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Answers

1 Consider a double pendulum composed of two masses m1 and m2 attached to
two rigid massless rods of equal length ℓ as illustrated in the figure. The two rods
are connected by a frictionless hinge at point B and the other end of the first rod
is pinned by a frictionless hinge to rotate about point A. A massless spring of
elastic constant κ connects the ends points A and C.
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(a) [book work] Consider the case m1 = m2 = m. The angle between the two
rods is π/2− θ + π/2 + φ = π + φ− θ and thus the distance between points A and
C is 2ℓ sin[π/2 + (φ− θ)/2] = 2ℓ cos[(φ− θ)/2]. The positions of mass m1 and m2

are given by

r1 = ℓ(sin θ,− cos θ) r2 = r1 + ℓ(sinφ,− cosφ).

Therefore, the kinetic and potential energies of the system can be written as

T = mℓ2θ̇2 +mℓ2θ̇φ̇ cos(θ − φ) + 1
2
mℓ2φ̇2

V = −2mgℓ cos θ −mgℓ cosφ+ 2κℓ2 cos2
(

θ−φ
2

)

,
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where we used the trigonometric relation cos(θ) cos(φ) + sin(θ) sin(φ) = cos(θ − φ).
Expanding to second order in θ, φ, θ̇, and φ̇, after a few lines of algebra, we obtain

T = mℓ2
[

θ̇2 + θ̇φ̇+ 1
2
φ̇2
]

V = mgℓθ2 + 1
2
mgℓφ2 − 1

2
κℓ2 (φ− θ)2 ,

where we ignored irrelevant constants in V (θ, φ). These in turn give the expected
Lagrangian [9]

L = mℓ2
(

θ̇2 + θ̇φ̇+
1

2
φ̇2
)

−mgℓ
(

θ2 +
1

2
φ2
)

+
1

2
κℓ2 (θ − φ)2 .

(b) [part book work, part new] In order to write the Euler-Lagrange equations,
we compute

∂L
∂θ

= −2mgℓθ + κℓ2(θ − φ)
∂L
∂φ

= −mgℓφ− κℓ2(θ − φ)
∂L
∂θ̇

= mℓ(2θ̇ + φ̇)
∂L
∂φ̇

= mℓ(φ̇+ θ̇),

to obtain
{

mℓ2(2θ̈ + φ̈) = −2mgℓθ + κℓ2(θ − φ)

mℓ2(φ̈+ θ̈) = −mgℓφ− κℓ2(θ − φ).

For convenience, we introduce the two frequencies ω2
0 = g/ℓ and ω2

1 = κ/m and
re-write the equations of motion as

{

2θ̈ + φ̈+ 2ω2
0θ − ω2

1(θ − φ) = 0

φ̈+ θ̈ + ω2
0φ+ ω2

1(θ − φ) = 0.

An oscillatory solution where θ and φ have the same frequency and satisfy
the initial conditions θ(0) = −φ(0) = ξ and θ̇(0) = φ̇ = 0 takes the form

θ(t) = ξ cos(ωt)
φ(t) = −ξ cos(ωt).

Substituting into the equations of motion and cancelling out the common factor of
cos(ωt),

{

−ω2 + 2ω2
0 − 2ω2

1 = 0
−ω2

0 + 2ω2
1 = 0

we immediately see that a solution exists only if ω2
0 = 2ω2

1 (i.e., if g/ℓ = 2κ/m), in
which case ω = 2ω2

1 = ω2
0. The initial conditions correspond to the two masses at

rest with the first rod at an angle ξ, say, to the right of the vertical and the second
rod at an opposite angle. Since the two rods have the same length, this means that
the mass m2 lies exactly underneath the hinge at A. The latter condition holds
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throughout the motion of the pendulum, where the mass m1 swings from side to
side whereas the mass m2 only moves up and down. [7]

(c) [book work] If m1 = 0, m2 = m, the Lagrangian of the system can be
obtained in a similar manner,

T = mℓ2
(

1
2
θ̇2 + θ̇φ̇+ 1

2
φ̇2
)

V = 1
2
mgℓθ2 + 1

2
mgℓφ2 − 1

2
κℓ2 (φ− θ)2

L = 1
2
mℓ2

(

θ̇ + φ̇
)2 − 1

2
mgℓ (θ2 + φ2) + 1

2
κℓ2 (θ − φ)2 .

The Euler-Lagrange equations of motion are

{

mℓ2(θ̈ + φ̈) +mgℓθ − κℓ2(θ − φ) = 0

mℓ2(θ̈ + φ̈) +mgℓφ+ κℓ2(θ − φ) = 0
,

which can be readily re-written in terms of η = θ + φ and ν = θ − φ by taking the
sum and difference of the two equations,

{

η̈ + ω2
0η = 0

(ω2
0 − ω2

1) ν = 0
,

where this time we defined ω2
0 = g/2ℓ and ω2

1 = κ/m. [Note the factor of 2 in the
new definition of ω0 with respect to the definition used in part (b) above]. In the
new variables, the two equations are decoupled since each variable appears in one
and only one of them. The variable η follows simple harmonic motion whereas
ν = 0.

If we set ω0 = ω1, the variable ν is undetermined by the equations of motion.
Had we made the change of variables θ, φ → η, ν at the Lagrangian level, we would
have indeed noticed that L is then independent of ν. This is of course an artefact
of the second order expansion. [5]

(d) [part book work, part new] Let us consider the Fourier transform of the
equation in the paper,

η̈ + γη̇ + ω2
0η =

{

0 t < 0
Ae−αt t ≥ 0

,

where A is a constant of dimensions (time)−2:

−ω2η̂ + iωγη̂ + ω2
0 η̂ =

∫

dtAe−αte−iωt Θ(t) =
−iA

ω − iα
,

(using the chosen definition of Fourier transform). The Green’s function of the left
hand side is nothing but

−1

ω2 − iωγ − ω2
0

=
−1

(ω − iγ/2− ω) (ω − iγ/2 + ω)
,
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where ω =
√

ω2
0 − γ2/4 (which is a real number as we are working under the

assumption that ω0 > γ/2).
A solution to the equation of motion is thus given in reciprocal space by

η̂(k) =
iA

(ω − iγ/2− ω) (ω − iγ/2 + ω) (ω − iα)
.

In order to obtain η(t) we need to compute the inverse Fourier transform

η(t) =
∫ dω

2π

iAeiωt

(ω − iγ/2− ω) (ω − iγ/2 + ω) (ω − iα)
,

which can be done via Cauchy integration of the three simple poles at

ω1 = iγ/2 + ω
ω2 = iγ/2− ω
ω3 = iα.

Notice that all the poles are above the real axis. For t < 0 we ought to close the
contour in the lower half plane; the path encircles no poles and the integral
vanishes: η(t) = 0 for t < 0. For t > 0, the path is in the upper half plane and it
encloses all three poles, leading to the solution:

η(t) = A

{

−eiωt−γt/2

2ω(ω + iγ/2− iα)
+

e−iωt−γt/2

2ω(−ω + iγ/2− iα)
− e−αt

(ω + iγ/2− iα)(−ω + iγ/2− iα)

}

= A
(−ω + iγ/2− iα)eiωt−γt/2 − (ω + iγ/2− iα)e−iωt−γt/2 + 2ωe−αt

2ω [ω2 + (α− γ/2)2]

= A
ω cos(ωt)e−γt/2 − (γ/2− α) sin(ωt)e−γt/2 + ωe−αt

ω [ω2 + (α− γ/2)2]

A general solution of the differential equation we are interested in can alternatively
be produced by summing the solution of the relative homogeneous problem
(η̈ + γη̇ + ω2

0η = 0) to a specific solution of the full equation (which can be guessed
of the form Ce−αt and C = A/(α2 − γα + ω2

0) is readily obtained):

η(t) = C1 cos(ωt)e
−γt/2 + C2 sin(ωt)e

−γt/2 +
Ae−αt

α2 − γα + ω2
0

.

Observing that ω2 + (α− γ/2)2 = α2 − γα + ω2
0, the last term in the solution

obtained via the Green’s function is clearly the same as the one in the general
solution. The remaining two terms are of the same form in both solutions. A quick
calculation shows that the solution obtained via Green’s function satisfies η(0) = 0
and η̇(0) = 0. [12]
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2 Consider two charged particles of mass m1 and m2 and of charge
e1 = −e2 = e constrained to move in the x− y plane in presence of a magnetic field
perpendicular to the plane, B = Bẑ. The two particles interact via the Coulomb
potential V (r) = −e2/r, r = |r1 − r2|.
(a) [part book work, part new] Using the inverse relations
r1,2 = R∓m2,1r/M , the kinetic energy of the system can be written as

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 =

M

2
Ṙ

2
+

µ

2
ṙ2,

where R = (m1r1 +m2r2)/M , M = m1 +m2, r = r2 − r1, and µ = m1m2/M .
With the suggested gauge choice A(r) = (B × r)/2, the potential energy of

the system is

V = − e2

|r1 − r2|
− eṙ1 ·A(r1) + eṙ2 ·A(r2)

= −e2

r
− e

2

(

Ṙ− m2

M
ṙ

)

·
[

B ×
(

R− m2

M
r

)]

+
e

2

(

Ṙ+
m1

M
ṙ

)

·
[

B ×
(

R+
m1

M
r

)]

= −e2

r
+

e

2

m1 −m2

M
ṙ · (B × r) +

e

2
Ṙ · (B × r) +

e

2
ṙ · (B ×R)

= −e2

r
+

e

2

m1 −m2

M
ṙ · (B × r) +

e

2
Ṙ · (B × r)− e

2
R · (B × ṙ)

= −e2

r
+

e

2

m1 −m2

M
ṙ · (B × r) + eṘ · (B × r)− e

2
Ṙ · (B × r)− e

2
R · (B × ṙ) ,

where we used the cyclic property of A · (B ×C). Notice that the last two terms
can be neglected as they are proportional to the total time derivative of
R · (B × r) and thus contribute only vanishing boundary terms. The Lagrangian
can be written as

L =
M

2
Ṙ

2
+

µ

2
ṙ2 +

e2

r
− e

2

m1 −m2

M
ṙ · (B × r)− eṘ · (B × r) ,

as expected. [10]

(b) [book work] In order to obtain the Hamiltonian of the system we need to
evaluate

H = p · ṙ + P · Ṙ− L

as a function of p, P , r, and R, using the relations

p =
dL

dṙ
= µṙ − e∗B × r

and

P =
dL

dṘ
= MṘ− eB × r.
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Substituting into the expression for H one gets

H =
p

µ
·(p+ e∗B × r)+

P

M
·(P + eB × r)− 1

2M
(P + eB × r)2− 1

2µ
(p+ e∗B × r)2

−e2

r
+

e∗

µ
(p+ e∗B × r) · (B × r) +

e

M
(P + eB × r) · (B × r) ,

which gives, after some algebra,

H =
[P + e (B × r)]2

2M
+

[p+ e∗ (B × r)]2

2µ
− e2

r
.

The Hamiltonian does not depend directly on time and therefore the energy
of the system is conserved. Moreover, the Hamiltonian does not depend on R and
thus P is conserved. [6]

(c) [part book work, part new] If we set P = 0 and observe that |B × r| = Br,
the Hamiltonian reduces to

H =
p2

2µ
+

e∗

µ
p · (B × r)− e2

r
+

e2B2r2

2M
+

(e∗)2B2r2

2µ

=
p2

2µ
+

e∗

µ
p · (B × r)− e2

r
+

e2B2r2

8µ
.

Hamilton’s equations of motion are therefore

ṗx = −dH

dx
= −e∗

µ
pyB − e2

r3
x− e2B2x

4µ

ṗy = −dH

dy
=

e∗

µ
pxB − e2

r3
y − e2B2y

4µ

ẋ =
dH

dpx
=

px
µ

− e∗

µ
By ẏ =

dH

dpy
=

py
µ

+
e∗

µ
Bx,

where r = (x, y). [6]

(d) [part book work, part new] From the last two equations of motion we can
obtain an expression for px and py, respectively, as a function of x, y and their time
derivatives. Taking the time derivative of the same expressions, we obtain similarly
the dependence of ṗx and ṗy. Substituting these expressions into the first two
equations of motion, we obtain







µẍ+ e∗Bẏ = −e2B2

4µ
x− e2

r3
x− e∗B

µ
(µẏ − e∗Bx)

µÿ − e∗Bẋ = −e2B2

4µ
y − e2

r3
y + e∗B

µ
(µẋ+ e∗By) ,
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and with a few simplifications,
{

µẍ+ 2e∗Bẏ = −e2B2

M
x− e2

r3
x

µÿ − 2e∗Bẋ = −e2B2

M
y − e2

r3
y.

Using the solutions for x and y suggested in the paper,
{

x = R cos(ωt)
y = R sin(ωt),

with R, ω constant, the two equations above reduce to the same equation

µω2 − 2e∗Bω − e2B2

M
− e2

R3
= 0

which always admits real-valued solutions for ω (recall that M , R, and µ are
positive). This demonstrates that the suggested time dependence of r, whereby one
particle moves in a perfect circle at constant angular velocity in the reference frame
of the other particle, is indeed a solution of the equations of motion. This solution
is consistent with the expectation that charged particles moving in the x− y plane
subject to a magnetic field perpendicular to the plane follow circular trajectories.
It is also consistent with the centrosymmetric Coulomb potential between two
charged particles, which admits solutions in the form of circular orbits.

The values of ω for which the suggested time dependence is a solution of the
equations of motion are given by

ω =
e∗B ±

√

(e∗)2B2 + µ
(

e2B2

M
+ e2

R3

)

µ
.

[11]

3 A dynamical system with Hamiltonian H is described by independent
coordinates qi (i = 1, ..., n) and corresponding generalised (canonical) momenta pi.

(a) [book work] The Poisson Bracket (PB) {f, g} of two functions f(qi, pi, t) and
g(qi, pi, t) that depend on the generalised coordinates and on time is defined by

{f, g} =
n
∑

i=1

(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

,

where in the partial derivatives all the other coordinates, canonical momenta and
time are held fixed. From now on we use the summation convention and introduce
a shorthand notation ∂qif = ∂f/∂qi etc.

Suppose that g = qj , then ∂qig = δij and ∂pig = 0 and similarly for g = pj.
Hence

{f, qj} = − ∂f

∂pj
, {f, pj} = +

∂f

∂qj
,
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and using the second of these relationships with f = qi gives {qi, pj} = δij , as
expected. This can also of course be obtained directly from the PB definition.

Hamilton’s equations of motion are

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H
∂pi

.

Hence
df

dt
=

∂f

∂t
+

∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

and substituting for the coordinate time derivatives immediately gives the required
result:

df

dt
=

∂f

∂t
+ {f,H}.

Substituting h = H in the Jacobi Identity:

{H, {f, g}} = −{f, {g,H}} − {g, {H, f} = {f, ∂g
∂t

} − {g, ∂f
∂t

} =
∂

∂t
{f, g}

and therefore h = {f, g} satisfies the same equation as f and g.

(b) A new set of coordinates and momenta (Qi, Pi) is defined by

Qi = Qi(qj , pj), Pi = Pi(qj , pj), i = 1, ..., n.

A necessary and sufficient condition for this transformation to be canonical is
{Qi, Pj} = δij , {Qi, Qj} = 0, {Pi, Pj} = 0, where as before the partial derivatives
are with respect to the qi and pi.

For a system with two degrees of freedom, two new coordinates are defined by

Q1 = q21 , Q2 = q1 + q2.

Then

0 = {Q1, P2} = 2q1∂p1P2 ⇒ ∂p1P2 = 0

0 = {Q2, P1} = ∂p1P1 + ∂p2P1

1 = {Q1, P1} = 2q1∂p1P1

1 = {Q2, P2} = ∂p1P2 + ∂p2P2 = ∂p2P2.

The first of these implies P2 = F (q1, q2, p2) and the fourth then implies
P2 = p2 + f(q1, q2). The third implies P1 = p1/(2q1) +G(q1, q2, p2) and then the
second implies P1 = (p1 − p2)/(2q1) + g(q1, q2).

We further need to impose

0 = {Q1, Q2} (trivially satisfied)

0 = {P1, P2} = ∂q2g −
1

2q1
∂q1f +

1

2q1
∂q2f.
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A particular choice that reduces the Hamiltonian

H =

(

p1 − p2
2q1

)2

+ p2 + (q1 + q2)
2

to
H = P 2

1 + P2

is evidently
P1 = (p1 − p2)/(2q1), P2 = p2 + (q1 + q2)

2,

which corresponds to g = 0 and f = (q1 + q2)
2 (one can immediately verify that it

satisfied all the conditions above).

4 (a) [book work] The Lagrangian density for a triplet of real scalar fields in
3 + 1 space-time dimensions, ϕa(t, x1, x2, x3) with a = 1, 2, 3, is

L =
1

2
(∂µϕa)(∂

µϕa)−
1

2
λϕaϕa,

where ∂µ = (∂/∂t,−∂/∂x1,−∂/∂x2,−∂/∂x3). We use the Euler-Lagrange
equations in the form (see lectures)

∂L
∂ϕa

=
∂

∂t

(

∂L
∂(∂ϕa/∂t)

)

+
3
∑

i=1

∂

∂xi

(

∂L
∂(∂ϕa/∂xi)

)

, (a = 1, 2, 3),

to obtain the field equations of motion

∂µ∂
µϕa ≡

∂2ϕa

∂t2
− ∂2ϕa

∂x2
1

− ∂2ϕa

∂x2
2

− ∂2ϕa

∂x2
3

+ λϕa = 0, (a = 1, 2, 3).

(b) To show that L is invariant under the infinitesimal SO(3) rotation by an
angle θ

ϕa → ϕa + θǫabcnbϕc

where na is an arbitrary unit vector and ǫabc is the three-dimensional Levi-Civita
symbol, we consider

δL =
1

2
(∂µδϕa)(∂

µϕa) +
1

2
(∂µϕa)(∂

µδϕa)− λϕaδϕa,

where we have kept only first-order terms in δϕa. Now using δϕa = θǫabcnbϕc, we
note that

ϕaδϕa = θǫabcnbϕaϕc = 0

because the product of the ϕ fields is symmetric in indices a, c, while the
Levi-Civita tensor is antisymmetric. Similarly

∂µϕa∂
µδϕa = θǫabcnb∂µϕa∂

µϕc = 0

A
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for the same reason. Hence δL = 0 under this particular transformation.
(c) [book work] From lectures, the Noether current Jµ corresponding to a

symmetry of the Lagrangian density is derived as follows. Suppose that the
Lagrangian is invariant under the transformation symmetry under a
transformation of the form

ϕa → ϕa + δϕa

where δϕa is infinitesimal. Symmetry means that L does not change:

0 = δL =
∂L
∂ϕa

δϕa +
∂L

∂(∂ϕa/∂xi)
δ(∂ϕa/∂xi) +

∂L
∂ϕ̇a

δϕ̇a,

where summation over i and a is understood. The Euler-Lagrange equations of
motion (see above) then imply that

δL =
∂

∂xi

(

∂L
∂(∂ϕa/∂xi)

)

δϕa +
∂L

∂(∂ϕa/∂xi)

∂

∂xi
(δϕa)

+
∂

∂t

(

∂L
∂ϕ̇a

)

δϕa +
∂L
∂ϕ̇a

∂

∂t
(δϕa) = 0

⇒ ∂

∂xi

(

∂L
∂(∂ϕa/∂xi)

δϕa

)

+
∂

∂t

(

∂L
∂ϕ̇a

δϕa

)

= 0

⇒ ∂

∂xµ

(

∂L
∂(∂ϕa/∂xµ)

δϕa

)

= 0.

This then implies the existence of a conserved Noether current, ∂µJ
µ = 0, where

Jµ ∝
∑

j

∂L
∂(∂µϕa)

δϕa.

By substituting for the δϕa given above, keeping only linear terms in θ, and
dropping the overall factor of θ, we obtain the Noether current in this case,

Jµ = ǫabcnb(∂
µϕa)ϕc,

which satisfies ∂µJ
µ = 0. The corresponding continuity equation is

∂ρ

∂t
+∇ · J = 0,

with
ρ = ǫabcnbϕ̇aϕc, J = ǫabcnb(∇ϕa)ϕc.

Now take
∫

d3x (over all space) of the continuity equation. The term
∫

d3x∇ · J =
∫

S∞

dS · J vanishes by the assumed vanishing of the fields as

A
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|x| → ∞. Hence

0 =
∫

d3x
∂ρ

∂t
=

d

dt

∫

d3x ǫabcnbϕ̇aϕc

= nb
d

dt

∫

d3x ǫabcϕ̇aϕc

= −nb
dQb

dt
where Qb =

∫

d3x ǫbacϕ̇aϕc

Now na is an arbitrary unit vector, and hence naXa = 0 ⇒ Xa = 0. Hence the
three quantities

Qa =
∫

d3x ǫabc
∂ϕb

∂t
ϕc

are all conserved.
To verify this directly using the field equations, we take

dQa

dt
=

∫

d3x ǫabc
∂

∂t
(ϕ̇bϕc)

=
∫

d3x ǫabc (ϕ̈bϕc + ϕ̇bϕ̇c)

=
∫

d3x ǫabcϕ̈bϕc.

where we have used the antisymmetry/symmetry of the tensors to drop the second
term in the penultimate line. Substituting for ϕ̈b from the field equations, and
again noting that the term proportional to ϕbϕc vanishes by
antisymmetry/symmetry, we have

dQa

dt
=

∫

d3x ǫabc(∇2ϕb)ϕc

=
∫

d3x ǫabc [∇ · ((∇ϕb)ϕc)− (∇ϕb) · (∇ϕc)]

Now the first term inside the integral vanishes because, by the Divergence
Theorem, it corresponds to a surface integral at infinity, under the assumption that

the fields vanish there, and the second term vanishes by antisymmetry/symmetry
on the indices b, c. Thus we have verified directly that the quantities Qa are indeed
conserved.

5 The non-linear version of the Klein-Gordon Lagrangian density for a scalar
field φ(x, t) is given by

L =
1

2

(

∂φ

∂t

)2

− 1

2

(

∂φ

∂x

)2

+ F (φ) ,

where F (φ) is a differentiable function of its argument.
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(a) The Euler-Lagrange equations for the fields φ are

∂L
∂φ

− ∂

∂x

(

∂L
∂φ′

)

− ∂

∂t

(

∂L
∂φ̇

)

= 0,

where ′ and ˙ denote partial derivatives with respect to x and t respectively.
Substituting for L then gives

f(φ) +
∂2φ

∂x2
− ∂2φ

∂t2
= 0,

where f(φ) = F ′(φ). This is the result to be proved.
Define

φ1 = φ(x cosh β + t sinh β, t cosh β + x sinh β).

Then
∂φ1

∂x
= cosh βφ′ + sinh βφ̇,

∂φ1

∂t
= sinh βφ′ + cosh βφ̇.

and
∂2φ1

∂x2
= cosh2 βφ′′ + sinh2 βφ̈+ 2 coshβ sinh βφ̇′

∂2φ1

∂t2
= sinh2 βφ′′ + cosh2 βφ̈+ 2 cosh β sinh βφ̇′.

Subtracting these equations and using cosh2 β − sinh2 β = 1 then gives

∂2φ1

∂x2
− ∂2φ1

∂t2
= φ′′ − φ̈ = −f(φ) = −f(φ1),

and so φ1 satisfies the same partial differential equation as φ.

(b) Consider the particular case f(φ) = −aφ+ bφn, for positive constants a, b and
integer n > 1, and the function

w(x) =
[

A cosh2(Bx)
]

1

1−n .

To show that this is indeed a static solution of the equation we need to prove
w′′ − aw + bwn = 0, where w′ = dw/dx. Write p = 2/(1− n) < 0, then

w′ = Ap/2pB cosh(p−1)(Bx) sinh(Bx)

and

w′′ = Ap/2pB2
[

(p− 1) cosh(p−2)(Bx) sinh2(Bx) + coshp(Bx)
]

= Ap/2pB2
[

p coshp(Bx)− (p− 1) cosh(p−2)(Bx)
]

.

Therefore

w′′ − aw + bwn = Ap/2
[

(p2B2 − a) coshp(Bx)− p(p− 1)B2 cosh(p−2)(Bx)

+ Ap(n−1)/2b coshpn(Bx)
]

.
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Now pn = 2n/(1− n) = p− 2. Therefore to obtain a solution we require the
coefficients of coshp(Bx) and cosh(p−2)(Bx) to vanish, i.e.

B = ±
√
a

|p| = ±1

2

√
a(n− 1)

bAp(n−1)/2 = bA−1 = −p(p− 1)B2 = a(p− 1)/p = a(1 + n)/2

i.e.

A =
2b

a(n + 1)
, B = ±

√
a(n− 1)/2.

The function w(x) has a maximum value of w(0) = A1/(1−n) at x = 0 and
w → 0 as x → ±∞. As n → ∞, w(0) → 1.

By the first part of the question, the function

φ(x, t) = w(x coshβ − t sinh β),

is a solution of the full equation for any constant β. This has a maximum at
x cosh β − t sinh β = 0, i.e. x = vt where v = tanhβ > 0, since β is a positive
constant. This therefore corresponds to a travelling-wave solution moving with the
same shape in x and travelling in the positive x direction with uniform velocity v.

6 The Landau free energy expansion for a uniaxial ferromagnet in a magnetic
field can be written as

F = F0 − hm+
a

2
m2 +

b

4
m4.

(a) [book work] Phase transitions occur when a new state (ordered) state
develops from the disordered (high temperature) phase. The appearance of the
new state is typically described using an order parameter, say the magnetisation in
an Ising moded. Ginzburg-Landau theory provides a phenomenological description
of critical phenomena based on an appropriately coarse grained order parameter
m. It is constructed on the basis of symmetries rather than precise knowledge of
the microscopic properties of the system.

Near the transition temperature, where the order parameter vanishes, one
can expand the Ginzburg-Landau free energy in powers of m and its derivatives.
The latter often penalise spatial variations of the parameter m and thus one can
further simplify the free energy expansion by considering the case of uniform m, as
in this example.

In an expansion of the form

F = F0 − hm+
a

2
m2 +

b

4
m4

we require that b > 0 for the free energy to be bounded from below (b = 0 is
acceptable if a > 0); we also recognise the second term on the right hand side as an
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externally applied magnetic field; finally, we also know that a transition in this free
energy occurs when a changes sign (and therefore a(Tc) = 0). [4]

(b) [book work] The magnetisation of the system scales like a power law of the
applied field along the critical isotherm (for small fields), and the exponent is 1/δ.

Along the critical isotherm T = Tc, a(Tc) = 0 and

F (Tc) = F0 − hm+
b

4
m4.

The equilibrium value of m can be obtained from the equation ∂F/∂m = 0,

∂F (Tc)

∂m
= −h+ bm3 = 0 ⇒ m =

3

√

h

b

and therefore δ = 1/3. [6]

(c) [part book work, part new] The dependence of the magnetisation on the
applied field and temperature can be obtained as above,

∂F (T )

∂m
= −h + a(T )m+ b(T )m3 = 0.

However, rather than solving for m, it is convenient to take a further derivative
with respect to h:

∂2F (T )

∂h∂m
= −1 + a(T )χ+ 3b(T )m2χ = 0 ⇒ χ =

1

a(T ) + 3b(T )m2
.

For t > 0 (T > Tc), we know that m = 0 and therefore χ = a(T )−1.
For t < 0, m 6= 0 and we can re-write the first equation as

b(T )m2 =
h− a(T )m

m
.

Substituting into the expression for χ, one obtains

χ =
1

a(T ) + 3(h/m− a(T ))

∣

∣

∣

∣

∣

h=0

=
1

−2a(T )
=

1

2|a(T )| ,

where we used the fact that a(T ) is negative for T < Tc.
Finally, it is straightforwad to combine these results and show that

lim
t→0+

χ(t)

χ(−t)
=

2|a(−t)|
a(t)

= 2,

where we used knoweldge of the fact that a(T ) ∝ (T − Tc)/Tc for T close to Tc. [8]
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(d) [new] Once we add dm3/3 to the free energy F and set h = 0,

F = F0 +
a

2
m2 +

d

3
m3 +

b

4
m4,

the equilibrium value of the magnetisation is given by

∂F

∂m
= 0 = am+ dm2 + bm3,

which admits solutions of the form

m = 0 and m =
−d±

√
d2 − 4ab

2b
.

The latter of course are acceptable only if d2 > 4ab.
By looking at the form of the second derivative with respect to m,

∂2F

∂m2
= a + 2dm+ 3bm2,

we see immediately that the sign at m = 0 is controlled solely by the parameter a:
if a > 0 then m = 0 is a minimum; if a < 0, it is a maximum.

If a < 0, the other two solutions of ∂F/∂m = 0 are acceptable (d2 > 4ab) and
therefore they both have to be minima (observe that in this case the two solutions
lie on opposite sides of m = 0, and that F (m) → +∞ for m → ±∞).

If a > 0, then the other two solutions (if they exist) are either both positive
or both negative. They are thereofore a maximum and a minimum, respectively.
So long as d is sufficiently small however, the global minimum remains at m = 0
(one can check that this is indeed the case for d < 9ab/2). The case of larger
values of d can well be studied using this very same approach but it is more
involved and beyond the scope of the question.

Similarly to the case d = 0 considered in the lectures, it is the sign of a that
drives a transition from a state with m = 0 to a state with m 6= 0. However, the
cubic term introduces two major changes: (i) the symmetry in the ordered phase is
broken explicitely, since m = (−d−

√
d2 − 4ab)/(2b) has a lower free energy than

m = (−d+
√
d2 − 4ab)/(2b); (ii) the change in the order parameter across the

critical point a = 0 is discontinuous, hence the transition has become first order. [15]

END OF PAPER

A


