface of the larger one. Show that to
second-order in the angles θ and φ and their time derivatives the Lagrangian of the
system is

L = 1
2
Ma2(16θ̇2 + 2φ̇2)− 1

2
Mga(4θ2 + φ2),

up to irrelevant additive constants. [7]

(d) Show that the equations of motion in this case have the form

θ̈ + ω2
1θ = 0, φ̈+ ω2

2φ = 0,

and obtain expressions for the natural frequencies of oscillation ω2
1 and ω2

2.
Describe the corresponding normal modes. [7]

2 Consider a particle of mass m and charge q > 0 moving in two dimensions, in
presence of a uniform static electric field E = Ex̂, and a uniform static magnetic
field perpendicular to the plane, B = Bẑ (E > 0, B > 0). The particle is attached
to a fixed point on the plane (say, the origin of the reference frame) by an ideal
spring of zero natural length and constant k (see figure.)
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(a) Using polar coordinates ρ, θ, show that the Lagrangian for the particle can be
written as [9]

L =
1

2
m
(

ρ̇2 + ρ2θ̇2
)

− 1

2
kρ2 + q

(

Eρ cos θ +
B

2
ρ2θ̇

)
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Hint: it is helpful to choose a vector potential of the form

A =
B

2

(

− ρ sin θ, ρ cos θ, 0
)

.

(b) Derive the conjugate momenta pρ and pθ, and show that the Hamiltonian for
the particle takes the form [5]

H =
p2ρ
2m

+
1

2m

(

pθ
ρ

− qB

2
ρ

)2

+
1

2
kρ2 − qEρ cos θ

Obtain Hamilton’s equations of motion. [4]

(c) Using the Lagrangian from part (a), write the Euler-Lagrange equations of
motion. Show that the equilibrium solution (i.e., when all time derivatives vanish)
corresponds to ρ0 = qE/k and θ0 = 0. [5]

(d) Consider the Euler-Lagrange equations of motion expanded to first order
around the equilibrium solution (you do not need to derive these equations):

m
d2ρ̃

dt2
+ kρ̃− qBρ0

dθ̃

dt
= 0

mρ0
d2θ̃

dt2
+ qB

dρ̃

dt
+ qEθ̃ = 0

where θ = θ0 + θ̃ and ρ = ρ0 + ρ̃, and both ρ̃ and θ̃ as well as their derivatives are
small. Show that these equations admit a solution of the form ρ̃ = ε cosωt and
θ̃ = (ε/ρ0) sinωt, where ε ≪ 1, provided that ω takes the values: [7]

ω1,2 = − qB

2m

[

1∓
√

1 +
4mk

q2B2

]

Draw the trajectory of the particle in the xy plane corresponding to this special
solution (recall that we expanded to first order in ε and higher order terms ought
to be disregarded); use arrows to indicate the directions of motion along the
trajectory corresponding to the allowed values of ω. Compare the directions of
motion with respect to that which you would expect from the motion of a
positively charged particle in the magnetic field alone. [3]

3 A dynamical system with Hamiltonian H(qi, pi, t) is described by
independent coordinates qi (i = 1, ..., n) and corresponding generalised (canonical)
momenta pi.

(a) Show that Hamilton’s equations of motion are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

∂H

∂t
= −∂L

∂t
,

A

(TURN OVER for continuation of question 3



4

where L = L(qi, q̇i, t) is the Lagrangian of the system. [6]

(b) A new set of coordinates and momenta (Qi, Pi) is defined by

Qi = Qi(qj , pj, t), Pi = Pi(qj , pj, t), i = 1, ..., n.

and a new Hamiltonian by H(Qi, Pi, t) =
∑

i PiQ̇i −L(Qi, Q̇i, t), where L(Qi, Q̇i, t)
is the Lagrangian in the new coordinates. Assuming that the variations in qi and
Qi vanish at the end-points, use Hamilton’s principle of least action to verify that
the coordinate transformation is canonical, i.e. it preserves the form of Hamilton’s
equations of motion, if there exists a function G = G(qi, Qi, t) such that

dG

dt
= L(qi, q̇i, t)−L(Qi, Q̇i, t).

[6]

(c) By using the above expression for dG/dt, or otherwise, show that if
H(Qi, Pi, t) = H(qi, pi, t) then the coordinate transformation is canonical if

∑

i

pi dqi −
∑

i

Pi dQi

is an exact differential. [5]

(d) In the general case in which the relationship H(Qi, Pi, t) = H(qi, pi, t) may not
hold, show that

pi =
∂G

∂qi
, Pi = − ∂G

∂Qi

, H−H =
∂G

∂t
.

Hence show that Hamilton’s equations of motion in the new coordinates may be
brought into the trivial form Q̇i = 0 and Ṗi = 0, if G is chosen to satisfy

∂G

∂t
+H

(

qi,
∂G

∂qi
, t

)

= 0. (∗)

[6]

(e) The Hamiltonian for a one-dimensional harmonic oscillator of mass m and
natural frequency ω has the form

H =
p2

2m
+

mω2q2

2
.

By assuming that G = G1(q) +G2(t) in Eq. (∗) above, show that

G =
∫

√

2m(β − 1
2
mω2q2) dq − βt,

A
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where β is a constant. By identifying the new coordinate Q = β, obtain the form
of the new generalised momentum coordinate P and hence show that

q =

√

2β

mω2
sin ω(t− γ),

where γ is a constant. [10]

4 The Lagrangian density for a free complex scalar field φ of mass m is

L = (∂µφ
∗)(∂µφ)−m2φ∗φ,

where φ and φ∗ are considered as independent fields.

(a) Obtain the equations of motion for the fields φ and φ∗ and use them to show
that ∂µj

µ = 0, where
jµ = iq(φ∗∂µφ− φ∂µφ∗)

and q is a real constant. [4]

(b) Use Noether’s theorem to verify that the invariance of L under the global phase
transformation φ′(x) = e−iqαφ(x), with α a real constant, implies that ∂µj

µ = 0. [4]

(c) The Lagrangian density for the interaction of a complex scalar field φ of mass
m with the electromagnetic field Aµ is

L̂ = (D̄µφ
∗)(Dµφ)−m2φ∗φ− 1

4
F µνFµν ,

where Dµφ = (∂µ + iqAµ)φ, D̄µφ
∗ = (∂µ − iqAµ)φ

∗ and Fµν = ∂µAν − ∂νAµ. Show
that the equation of motion for the electromagnetic field Aµ is ∂µF

µν = Jν , where

Jµ = iq(φ∗Dµφ− φD̄µφ∗),

and hence show that ∂µJ
µ = 0. [10]

(d) Show that L̂ is invariant under the local phase transformation
φ′(x) = e−iqα(x)φ(x), provided A′

µ(x) = Aµ(x) + ∂µα(x). [7]

(e) Hence use Noether’s theorem to verify that ∂µJ
µ = 0. [8]

5 Consider the Klein-Gordon Lagrangian density for a complex scalar field in
Minkowski space, coupled to an external (static) electromagnetic field and to a
time-dependent driving force

L = (∂µφ
∗) (∂µφ)−m2φ∗φ+ ieAµ [φ∂

µφ∗ − φ∗∂µφ] + f(t) (φ+ φ∗)

where Aµ is a function of the space coordinates r but is independent of time.
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(a) Show that the Euler-Lagrange equations in the Lorenz gauge (∂µA
µ = 0) can

be written as
∂µ∂

µφ+ 2ieAµ(r)∂µφ+m2φ = f(t)

and equivalently for φ∗. [8]

(b) The Green’s function G(r, r′; t, t′) is a solution of the above equation of motion
when the right hand side is replaced by δ(t− t′)δ(3)(r − r

′). Using the following
sign convention for the Fourier transform,

G(r, r′; t, t′) =
∫

dω

2π

∫

d3k

(2π)3
G(k;ω) e−iω(t−t′)+ik·(r−r′) ,

show that G(k;ω) satisfies the equation

[

−ω2 + k2 +m2
]

G(k;ω) + 2e
∫

d3k′

(2π)3

[

A0(k − k
′)ω −A(k − k

′) · k′
]

G(k′;ω) = 1

where Aµ(k) =
∫

Aµ(r)e−ik·r d3r. [10]

(c) Inverting the above equation to find G(k;ω) is in general difficult. Consider
the simplified (although unphysical) case where A(k − k

′) = 0 and
A0(k − k

′) = (2π)3 iγ δ(3)(k − k
′). Show that one can then obtain G(k; t, t′) from

the integral [3]

G(k; t, t′) =
∫

dω

2π

e−iω(t−t′)

−ω2 + 2eγiω + k2 +m2

Discuss the location of the poles as a function of k, for fixed m, e, and γ. Draw
schematically where they appear in the complex ω plane for k2 +m2 > e2γ2 and
for k2 +m2 < e2γ2. What happens when k2 +m2 = e2γ2? [8]

(d) Assume that k2 +m2 > e2γ2. Using contour integration and Cauchy’s theorem,
compute G(k; t, t′) for t > t′ as well as t < t′. Justify your choice of contour in each
case. [4]

6 Consider the Landau free energy expansion of a system with complex order
parameter φ(x) in 1D:

βH =
∫

f dx =
∫
[

aφ∗φ+
1

2
(φ∗φ)2 + c (∂xφ

∗) (∂xφ) + d
(

∂2
xφ

∗
) (

∂2
xφ
)

]

dx

with the coefficients a, c, d real.

(a) When c > 0 (and you may as well set d = 0), this is equivalent to the free
energy expected for an Ising ferromagnet, except that the order parameter is now
complex. Find the physical state of the system as a function of the coefficients in
the free energy and discuss the nature of the phase transition. [6]
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What type of symmetry is spontaneously broken at this transition? Compute the
dependence of the order parameter on the coefficient a close to the transition, in
the ordered phase. [6]

(b) Compute the behaviour of the zero-field magnetic susceptibility
χ = (∂φ/∂B)|B=0 close to the transition (both above and below). Once again,
assume c > 0 and d = 0. Consider the case of a magnetic field B pointing along
the real axis in the complex φ plane, i.e., add the term −B(φ+ φ∗)/2 to the free
energy given above, with B real. [6]

(c) Let us then set d = 1 and consider the general case where c is allowed to take
on negative as well as positive values. Assume that the order parameter takes the
form φ(x) = φ0e

i(kx+δ), where φ0 > 0, k and δ are real constants. Find the values
that these constants need to take in order to minimize the free energy, as a
function of the coefficients a and c. [12]
Hint: substituting the given form for φ(x) into the free energy:

f
∣

∣

∣

φ(x)=φ0ei(kx+δ)
= aφ2

0 +
1

2
φ4
0 + ck2φ2

0 + k4φ2
0,

obtain the location of the extrema using partial derivatives with respect to φ0 and
k; then, compare the values of the free energy at these extrema to find which is the
absolute minimum.
What happens to the dependence on δ? How does it relate to the type of symmetry
that is spontaneously broken across the transition considered in part (b)? [3]

END OF PAPER
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