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THEORETICAL PHYSICS 1

Answers

(a) The kinetic energy of the rolling cylinder is
1 1.
Tc = 5771&292 + 5[062

where I, = ma?/2 is its moment of inertia about its axis. The kinetic energy
of the plank is

1 1.
T, = 5m2(:z:2 + %) + §1p¢2

where I, = ml?/12 is its moment of inertia about its centre. The potential
energy of the Plank is V}, = mgy. Therefore

3 . 1 - 1
L=T,+T,-V,= Zma292 + ﬂml2qb2 + Em(x'Z +9%) — mgy

,a(0-9)

- - - -

ao

(b) The top of the cylinder is at (af,0). Therefore the point of contact of
plank and cylinder is at a(f + sin ¢, cos ¢ — 1). If there is no slipping, the
vector from there to the centre of the plank is a(f — ¢)(cos ¢, —sin ¢). Hence
x/a = O+sing+ (0 —¢)cose,
yla = —1+cos¢p— (0 —¢)sing.
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(c) We have

i/a = 0+ ¢cosp+ (0 —¢)cosd+ (¢ — 0)psing
y/a —¢sing — (0 — ¢)sing + (¢ — 0)cos o .

Hence

(@i +3°)/a* = [6(1+c0s9) + (6 = 0)gsin ] + [0sin g — (¢ — 0)¢ cos o

= 20%(1 4 cos @) + (6 — 0)20* + 2(6 — 0)8¢sin ¢
The canonical momentum py is

— ?918; = zmazé + ;ma2[49(1 + cos ¢) + 2(¢ — 0) ¢ sin ¢]

— ;m(ﬂ[é(? +4cos )+ 2(p — 0)¢sin 0]

Do

The canonical momentum py is

po = G = gm0 mat (o= ){(9— 0)6 + dsin

(d) To second order in 6 and ¢,
1 .
y/a:§q§2—9¢, (i° + 9%)/a® ~ 46?

so that 1 1 ]
L~ ZmaZQQ + ﬂml%ﬁ? — imgagb(gb — 26)

To find the Hamiltonian to second order, we only need the canonical
momenta to first order:

11 . 1 .
Dy =~ ?mQQQ , Do Emlgqb

Hence

H = pgl + pyo — L L +6p3 42 o — 20)
= — L~ = 4+ “mga — )
pe Pe 11 ma? mil2 2 g

Hamilton’s equations are

A N N L
 Ope 11ma?’ Po= """ = M4

. OH Do ) OH
— ol = = -

(TURN OVER



(e) Hence
i 2 g
S 28y G-y,
ertlng 0 — AeiUJt’ ¢ — Bem;t7

2
—2A=Ip, —w2B=12%%4 - B)

11a 12
SO 24
2 9
—w*B=-122p-=9 p,
w 12 11 Pw
4 ga o 2492
19282 2T
. 12 e

and therefore

The negative root corresponds to a runaway solution — the plank falls off.
The positive root w, is an oscillation with # and ¢ in antiphase and

B 1la , a? 2 12
— = ———w! =-33—=11 14 ——
AT Tag™r 2 ( * +33a2>
(a) We have
. (@
A = [ = ——Brsm@ B'r’cos@ 0
re’ 2
= (60r)/e—3B y 0)
- r C7 2 y72 .T,

where ¢(r) is the electrostatic potential due to the charge at the origin. Now
At = (¢/c, A) where E = —V¢ —0A/0t and B = V x A. Thus in this case
E =-V¢and B = (0,0, B) as required.

(b) The Lagrangian is

1
L:T—V:5m02—e(¢—v-A)

In plane polar coordinates v = 77 + 760 and here A = Br@/Q, SO

1 . 1 .
L= im(f“? +720%) — ef) + 5637’29

(c) Lagrange’s equations of motion are

d(oL\ _oL d (9L 0L
dat\or) or’ dt\ogo) 90
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Hence
mit = mré? + —e? + eBré ,
r
d |
7 (mr29 + 2€BT’2> =0.

(d) We see from the equation of motion for 6 that the angular momentum
|
po = mr2f + §€B7’2 =J

is a constant of the motion. Furthermore the Lagrangian does not depend
explicitly on time, so the Hamiltonian is also constant:

. 1 .
1J:n¢+me—L:2m0?+ﬂw)+d2:E
r
(e) Writing
eB
0=¢—wrt=¢p— —t
2m
the equations of motion become
. B\? : B
mi = mr(qﬁ—e) +662+€Br(¢_e>
2m r? 2m
_ it QB
= mro° + 2 i r,
d 2 M
7 (mr gzﬁ) = 0.

Therefore, to first order in B, the effect of the field is cancelled in a
frame rotating with the Larmor frequency.

(2 -]

where p = po(1 =V - &), 1.e. p/po =1— 0, where § = V - £ is small.
Expanding

(a) We are given

v+l

So +1
= 1-6)" —1
v 7+1[( %) }
_ 50 P—(+&ﬁ+1( +1)8*+... 1
oy +1 7 o 1V "

S [—5 + 200+ 0(53)}
= 5 [-Veg+2(veg
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(b)
EZT—VZ;Poé'é‘i‘so(vf—;(v'@?)

Lagrange’s equation of motion for &; is

L 0 oL 0oL

J

Hence in this case

0
8%

0— ——So(1 =7V &) —pod; =0

1.e.

Poé — 1S V(V-§) =0.

(¢) The canonical momentum density m; = 0L/ &, = pofi. Hence

H = Zﬂz‘fz—ﬁ
— poé'é—;ﬂoé'é—&(V'E—g(V'E)g)
2 i
— 2/)0—SO<V-£—2(V'£)2>

The term involving the total derivative V - £ gives a contribution to the total
Hamiltonian equal to an integral of the field over a surface at infinity,

—So/d3r V-&‘:—SO/dQSf:O
since the field vanishes at infinity. Hence

H= /dgr H(r,t)

where 1
H(r,t) = §Po7"2 + %SO(V -€)°.
(d) We have
T L
po€ =15 V(V M) =0
where

V- -¢'=0, Vx¢=0.

..T
Thus &7 obeys the free-particle equation of motion & = 0, while for £* we
have

po€ —1SV(V-£5) = 0.
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Now we need the identity
Vx(VxA)=V(V-A)-V?A
which since V x &% = 0 gives
V(V-¢h) =Vt
so that &~ obeys
po§ —SoVE =0
which is the wave equation with wave velocity 1/7.S0/po-

(a) Hamilton’s principle of least action states that 65 = 0 for
variations of the motion around the classical path, where the action S is

Sz/Lﬁz/ﬁMﬁ

for a field in one dimension. In this case we have

L= Lo, Puz)

where ¢; = dp /0t and ., = 0*p/0x?. Therefore

0S8 = /l (5<pt—|— oc (5%4 dx dt

Now p o
oy = g&ﬂ 0P = @590

Therefore, integrating the first term by parts once w.r.t ¢t and the second by
parts twice w.r.t x, and dropping boundary terms since the field must vanish

at f+oo: 52
)
5S = / [ 55y T 922 a%] S dxdt =0

The variation in ¢ is arbitrary and therefore

Q oL B 0% oL
Ot 0p;  0x? 0Py

2 2 2
a0 (Efa“‘))—o.

=0

or in this case

o2 Ox? 0z?
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(b) The canonical momentum per unit length is

(c) We have
OH Do D% P Do
o0 = oe TP o oroar

Applying the equation of motion,
2 20 2 3
OH  0p 0 (Ela >+E18g0890

ot Ot 0x? ox? 02 Otox?
Writing EI10%p/0x? = 1, the r.h.s. has the form
00 O D (89@31/’ A )
ot Ox? otoz? Oxr \ Ot Ox otox
and so Do O
J = Ff? - ¢8t8x

(d) For EI = constant, substituting a wave solution ¢ = C cos ¢ with
¢ = kx — wt in the equation of motion we have

—pACw* + EICK* =0

and hence the dispersion relation is

k2
w A
The wave and group velocities are
w ET dw ET
w=—=1]—Fk, = — = —k = 2¢,
W= TN AT 9T PY

The energy per unit length is
H = ;pACZOJQ sin? ¢ + ;E[CQk‘4 cos? ¢ = ;EIOQkA
and ¢ = —EICk? cos ¢, so the energy current is
J = Cwsin¢ EICK?sin ¢ + EICK? cos ¢ Cwk cos ¢ = EIC?wk? .
Therefore the velocity of energy transfer is J/H = 2w/k = 2¢,, = ¢,
(TURN OVER



(a) We have
L= (0"¢")(9u0) = V()

The Euler-Lagrange equation for ¢ is

0L 0 oL 9L

which gives (in units where ¢ = 1)

ov

A Y S
55 TV =9
le. oY
o*o,0" + — = 0.
H¢ + a(b
Similarly the Euler-Lagrange equation for ¢* gives
oV
H _— =
0"0,¢ + e 0.

(b) Setting ¢ = 1, the canonical momentum densities are
T =0L/0¢p = 0¢* /Ot and * = IL/Ip* = D¢/It. The corresponding

Hamiltonian density is
H=np+m'¢"—L=n"1+ V" Vo+V(¢)

(¢) A global phase change ¢ — ge’, ¢* — ¢*e ' leaves ¢*¢ and (0"¢*)(9,0)
unchanged. Therefore if the potential V' is a function of ¢*¢, the Lagrangian
density is invariant under this change.

(d) We are given the Coleman-Weinberg potential,

where A and k are real, positive constants. Let X = ¢*¢ and consider V as a
function of X. Then V' is continuous for X >0, V =0at X =0 and
V — 400 as X — oo. We have

j}‘; =2X [In(X/A?) — k| + X =2X [m(X/A?) — K+ ﬂ

This is zero for X = 0 and X = X where In(X,/A%) = x —1/2, i.e.

XO _ A2€n—1/2
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At X = X, we have
d*v
dX?

Hence X is a minimum of V' and the Hamiltonian is bounded from below.

1
=2 1n(X0/A2)—m+§ +2=2

(e) The states of minimum energy correspond to the circle in the complex ¢
plane where ¢*¢ = X, i.e. ¢ = ¢y where

b0 = 1oe® , Ty = Ne@r—1)/4

(f) Considering small field variations around ¢ = ry, i.e.
¢ =10+ (X1 +ix2)/V?2, we have

. 1
X:¢¢:T§+\/§TOX1+§<X%+X§>

Then

1 >V
V=V (Xy) + 5(X — Xo)?W + ... =V(Xo) +2r5xT + +0(x%)

1.e.

V(9) = V(6o) + ym*x} + O(F).

where m = 2ry. Thus the field y; satisfies a Klein-Gordon equation with
mass (in natural units) 2ry, while the field y. satisfies a massless
Klein-Gordon equation. This is an example of Goldstone’s theorem: the
global phase symmetry is spontaneously broken when the field chooses a
particular ground state on the circle, and there is an associated massless
Goldstone boson ys, while the other degree of freedom of the field y; is
massive.
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10
6 The propagator G(t) must vanish for ¢ < 0 and so we can write
G(t) = O(t)g(t)

where ¢(t) can be chosen to be either an odd or even function of ¢. By the
convolution theorem, it follows that

W) = [ 26w -uaw)
= /céwﬂ’ {ﬂé(w—w')—l—iPw_lw/ g(w")

where .
g(w) = / dt g(t)(coswt + isinwt)

Hence if we choose g(t) to be an odd function, g(w) will be purely imaginary, say
g(w) = ih(w). Then equating real parts in the above equation

ReG(w) = =P / du’ h(w
2 w — W’
and equating imaginary parts
_ d _ 1~
Im G(w) = 2ﬁms<w WRW) = Sh(w) .
7
Substituting this in the above then gives the Kramers-Kronig relation.
(a) We have
=~ W — Wy
ReG(w) =
U TR L
~ 1
ImG(w) = J

_§(w —wp)?2+72/4

The r.h.s. of the Kramers—Kronig relation is thus

1
—P/ .
(W —w) (W —wp)?+~2/4

The integrand has poles at w’ = w and at W’ = wy £ iy/2. However, it
vanishes rapidly at oo, so we can complete the contour with a large
semicircle in either the upper or the lower half-plane. Using

+o0-+i€ +oo—1€
Pl=tms ([ 0+ 20)

e—0 2 —oo+ie co—ie

and choosing the upper half plane, the first integral encloses only the pole at
w' = wp + #7/2, which gives
o1 y 1 1 1
—iT— =3 .
27 (wo +17/2 — w) (i) 2 (wo +1i7/2 —w)
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11

Choosing the lower half plane for the second integral encloses only the pole
at w' = wp — i7/2 (in a negative sense), giving
1 o 1 1 1

2w () 22w

The sum of these is
1 1 1 1 w — Wy

2 (wo—17/2 —w) 2 (wp+17/2 — w) - (w—wp)? 4 72/4 = ReG(w)

as required.

(b) The propagator is G(r — r',t — t') where

Pk dw exp(ik - r — iwt)
(2m)% w —hk?/2m +iv/2

anw:/

For t < 0 we can complete the contour with a large semicircle in the upper
half-plane, which encloses no singularities and so gives G(r,t) = 0 for ¢t < 0.
For t > 0 we must instead choose the lower half-plane, which encloses the
pole at w = —#hk*/2m — iy/2 (in a negative sense), giving

[ Pk : ihk*t v
G(r,t) = —z/ ok exp (zkz s e 2t>

for t > 0. Now we can write

, ifik?t it m \? im
hor = =g (k) g

Hence, changing the variable of integration to

K=k
it
we have . "
—_ g My Y
Gr.t) l/(27r)3 eXp( 2 ot 2t>
But .
/d3k' exp (—ak'Q) = (W>
a
SO
1 2mrm\ 3/ m y
t)y = — — Z_t)
Gr,t) (2r)3 ( it > P <2htr 2

( im )3/2 <7Lmr2 fyt>
= exp | —/—r" — =
2nhit Plome™ — 2



12

for t > 0 and G(r,t) = 0 for t < 0. Correspondingly

Gr v t,¢) i 3/2e im(r — )" Tt — )
p— — X _—_—m e — J—

b onhi(t — 1) P\ont—v) 2

for t >t and G(r, 7' t,t') =0 for t <t

END OF PAPER
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