NATURAL SCIENCES TRIPOS Part II

Wednesday 16 January 2013 10.30am to 12.30pm

THEORETICAL PHYSICS 1

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains siz sides and is accompanied
by a booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

1 Consider a double pendulum composed of two masses m; and my attached to
two rigid massless rods of equal length ¢, as illustrated in the figure. The two rods
are connected by a frictionless hinge at point B and the other end of the first rod
is pinned by a frictionless hinge to rotate about point A. A massless spring of
elastic constant x connects the end points A and C.

A

(a) Consider the case m; = my = m. Derive the Lagrangian of the system as a
function of the angles # and ¢. Expand it to second order assuming that both
angles as well as their time derivatives are small. Show that the result can be

written as

. o1 1 1
L= mf® <92 L+ §¢2> — gt <92 + 5&) +onl (0 - 9)
up to irrelevant constants.
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(b) From the Euler-Lagrange equations, derive the equations of motion. For what

value(s) of the parameters is there a solution where both 6 and ¢ oscillate with the

same frequency, and satisfy the initial conditions 6(0) = —¢(0) = &,
0(0) = ¢(0) = 07 [Note: the generic solution is much more involved!] Describe in
words the resulting motion of the pendulum.

(c) Obtain the Lagrangian for the case m; = 0, my = m. Show that the
Euler-Lagrange equations of motion in this case can be written in terms of the
variables n =0+ ¢ and v =0 — ¢,

i +win =0
(Wf —wi)v=0"

where wg = ¢/2¢ and w} = k/m. Comment briefly on the nature of the resulting
motion and what happens if wg = w;.

(d) We now add a friction term to the equations of motion in case (c) above,
¥0 + v = yn, v > 0, and a time-dependent external force exp(—at), a > 0, that
couples only to the sum of the two angles for ¢t > 0:

L 0 t<0
n+7n+wgn={Ae_at £ 0

where A is a constant of dimensions (time)~2.
Find the Green’s function for n(t) by solving the equation

i+ yn + win = 6(t — ')

via the Fourier transform

i) = [die ), )= [ Seriw)

~Joor

assuming that wy > /2. Use it to obtain a solution to the equation
i+ 1+ win = Ae"'O(1),

where ©(t) is the Heaviside theta function, and show that the result corresponds
to the choice of initial conditions 7(0) = 0 and 77(0) = 0 in the expected general
solution

Aefat

t) = Cy cos(@t)e 2 + Cysin(@t)e " +
n(t) 1 cos(@t)e + Cysin(wt)e +a2—7a+w8’

where W = y/wg — ~2/4.
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2 Consider two charged particles of mass m; and ms, charge e; and ey with

e; = —ey = €, and position vectors r; and ry that are constrained to move in the
x —y plane in the presence of a magnetic field perpendicular to the plane, B = BZ2.
The two particles interact via the Coulomb potential V(r) = —e?/r, r = |r; — 3.

(a) Introduce the centre of mass and relative position coordinates

R:—m1r1+m2r2, T=1"ry— T, M =my + ma,
M
and write the Lagrangian of the system in the gauge A(r) = (B x r)/2. [Hint: it
may be convenient to keep the electromagnetic potential A in its implicit vectorial
form A = (B x r)/2 rather than explicitly writing out each component.]
Show that, up to a total time derivative that can be neglected, the
Lagrangian can be written as

M . 2 .
L:?RQ‘FgT’Q‘F?—éTT(BX'I")-@R(BXT‘),

where = myms/M is the reduced mass.

(b) Obtain the Hamiltonian of the system and show that it can be written as

o [P+(3(B><'r)]2Jr p+e* (Bxr)> €
B 2M 24 r’

where e* = e(m; —ms)/2M. Use the form of the Hamiltonian to show that the
energy of the system and the momentum of the centre of mass are constants of the
motion.

(c) Working in the reference frame where P = 0, derive Hamilton’s equations of

motion. [Note that since 7 lies in the 2z — y plane and B is perpendicular to it,
then |B x r| = Br.]

(d) Use the first order differential equations of motion to derive second order
equations for z and y alone, r = (z,y):

_ e’B? e2

{ ux + 2e* By = B S

Show that these equations admit a solution of the form

x = Rcos(wt)
y = Rsin(wt),

with R, w constants. Comment on the corresponding motion of the two particles:
is it consistent with what you would expect for two particles moving in a magnetic
field and interacting via a centrosymmetric potential? Compute the dependence of
w on B and R.

(TURN OVER
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3 A dynamical system with Hamiltonian H is described by independent
coordinates ¢; (i = 1,...,n) and corresponding generalised (canonical) momenta p;.

(a) Explain what is meant by the Poisson Bracket {f, g} of two functions f(q;, p;,t)
and ¢(g;, pi,t) that depend on the generalised coordinates ¢; and p; and on time t.
Show that if one of the functions coincides with a coordinate ¢; or a
momentum p;, then the Poisson Bracket reduces to a partial derivative, and
therefore that {¢;, p;} = 0;;, where ¢;; is the Kronecker delta symbol.
Starting from Hamilton’s equations of motion, show that

df _of
Tl EJr{f,’H}.

Use the Jacobi Identity

{fi{g.h}y +{g,{h 1} +{h,{f,9}} =0

to show that if f and ¢ satisfy the relationships
af 99
=0 =
L UH =0, P g =0,

then so does h defined as h = {f, g}.
(b) A new set of coordinates and momenta (Q;, ;) is defined by

Qi = Qi(q5, pj), P, = P,(qj,p;), i=1,..,n.

What condition must the new coordinates satisfy in order that this transformation
is canonical, i.e. preserves the form of Hamilton’s equations of motion?
For a system with two degrees of freedom, two new coordinates are defined by

Q1 = qi, Q2= q1 + qa.

Find the most general expressions for the new generalised momenta
Pi(q1,q2,p1,p2) and Ps(q1, g2, p1, p2) such that the transformation is canonical.
Find a particular choice for the P; that reduces the Hamiltonian

2
H:<m “)+p2um+@f
2q:

to
H =P+ P
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4 The Lagrangian density for a triplet of real scalar fields in 3 + 1 space-time
dimensions, @, (t, 1, T2, x3) with a = 1,2, 3, is
1 " 1
L= §(au90a)(a Pa) — 5)\901190(1,

where O* = (9/0t, —0/0x1, —0/0xs, —0/0x3). Use the Euler-Lagrange equations
to derive the equations of motion for the fields ¢,.
Show that £ is invariant under the infinitesimal SO(3) rotation by an angle ¢

Pa — Pa + 6)eabcnbspca

where n, is an arbitrary unit vector and €4, is the three-dimensional Levi-Civita
symbol, i.e. €4 is 1 if (a,b, ) is an even permutation of (1,2,3), —1 if it is an odd
permutation, and 0 if any index is repeated.

Derive from first principles the Noether current J* corresponding to this
symmetry of the Lagrangian density.

Deduce that the three quantities

e
a — d3 abe c
Qu= [ ' e Tt
are all conserved and verify this directly using the field equations satisfied by the

wa- You should state explicitly any assumptions needed for this result to hold.

5 The non-linear version of the Klein-Gordon Lagrangian density for a scalar

field ¢(z,t) is given by
1o\ 1 (98)°
e=3(%) -3(5) o

where F'(¢) is a differentiable function of its argument.

(a) Show that the Euler-Lagrange equation for the system leads to the equation of
motion

Py 0%¢
ﬁ:@‘f‘f@)’

where f(6) = F'(6).

If ¢ = ¢(x,t) is a solution of this equation, show that the function
1 = ¢(x cosh 5 + tsinh 3, t cosh  + x sinh ),

where [ is an arbitrary constant, is also a solution.

(b) Consider the particular case f(¢) = —a¢ + bg™, for positive constants a, b and
integer n > 1. Determine the values of constants A and B for which the function

w(x) = [A cosh2(B;1:)} =
(TURN OVER for continuation of question 5
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is a (static) solution of the equation of motion.
Sketch this solution for —oo < 2 < +00 and several different values of n.
Hence show that

¢(z,t) = w(z cosh f — tsinh ),

where [ is a positive constant, is a travelling-wave solution and describe its
dependence on x and t.

6 The Landau free energy expansion for a uniaxial ferromagnet in a magnetic
field can be written as

b
F:Fo—hm+gm2+1m4,

where m is the magnetisation of the system and h represents an externally applied

magnetic field.
(a) Briefly discuss the origin of this expansion and what you know a priori about
(some of) the terms and their coefficients.

(b) Define and compute the exponent § along the critical isotherm.

(c) Compute the susceptibility x = (0m/0h)|,_, as a function of t = (T' — 1) /T,
both above (¢t > 0) and below (¢ < 0) the transition. Show that

x(t)

ti%}r x(—t)

(d) Add the term dm?3/3 to the free energy F for a generic real parameter d and
set h = 0. Discuss how the nature of the ordering transition is affected (you may
restrict the discussion to values of d < 9ab/2 as the solution for larger values of d
becomes more involved).

END OF PAPER
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