NATURAL SCIENCES TRIPOS Part II

Wednesday 19 January 2011 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains siz sides and is accompanied
by a booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

1 The pendulum shown in figure (a) below consists of a rigid massless rod of
length [ with a point mass m attached at the free end. The other end is attached
to the fixed point P by means of a free hinge. The mass m moves above the
two-dimensional plane (no, w) so that the rod makes an angle 6 to the z axis. The
pendulum is situated at a latitude A above the equator on the surface of the Earth.
This is shown in figure (b), where R = 6.38 x 10°m is the radius of the Earth and
27 is the angular velocity of the Earth.

(a) P

Consider the case where the pendulum exhibits small oscillations such that
the velocity of the mass m in the Earth’s rotating frame of reference may be
approximated by v, ~ tn + yw.

(a) Calculate the velocity, v, of the mass m in the Earth’s stationary frame

of reference and use it to show that the kinetic energy of pendulum may be

approximated by
1

T ~ §m[i2 + 97 — 202y sin A + 202y (rsin A — Rcos \) — 2022w Rsin A cos \] + const.
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2

Explain the approximations you have made. [Hint: You may find the identity
vy = v, + 27 X r useful.] [6]

(b) Show that the potential energy of the pendulum may be approximated by

M9 2,

where § = g — 22 R cos? \. The correction to ¢ arises from consideration of
the centrifugal force. (3]

(c) Using the approximations for 7" and V above, show that the equations of
motion of the pendulum can be written in the form

() ) G) () o

Give physical explanations for the parameters «, 3 and z. [9]

(d) Transform the equations of motion (1) to the rotating frame of reference

defined by
X\ [ cosat —sinat x
Y )\ sinat cosat y )’

and show that they take the form

() ()

[10]
(e) Solve equation (2) and describe the characteristic motion of the
pendulum in the two reference frames X, Y and z,y if the pendulum is: (i)
at the equator, (ii) in Cambridge at 52° North or (iii) at the North Pole. 5]
Explain what is meant by a canonical transformation. 5]

(a) Show that the transformation

r = ;(\/THSian—f-Pg)
v = - (\2Peos@u+Qu)
= (om0
by = —g(\/TPlSian—R)

is canonical. [13]
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(b) The Hamiltonian for a particle of charge e moving in a two-dimensional
plane (z,y) in a magnetic field B = B2z can be written in the form

1 y\? 1 AN
=g (peteBy) + 5 (n—cB3) . )

where the symbols take their usual meanings. Transform this Hamiltonian to
the coordinate system ), P, ()2, P» and choose a value for a to simplify the
expression for the resulting Hamiltonian. 9]

(c) Derive and solve the equations of motion in the coordinates

Q1, P1,Q2, Ps. (3]
(d) Show that your solutions to part (c) satisfy Hamilton’s equations of
motion for the Hamiltonian in equation (3). 3]

3 The angular twisting ¢(x,t) of a torsion bar along its length (in the x
direction) can be described by the Lagrangian density

1 [(06\° 1 [06\°
L==-p|=]| —=k|=—| —C(1-
o (5r) -3 (5) — e,
with constants p, k,( > 0. Show that the Euler-Lagrange equation for the system
leads to the equation of motion
¢ P05
@—v@—i—w SIH¢ZO, (4)
where v* = k/p and w? = (/p. 5]
If the rod lies between 0 < x < L and is fixed at each end,
#(0,t) = ¢(L,t) = 0, show that the general solution for small angular
displacements, i.e. ¢ < 1, can be written in terms of Fourier harmonics:

o(z,t) = io:l sin (T) {an sin(£2,t) + by, cos(Qnt)}

and find the frequencies of oscillation (2,,. 5]
Next consider the case of a rod of infinite extent, —oo < < 400, and switch

to natural units in which v = w = 1. With f(z,t) = tan (¢(x,t)/4), and relaxing

the assumption that ¢ is small, show that the equation of motion (4) becomes [10]

2 2
() (52 - 20) v -2 (%) (gf)}

otz Ox?
Regarding f as a function of the variable y = (x 4+ at)/v/1 — a?, with « a real
parameter in the interval —1 < o < 1, write down expressions for the partial
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derivatives 0f /0t and 0f/0z in terms of f and f' = df/dy, and show that the
above partial differential equation for f becomes

(L) == 2] =o.

Determine the values of A for which f = exp(A\y) is a solution, and hence show that
the original partial differential equation for ¢(z,t) has two particular solutions

¢+(x,t) = 4 arctan (exp {i%}) ,

corresponding to boundary conditions ¢, (z = +00,t) = ¢_(x = —o0,t) = 2,

¢y (x = —00,t) = ¢_(x = +00,t) = 0. Taking the positive sign solution, interpret
this result in terms of the evolution in time of a particular initial (¢ = 0) angular
displacement, which you should sketch.

4 Consider the theory of a real vector field A* in three space-time dimensions,
p=0,1,2 ie z* = (t,x) with & the two-dimensional position vector. The
dynamics of A" are determined by the ‘Maxwell-Chern-Simons’ Lagrangian

1
EMCS = —ZFW,FMV + gE“V)\A“&,A)\,

where 9, = 0/0z", F,, = 0,A, — 0,4, ¢ is the completely antisymmetric
tensor, €”12 = 1, and g is a real constant.

Find the dimensions of the constant g.

Show that the action S = [ dt d?zx Lyics is invariant under the gauge
transformation

A, — Ay +0uf,
provided that the scalar function f and the field A, decrease sufficiently rapidly as
It], || = oo.
Starting from the Euler-Lagrange equations, derive the field equations

O " + g™ Fp =0,

and show that they are gauge invariant.
The ‘dual’” vector field is defined by

- 1
Pl = e F,g .
2
Show that @LF“ =0 and F* = ¢™oF,.
Show that the dual vector field satisfies the second-order partial differential
equation

(0,0 + (29)°] F* = 0.
(TURN OVER

3]

[4]



5

Show that this equation has plane-wave solutions
Fﬂ — /ko [au(k)eik-m+iw(k)t + (a,u<k_))*6—ik-m—iw(k)t:| )

and find an expression for w(k) in terms of k = |k| and g. Interpret your result.
[Hint: You may find the identity e** e 7 = g'?g"" — g’ g"? useful. Note that the
metric tensor has its usual meaning: ¢°° = —g'* = —¢** = 1 with all other
components zero.]

5 The Lagrangian density for a self-interacting, complex, massless scalar field
o(r,t) is given by

L=(0"9")(0u0) = V(¢),
where 0, = 0/0z" and

V(o) = —m6' o+ 560 (A>0).

Derive an expression for the Hamiltonian density H in terms of ¢ and its
derivatives, and show that there is an infinite set of states ¢ = ¢pe?, with
b0 =m/ VA and 0 < 0 < 27, for which the energy is a minimum.

Explain the concept of spontaneous symmetry breaking, using the above
Lagrangian as an illustrative example.

Consider the case when ¢ interacts with a real vector field A* through the
Lagrangian density

L= L Fau 3+ (D) (Dyb) ~ V(6),

where Fy,, = 0,4, —0,A,, D, = 0, + ieA,, and e is a constant. By expanding ¢
about the ground state configuration, ¢ = ¢g + x1 + ix2, where x; and x» are real
fields, show that the excitation quanta of the A" field acquire a non-zero mass
em\/2/7>\.

A second real vector field B* is introduced into the system such that the
Lagrangian density becomes

1 v 1 v *
L= 4 AWFX - EFBWFE + (D“gb) (Du¢) - V(Qb) )
where now D, = 0, +ieA, + i¢’B,,. Show that under spontaneous symmetry
breaking the term in the resulting Lagrangian density that is quadratic in the A*
and B* fields is

m2

‘Cquadratic = 7 <€2AMAM + €IQBHBN + 266/14#3#) .
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The fields A* and B* are now ‘rotated’ into two new fields Z# and WH*
defined by Z" = cos aA* + sinaB* and W# = sin a A" — cos aB*. Show that

1 . v 1 v 1 v
_ZFA.U'VFIZ _ZFB.U'VFE :_ZFZHVFE _ZFWHVF{;{/

and that, for tan 20 = 2ee’ /(€2 — €'?),
L = Lz e L
quadratic — imz i + imw w .

Interpret this result and determine mz and myy.

6 The Green’s Function for a particle obeying the Klein-Gordon equation of

motion in three dimensions is defined by

2
<_(‘3at2 +V? - m%) G(r,r';t,t') =8 (r —r)o(t —t),

where the symbols take their usual meanings.

(a) Use Fourier methods to derive the Green’s function
G(r,r";w) = / dre ™“TG(r,v';t,t)

for a free particle, where 7 =t — t’ and w = F + ie, in the three energy
regimes (i) E > my (ii) |E| < mo and (iii)) £ < —my. The parameter €
should be assumed to be real and small.

(b) Use your results from (a) to calculate the quantity

dn . G(r,7; E+ile]) — G(r,r'; E — ile])

dz r—r e—0 —971

Y

where z = E? and hence find the density of states dn/dE in the same three

energy regimes.

(c) Use Fourier methods to derive the Green’s function
G(k;t,t") = / dPpe *PG(r,r';t, 1),

where p = r — v/, for the two cases t >t and t < t'.

(d) Comment on and give a physical explanation for your results in sections

(b) and (c).

END OF PAPER

[13]



