NATURAL SCIENCES TRIPOS Part 11

Wednesday 13 January 2010 10.30am to 12.30pm

THEORETICAL PHYSICS 1

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains five sides and is accompanied
by a booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

1 A thin uniform plank of length [ and mass m rests, initially in equilibrium,
on a uniform cylinder of radius a, also of mass m, which can roll on a horizontal
plane.

(a) Show that the Lagrangian of this system is

3 . 1 . 1
L= Zma292 - ﬂmﬁgbz - im(iQ + %) — mgy

where 6 is the angular displacement of the cylinder, ¢ is the angle of
inclination of the plank, and z,y are the horizontal and vertical
displacements of the centre of the plank, as shown in the figure.

. |

(b) Show further that if there is no slipping then

r/a = O+sing+ (0 —¢)coso,
y/a = —1+cos¢p— (0 —¢)sing.
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(c) Deduce the canonical momenta py and p, conjugate to the generalized

coordinates 6 and ¢.

(d) Working to second order in small quantities, find the Hamiltonian of the
system and hence show that Hamilton’s equations for small displacements are

. 2 pe .

b= gz Po=meee

o D¢ S

¢ = 12—ml2 . Py =—mga(¢p—0) .

(e) Show that there is a mode of small oscillation and find the corresponding

angular frequency and relationship between 6 and ¢.

2 A particle of mass m and charge e moves non-relativistically in a plane under
the influence of a charge 47ey(@ fixed at the origin and a constant magnetic field B

perpendicular to the plane.
(a) Show that a suitable form for the 4-vector potential is

1 1
Al = <Q, ——Brsinf, —Brcos 9,0)
rc 2 2

where r, § are plane polar coordinates.s

(b) Hence show that the Lagrangian can be written as

1 : 1 :
L= im(f’2 +7260%) — eﬁ) + §€B7“29 :
c¢) Deduce the equations of motion.

(
(d) Find two constants of the motion.
(

e) Show that, to first order in B, the effect of the magnetic field is to cause
the orbit of the charge to precess with the Larmor frequency, w;, = eB/2m.

3 The potential energy density for sound vibrations in an ideal classical gas at

density p is
So

V =
v+1

(&) -]

where Sy, po and ~ are constants.

(a) Writing p = po(1 — V - &), where &(7, ) is the vector field describing the

(small) amplitude of vibration, show that
V=50 (-V &+ 2(v¢p)

where terms cubic and higher in V - £ have been neglected.
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(b) Assuming that the kinetic energy density of the gas can be approximated
by
1 . .
T= §p0£ ’ S )
write down the expression for the Lagrangian density £ and show that
Lagrange’s equations of motion lead to the field equation

Poé — 1S5 V(V-€) =0.

(c¢) Calculate the canonical momentum density 7 (r,t) conjugate to &, and
show that the total Hamiltonian is

H = /d3r H(r,t)

where
2
2po
and you may assume that the field & vanishes at oo in all spatial directions.

Hir,t) = 4 %so(v €)?

(d) If €7 and &* are solutions of the equation of motion that are solenoidal
and irrotational respectively, i.e.

V-¢e'=0, vxeh=o,

show that €7 obeys a free-particle equation of motion while £* obeys a wave
equation. Find the wave velocity for the latter.

The Lagrangian per unit length for bending of a stiff elastic rod is

1 ao\° 1 Po\’
£=3rA (m) —H (ax

where (z,t) is the transverse displacement, p the density, A the cross-sectional
area, I/ Young’s modulus and I the moment of area of the rod.

(a) State Hamilton’s principle of least action and use it to deduce the
equation of motion
P 0 0
A EI =0.
P T a2 \ 7 B

(b) Derive the canonical momentum and the Hamiltonian per unit length, #.

(c¢) By considering the conservation equation
on __oJ
ot Ox

show that the current of energy is

_Op 0 ( 8%) 0%p 0%

S R [ 0) e Ry o) e .
ot Ox 0x? 0x? 0tox

J
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(d) By considering a wave solution of the form ¢ = C cos(kz — wt) for a
uniform rod, find the dispersion relation and the wave and group velocities,

and show that energy is transferred at the group velocity.
5 The Lagrangian density for a self-interacting, complex, massless scalar field ¢
is given by

L= (0"9")(0u9) — V(¢)
where V is a real-valued function of the scalar field.

(a) Using the Euler-Lagrange equations, show that the equations of motion
are

ov oV
oo — =0"0,0"+ — =0.

#¢+ a ¢* N(b + a ¢
(b) Show that the corresponding Hamiltonian density, in units where ¢ = 1,
is

H=n"1+Veo*-Vo+V(¢)

where m = 0¢* /0t and 7 = 0¢/0t are the canonical momentum densities
conjugate to ¢ and ¢* respectively.
(c¢) Show that if the potential V is a function of ¢*¢, the Lagrangian density
is invariant under a global phase change in ¢.

(d) Consider the case of the Coleman- Weinberg potential,
) ¢ P
V(o) = 02 [ (%) -],

where /A and k are real, positive constants. Sketch the potential V' as a
function of ¢*¢ > 0, and hence show that the Hamiltonian is bounded from
below.

(e) Show that the states of minimum energy correspond to a circle in the
complex ¢ plane ¢y = roe’ where

ro = A€(2n71)/4.

(f) By considering small field variations around the state of minimum energy
on the positive real ¢ axis, i.e. ¢ =79+ (x1 + ix2)/V/2, show that

V(9) = V(6o) + ymixi + O(F).

Comment on the significance of this result and find the value of m.
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6 Outline the derivation of the first Kramers-Kronig relation
dw'1 G
Re G(w / w
T w—w

where G(w) represents the Fourier transform of the time dependence of a causal
propagator. [10]
B [You may assume that the Fourier transform of the Heaviside step function is
Ow) = m0(w) + 1P(1/w).]
(a) The propagator for the wavefunction of an unstable particle with energy
fiwy and mean lifetime 1/ has
~ 1
Glw)=—"7—.
() w— wo +17/2

Show explicitly that this satisfies the above Kramers-Kronig relation. [10]
[Hint: Interpret the principal value as P [ = lim_o 3 ( AP f:) ]

(b) Derive the propagator G(r,r’,t,t') of a free non-relativistic unstable
particle, for which wy = 7ik®/2m where k is the wave vector. [13]
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