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THEORETICAL PHYSICS I

Answers

1 (a) Expressing the Earth’s Ẑ axis in terms of the rotating frame of
reference

Ẑ = cosλn̂+ sinλẑ.

The position of the mass m from the center of the Earth is

r = xn̂+ yŵ + (R + z)ẑ.

Hence

ΩẐ × r = −yΩ sinλn̂− ((R + z)Ω cosλ− xΩ sinλ)ŵ + yΩ cosλẑ

We are given that
vr = ẋn̂+ ẏŵ

and
vg = vr +Ω × r

Hence

vg = (ẋ− yΩ sinλ)n̂+ (ẏ − ((R + z)Ω cosλ− xΩ sinλ))ŵ + yΩ cosλẑ

so that, keeping terms Ωx,Ωy,Ω2R ∼ 10−5 and getting rid of terms
Ωx2, Ω2y2, Ωxy ∼ 10−10 as well as any constants we have

vg.vg ≈ ẋ2+ẏ2−2ẋyΩ sinλ+2ẏΩ(x sinλ−(R+z) cosλ−2Ω2Rx sinλ cosλ+const

We then have

T ≈ 1

2
m(ẋ2+ẏ2−2ẋyΩ sinλ+2ẏΩ(x sinλ−(R+z) cosλ−2Ω2Rx sinλ cosλ)+const

(b) Potential energy

V = mgz ≈ mglθ2/2 ≈ mg
x2 + y2

2l
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The correction due to the centrifugal force is

ΩẐ ×ΩẐ × r.ẑ ≈ −Ω2R cos2 λ

Hence

V ≈ m(g −Ω2R cos2 λ)
x2 + y2

2l

The Lagrangian has the form

L = T − V

Hence

L =
1

2
m(ẋ2+ẏ2−2ẋyΩ sinλ+2ẏΩ(x sinλ−(R+z) cosλ−2Ω2Rx sinλ cosλ))−mg̃

x2 + y2

2l

Euler Lagrange equations in x

∂L

∂x
= mẏΩ sinλ−mRΩ2 sinλ cosλ− mg̃x

l
(1)

d

dt

∂L

∂ẋ
= mẍ− ẏΩ sinλ (2)

Hence we have

ẍ− 2ẏΩ sinλ+
g̃

l
x+RΩ2 sinλ cosλ = 0

Euler Lagrange equations in y

∂L

∂y
= mẋΩ sinλ− mg̃x

l
(3)

d

dt

∂L

∂ẋ
= mÿ − 2mẋΩ sinλ (4)

Hence we have

ÿ + 2ẋΩ sinλ+
g̃

l
y = 0

Set x̃ = x− lRΩ2 cosλ sinλ/g̃ then equations of motion simplify to(
¨̃x
ÿ

)
+

(
0 −2Ω sinλ

2Ω sinλ 0

)(
˙̃x
ẏ

)
+

g̃

l

(
x̃
y

)
= 0 (5)

where, α is the projection of the Earth’s rotational velocity onto the ẑ axis,
β = g̃/l is the square of the reduced frequency of the pendulum, and x̃ is the
offset origin in the n̂ direction that results from the rotation of the Earth
causing the equilibrium position of the pendulum to move south.
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Taking the inverse of the matrix in the question and defining vectors r
and R (note the redefinition of r as the coordinate of the mass m in the
rotating frame)

r =

(
x̃
y

)
=

(
cosαt sinαt
− sinαt cosαt

)(
X
Y

)
= SR (6)

ṙ = ṠR+ SṘ (7)

r̈ = −α2SR+ 2ṠṘ+ SR̈ (8)

Substituting (6),(7) and (8) into (5) we get

R̈+ (β + α2)R = 0

This is the equation for simple harmonic motion.

ω2 =
g

l
− Ω2R cos2 λ

l
+ (Ω sinλ)2

Comparing orders of magnitude one has Ω2 ∼ 10−9 while Ω2R/l ∼ 10−3

hence

ω2 ≈ g

l
− Ω2R cos2 λ

l

The pendulum therefore executes simple harmonic motion in the rotating
frame X, Y with reduced frequency, this frame then slowly rotates at Ω sinλ.

(i) For λ = 0 we are at the equator and the two frames X, Y and x, y are
the same. The pendulum therefore appears to maintain the orientation of its
oscillation in the x,y frame but will have a lower frequency

ω2 ≈ g

l
− Ω2R

l

(ii) For λ = π/3.44 the pendulum oscillates at frequency

ω2 =
g

l
− Ω2R cos2 λ

l

in the X,Y frame. The rotation in the x,y, frame is at a frequency of Ω sinλ.

(iii) For λ = π/2 we have

ω2 ≈ g

l

The pendulum maintains its direction of oscillation in the Galilean reference
frame - relative to the distant stars.

2 A canonical transformation is a (possibly) mixed position and coordinate
transformation that preserves the Poisson Bracket relationships and therefore
produces a valid Hamiltonian.
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(a) We need to prove that
{Qi, Pj} = δi,j

We solve equations (4) to get

P1 =
1

8
((αx− 2py/α)

2 + (αy + 2px/α)
2) (9)

Q1 = arctan(
αx− 2py/α

αy + 2px/α
) (10)

P2 = (αx+ 2Py/α)/2 (11)

Q2 = (αy − 2Px/α)/2 (12)

We now take partial derivatives. Defining A = αx− 2py/α and
B = αy + 2px/α:

For P1 we have

∂P1

∂x
= αA/4 (13)

∂P1

∂y
= αB/4 (14)

∂P1

∂px
= B/2α (15)

∂P1

∂py
= −A/2α (16)

(17)

For Q1 we have

∂Q1

∂x
=

1

1 + A2/B2
.αB (18)

∂Q1

∂y
=

1

1 + A2/B2
.− αA/B2 (19)

∂Q1

∂px
=

1

1 + A2/B2
.− 2A/αB2 (20)

∂Q1

∂py
=

1

1 + A2/B2
.− 2/αB (21)

(22)

For P2 we have

∂P2

∂x
= α/2 (23)

∂P2

∂y
= 0 (24)
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∂P2

∂px
= 0 (25)

∂P2

∂py
= 1/α (26)

(27)

For Q2 we have

∂Q2

∂x
= 0 (28)

∂Q2

∂y
= α/2 (29)

∂Q2

∂px
= −1/α (30)

∂Q2

∂py
= 0 (31)

(32)

From these we find
{Qi, Pj} = δi,j

(b) Substituting (4) into (3) we find

H = ωP1

if we make α2 = eB and ω = eB/m.

(c) Solving Hamilton’s equations we get

Q1 = ωt+ ϕ (33)

Q2 = const (34)

P1 = const (35)

P2 = const (36)

(37)

which gives us

x =
1

α

(√
2P1 sin(ωt+ ϕ) + P2

)
y =

1

α

(√
2P1 cos(ωt+ ϕ) +Q2

)
px =

α

2

(√
2P1 cos(ωt+ ϕ)−Q2

)
py = −α

2

(√
2P1 sin(ωt+ ϕ)− P2

)
(38)
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(d) For the Hamiltonian in equation (3) Hamilton’s equations are

ẋ =
∂H

∂px
= Px/m− ωy/2 (39)

ẏ =
∂H

∂py
= Py/m+ ωx/2 (40)

ṗx = −∂H

∂x
= −ω(py +mωx/2)/2 (41)

ṗy = −∂H

∂y
= ω(px −mωy/2)/2 (42)

(43)

Substituting our solutions for x, y, px, py into these equations we find that
they are readily satisfied.

3 The Euler-Lagrange equation is

∂L
∂ϕ

− ∂

∂x

(
∂L
∂ϕ′

)
− ∂

∂t

(
∂L
∂ϕ̇

)
= 0

−ζ sinϕ+ κ
∂2ϕ

∂x2
− ρ

∂2ϕ

∂t2
= 0

and dividing through by ρ gives

∂2ϕ

∂t2
− v2

∂2ϕ

∂x2
+ ω2 sinϕ = 0 , (∗)

where v2 = κ/ρ and ω2 = ζ/ρ.
For small ϕ we may approximate sinϕ ≈ ϕ, and the equation becomes

∂2ϕ

∂t2
− v2

∂2ϕ

∂x2
+ ω2ϕ = 0 .

For a solution in 0 ≤ x ≤ L, with ϕ(0, t) = ϕ(L, t) = 0, we use a Fourier sin series
representation,

ϕ(x, t) =
∞∑
n=1

sin
(
nπx

L

)
fn(t) ,

and substituting gives

f̈n +

[(
vnπ

L

)2

+ ω2

]
fn = 0

with solutions proportional to sin(Ωnt) and cos(Ωnt), where the frequency of
oscillation is

Ωn =
(
vnπ

L

)2

+ ω2 , n ≥ 1 .
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Using natural units, the original equation of motion is

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ sinϕ = 0 .

Then with f(x, t) = tan (ϕ(x, t)/4),

∂f

∂t
=

1

4

∂ϕ

∂t
sec2 (ϕ(x, t)/4) =

1

4

∂ϕ

∂t
(1 + f 2)

and
∂f

∂x
=

1

4

∂ϕ

∂x
(1 + f 2) .

Taking second partial derivatives,

∂2f

∂t2
=

1

4

[
∂2ϕ

∂t2
(1 + f 2) +

∂ϕ

∂t
2f

∂f

∂t

]
(44)

=
1

4

∂2ϕ

∂t2
(1 + f 2) +

4f

1 + f2

(
∂f

∂t

)2
 . (45)

Likewise,

∂2f

∂x2
=

1

4

∂2ϕ

∂x2
(1 + f 2) +

8f

1 + f2

(
∂f

∂x

)2
 .

Next, take the difference of these two equations:

∂2f

∂t2
− ∂2f

∂x2
=

1

4

(1 + f2)

(
∂2ϕ

∂t2
− ∂2ϕ

∂x2

)
+

8f

1 + f 2


(
∂f

∂t

)2

−
(
∂f

∂x

)2

 .

∂2f

∂t2
− ∂2f

∂x2
=

1

4

(1 + f2) · − sinϕ+
8f

1 + f 2


(
∂f

∂t

)2

−
(
∂f

∂x

)2

 .

(1+f2)

(
∂2f

∂t2
− ∂2f

∂x2

)
−2f


(
∂f

∂t

)2

−
(
∂f

∂x

)2
 =

1

4
(1+f 2)2 ·− sinϕ = −f(1−f 2) ,

where in the last line we have used the trignometric identity:

sinϕ =
4f(1− f 2)

(1 + f 2)2
.

Now regard f as a function of the variable y = (x+ αt)/
√
1− α2, with α a

real parameter in the interval −1 < α < 1:

∂f

∂t
= f ′(y)

α√
1− α2

,
∂f

∂x
= f ′(y)

1√
1− α2

.
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∂2f

∂t2
= f ′(y)

α2

1− α2
,

∂2f

∂x2
= f ′(y)

1

1− α2
.

Substituting into the above partial differential equation for f gives

−(1 + f2)f ′′ + f
[
1− f 2 + 2(f ′)2

]
= 0 ,

as required. Then substitute for f = exp(λy) to get

(1 + f 2)λ2f − f
[
1− f 2 + 2λ2f 2

]
= f(λ2 − 1)(1− f 2) = 0 ,

which shows that λ = ±1 gives two solutions, i.e.

ϕ±(x, t) = 4 arctan

(
exp

{
± x+ αt√

1− α2

})
.

Taking the positive sign, at t = 0 we have

ϕ±(x, 0) = 4 arctan

(
exp

{
± x√

1− α2

})
.

Thus ϕ+(x, 0) → 0 as x → −∞, ϕ+(x, 0) → 2π as x → +∞, and ϕ+(0, 0) = π.
This ‘soliton’ solution – a complete 2π twist in the bar – moves to the right (i.e.
increasing x) or left (i.e. decreasing x) according to whether α is less than or
greater than 0 respectively, with uniform wave velocity |α|.

4 The ‘Maxwell-Chern-Simons’ Lagrangian is

LMCS = −1

4
FµνF

µν + gϵµνλAµ∂νAλ .

Using the first term on the right-hand side as calibration, there are two powers of
the field in each term, two partial derivatives in the first and one in the second.
Therefore g has dimensions [L]−1 ≡ [M ] in ‘natural units’.

Consider the gauge transformation Aµ → Aµ + ∂µf where f is a function of
space-time co-ordinates. Then Fµν → Fµν , since the gauge term cancels between
the two terms in Fµν . The change in the second term in LMCS is

gϵµνλ [(Aµ + ∂µf)(∂νAλ + ∂ν∂λf)− Aµ∂νAλ] = gϵµνλ∂µ(f∂νAλ) .

However this is a pure divergence, which in the action integral corresponds to a
surface integral at infinity. This vanishes provided that f(x) and the field Aµ

decrease sufficiently rapidly as x → ∞. Hence the action is invariant under the
gauge transformation.

The Euler-Lagrange equations are

∂L
∂Aν

− ∂µ

(
∂L

∂(∂µAν)

)
= 0 .

A

(TURN OVER



9

Now
∂LMCS

∂Aν

= gϵναβ∂αAβ =
1

2
gϵναβFαβ ,

∂µ

(
∂LMCS

∂(∂µAν)

)
= −∂µF

µν + gϵαµν∂µAα = −∂µF
µν − 1

2
gϵναβFαβ ,

and hence
∂µF

µα + gϵαρσFρσ = 0 .

The gauge invariance of these equations is immediate, since the field Aµ appears
only in the combination Fµν .

Next consider the ‘dual’ vector field

F̃ µ =
1

2
ϵµαβFαβ .

We have

∂µF̃
µ =

1

2
ϵµαβ∂µFαβ =

1

2
ϵµαβ (∂µ∂αAβ − ∂µ∂βAα) = 0

by the symmetry of the partial derivatives on the field Aµ, and the antisymmetry
of the ϵ tensor. Also

ϵµναF̃α =
1

2
ϵµναϵ ρσ

α Fρσ =
1

2
(gµρgνσ − gµσgνρ)Fρσ = F µν ,

as required. Now consider

ϵµνλ∂νF̃λ =
1

2
ϵµνλ∂νϵ

ρσ
λ Fρσ = ∂νF

µν = gϵµρσFρσ = 2gF̃ µ .

Then
ϵ βα
µ ∂βϵ

µνλ∂νF̃λ = 2gϵ βα
µ ∂βF̃

µ = 2gϵµβα∂βF̃µ = −(2g)2F̃α .

Now the left-hand side can be simplified:

ϵ βα
µ ∂βϵ

µνλ∂νF̃λ =
(
gβνgαλ − gβλgαν

)
∂β∂νF̃λ = ∂ν∂νF̃

α ,

using the previous result that F̃ is divergence free. Hence[
∂ν∂

ν + (2g)2
]
F̃α = 0

as required.
Substituting the (real) plane-wave representation

F̃ µ =
∫
d2k

[
aµ(k)eik·x+iω(k)t + (aµ(k))∗e−ik·x−iω(k)t

]
we readily see that this is indeed a solution provided

−ω(k)2 + k2 + (2g)2 = 0 ⇒ ω(k) =
√
k2 + (2g)2

where k = |k|. This dispersion relation shows that the excitation quanta of the F̃
field have acquired a mass = 2g.

A
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5 The Lagrangian density is

L = (∂µϕ∗)(∂µϕ)− V (ϕ) ,

where

V (ϕ) = −m2ϕ∗ϕ+
λ

2
(ϕ∗ϕ)2 (λ > 0) .

The Hamiltonian density is H = π ∂ϕ
∂t

− L where π(x, t) = ∂L
∂(∂ϕ/∂t)

= ∂ϕ∗/∂t, and
therefore

H =
∣∣∣∂ϕ
∂t

∣∣∣2 + |∇ϕ|2 −m2|ϕ|2 + λ

2
|ϕ|4 .

The minimium energy states correspond to the minimum of the potential V (ϕ).
Regarding V as a function of |ϕ|, we see that V is bounded from below and has a
continuously infinite number of ground states ϕ = ϕ0 exp(iθ), where ϕ0 = m/

√
λ is

determined by solving

dV

d|ϕ|
= −2m2|ϕ|+ 2λ|ϕ|3 = 0 ,

and 0 ≤ θ < 2π.
Spontaneous symmetry breaking: the system does not have a unique state of

minimum energy but an infinite number of equivalent ones corresponding to
different values of θ: it is said to be degenerate. However, if we take any particular
configuration of the system and reduce its energy somehow to the minimum value,
it will be in a state with a particular value of θ. The situation is like that of a thin
rod initially balanced vertically on its tip on a horizontal plane: when it falls under
gravity, it will lie at a particular angle on the plane, although all angles have equal
energy. The dynamics and the initial state are symmetrical with respect to
rotations about the vertical axis, but the final minimum-energy state is not: the
rotational symmetry has been spontaneously broken. Similarly in the presence of
the quartic interaction the scalar field will undergo spontaneous symmetry breaking
by choosing some particular minimum-energy state, with a particular global value
of θ. And since the dynamics has phase symmetry we may as well choose to label
that state as θ = 0 (like measuring angles with respect to the fallen rod).

Next consider the case when ϕ interacts with a real vector field Aµ through
the Lagrangian density

L = −1

4
FAµνF

µν
A + (Dµϕ)∗(Dµϕ)− V (ϕ) ,

where FAµν = ∂µAν − ∂νAµ, Dµ = ∂µ + ieAµ, and e is a constant. Expand ϕ about
the ground state configuration, ϕ = ϕ0 + χ1 + iχ2, where χ1 and χ2 are real fields,
and substitute into L (and neglecting high powers of the fields χi):

(Dµϕ)∗(Dµϕ)− V (ϕ) → e2AµA
µϕ2

0 +
1

2
(∂µχ1)(∂

µχ1)− V (ϕ0)−m2χ2
1

=
e2m2

λ
AµA

µ +
1

2
(∂µχ1)(∂

µχ1)−m2χ2
1 + ...

A
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where an overall constant has been neglected and the gauge transformation on the
field Aµ,

Aµ → Aµ −
1√
2eϕ0

∂µχ2 ,

has removed the remaining terms involving χ2. The spontaneous symmetry
breaking has led to the appearance of a new term quadratic in Aµ. In other words,

the excitation quanta of the Aµ field have acquired a non-zero mass M = em
√
2/λ.

The value of M can be deduced by deriving the Klein-Gordon (wave) equation for
the components of Aµ and showing that the dispersion relation is
ω(k) =

√
k2 +M2.

A second vector field Bµ is now introduced into the system, such that the
Lagrangian density becomes

L = −1

4
FAµνF

µν
A − 1

4
FBµνF

µν
B + (Dµϕ)∗(Dµϕ)− V (ϕ) ,

where now Dµ = ∂µ + ieAµ + ie′Bµ. The piece in the Lagrangian that is quadratic
in the fields Aµ and Bµ is

(Dµϕ)∗(Dµϕ) → −(ieAµ+ie′Bµ)(ieAµ+ie′Bµ)ϕ
∗ϕ → −(ieAµ+ie′Bµ)(ieAµ+ie′Bµ)

m2

λ
,

where ϕ has been replaced by its ground-state value after spontaneous symmetry
breaking. Thus

Lquadratic =
m2

λ

(
e2AµA

µ + e′
2
BµB

µ + 2ee′AµB
µ
)
.

as required.
Now with Zµ = cosαAµ + sinαBµ and W µ = sinαAµ − cosαBµ we have

Aµ = cosαZµ + sinαW µ , Bµ = sinαZµ − cosαW µ ,

and
F µν
A = cosαF µν

Z + sinαF µν
W , F µν

B = sinαF µν
Z − cosαF µν

W .

FAµνF
µν
A = cos2 αFZµνF

µν
Z + sin2 αFWµνF

µν
W + 2 cosα sinαFZµνF

µν
W

FBµνF
µν
B = sin2 αFZµνF

µν
Z + cos2 αFWµνF

µν
W − 2 cosα sinαFZµνF

µν
W

and adding these two equations and multiplying by -1/4 gives the required result:

−1

4
FAµνF

µν
A − 1

4
FBµνF

µν
B = −1

4
FZµνF

µν
Z − 1

4
FWµνF

µν
W .

Now

λ

m2
Lquadratic = (eAµ + e′Bµ)

2

= ([e cosα+ e′ sinα]Zµ + [e sinα− e′ cosα]Wµ)
2
.
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The coefficient of ZµW
µ on the right-hand side is

2 [e cosα+ e′ sinα] [e sinα− e′ cosα] = 2
[
ee′(sin2 α− cos2 α) + (e2 − e′

2
) sinα cosα

]
= −2ee′ cos(2α) + (e2 − e′

2
) sin(2α) .

This evidently vanishes for tan(2α) = 2ee′/(e2 − e′2), leaving the Lagrangian with
only terms proportional to ZµZ

µ and WµW
µ. The coefficients are

m2

λ
[e cosα+ e′ sinα]

2 ≡ 1

2
m2

Z ,
m2

λ
[e sinα− e′ cosα]

2 ≡ 1

2
m2

W ,

Adding these gives

m2
Z +m2

W =
2m2

λ

[
e2 + e′

2
]
,

while subtracting gives

m2
Z −m2

W =
2m2

λ

[
(e2 − e′

2
)(cos2 α− sin2 α) + 4ee′ sinα cosα

]

=
2m2

λ

[
(e2 − e′2)2

2ee′
+ 2ee′

]
sin(2α) =

2m2

λ

[
(e2 + e′2)2

2ee′

]
sin(2α) = ±2m2

λ

[
e2 + e′

2
]
.

So, we have two solutions depending on the choice of sign. Either mZ = M where

M =
√
(2m2)(e2 + e′2)/λ

and mW = 0 or mW = M and mZ = 0. In any case, the net result of this
particular rotation of fields is that one of the new fields acquires a non-zero mass
M , while the other remains massless. Note that the Z −W ‘mass matrix’ is
diagonal, i.e. there are no ZµW

µ terms remaining in the Lagrangian.

6 (a) Evaluate the Fourier transform∫ ∞

−∞
dτe−iωτ

(
− ∂2

∂t2
+∇2 −m2

0

)
G(r, r′; t, t′) =

∫ ∞

−∞
dτe−iωτδ3(r − r′)δ(t− t′),

where τ = t− t′ to get(
ω2 +∇2 −m2

0

)
G(r, r′;ω) = δ3(r − r′),

Now Evaluate the Fourier transform∫ ∞

−∞
d3pe−ik.p

(
ω2 +∇2 −m2

0

)
G(r, r′;ω) =

∫ ∞

−∞
d3pe−ik.pδ3(r − r′),

where p = r − r′, to get

G(k, ω) =
1

ω2 − k2 −m2
(46)
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We now take the inverse Fourier transform to find

G(p, ω) =
∫ ∞

−∞

d3p

(2π)2
eik.p

ω2 − k2 −m2
(47)

=
1

(2π)2

∫ ∞

−∞

k2dk

ω2 − k2 −m2

∫ π

0
dθ sin(θ)eikp cos(θ) (48)

=
1

(2π)2
1

ip

∫ ∞

−∞

k

(ω2 −m2)− k2
eikpdk (49)

We can solve this integral using Contour integration.

For ω = E + i|ϵ| we close the contour in the UHP and find the result

G(p, E + i|ϵ|) = − 2πi

(2π)2ip

ei(E
2−m2)1/2p

2

For ω = E − i|ϵ| we close the contour in the LHP and find the result

G(p, E − i|ϵ|) = − 2πi

(2π)2ip

e−i(E2−m2)1/2p

2

valid in all three regimes.

(b) For |E| > m we have

∆G(p, E) = G(p, E + i|ϵ|)−G(p, E − i|ϵ|) (50)

= −2πi
sin

[
(E2 −m2)1/2|r − r′|

]
4π2|r − r′|

(51)

Hence using the formula in the question

dn

d(E2)
=

(E2 −m2)1/2

4π2

and so
dn

dE
= 2E

dn

d(E2)
= 2E

(E2 −m2)1/2

4π2

in regimes (i) and (iii). In regime (ii) dn/dE = 0.

(c) We have

G(k, τ) =
∫ ∞

−∞
eiωt

1

ω2 − k2 −m2

dω

2π

We can solve this integral using contour integration.

Setting
ω2 = (k2 +m2)ei|δ|

where δ is a small parameter we have two poles - one in the UHP and one in
the LHP.
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For t > t′ we close the contour in the UHP to find

G(k, |τ |) = i
ei

√
k2+m2|τ |

2
√
k2 +m2

For t < t′ we close the contour in the LHP to find

G(k,−|τ |) = −i
e−i

√
k2+m2|τ |

2
√
k2 +m2

(d) We have Green’s Functions for propagating waves for both τ > 0 and
τ < 0. Nominally this violates causality but we can think of τ < 0 as
representing antiparticles for the negative energy branch of dn/dE.

END OF PAPER
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