
NATURAL SCIENCES TRIPOS Part II

Wednesday 18 January 2006 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted
to each part of a question is indicated in the right margin where
appropriate. The paper contains 3 sides and is accompanied by a book
giving values of constants and containing mathematical formulae which
you may quote without proof.

1 Two equal masses m joined by a length 2a of light thin wire are in orbit
about a planet of mass M . The wire is in the plane of the orbit at all times. Write
down a Lagrangian for the system in terms of the polar coordinates (r, φ) of its
midpoint and the angle θ between the wire and the line to the planet centre,
assuming a≪ distance from the planet and the gravitational attraction between
the two little masses is negligible. [7]
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Find the equation of motion for θ. [7]
Determine the stability of equilibrium values of θ. [8]
If the orbit is circular and the system is close to a stable value of θ, how

many oscillations does it perform in one orbital period? [12]

2 Describe the terms in the Bernoulli equation in fluid dynamics, and the
conditions when it applies. [10]

Consider a bath of cross-sectional area 0.6 m2, filled to a depth of 20 cm.
Estimate how long it takes to empty when the plug is removed, if the area of the
plug hole is 10 cm2. [12]

Two cylindrical jets of water, which have the same radius a and velocity
components (0, 0, v) and (0, 0,−v) respectively, meet head-on at the origin and
spread to form a sheet in the z = 0 plane. Show the thickness of this sheet at
distance r from the origin is a2/r. [12]
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3 The Lagrangian L of a particle of mass m and charge e moving with
velocity v in an electrostatic potential φ is 1

2
mv2 − eφ. Using the requirement that

∫

Ldt should be Lorentz invariant, or otherwise, explain why the generalisation
of the potential energy term in the Lagrangian L = T − V to V = e(φ− v · A) is
required, where (φ,A) is the electromagnetic 4-potential. [6]

Consider the non-relativistic motion of the charged particle in a constant
magnetic field B which is directed along z-axis. In cylindrical polar coordinates
(r, θ, z):

(a) By using the Stokes theorem for
∫

A · dl, or otherwise, show that
{Aθ = 1

2
Br, Ar = 0, Az = 0} represents a magnetic field with a z-component B. [8]

(b) Write down the Lagrangian and derive the equations of motion: in
particular, show that [8]

θ̇ = − eB

2m
− J

r2

where J is a constant.
(c) Show that the radius of the helical orbit must be proportional to B−1/2

and the angular frequency of particle on this orbit is |θ̇| = eB/m. [8]
(d) Further show that the helical pitch angle ψ (the angle between B and

v) obeys tanψ ∝ B1/2. [4]

4 Describe how contour integration methods can be used to evaluate definite
integrals of functions with no poles. Illustrate your answer by showing that:

∫

∞

0

dx cos(x2) =

∫

∞

0

dx sin(x2) =

√
2π

4 [10]

(Hint: use a wedge-shaped contour with angle π/4, not forgetting that
eiπ/4 = (1 + i)/

√
2.)

How are poles on the real axis treated in contour integration? Illustrate
your answer by showing that:

∫

∞

−∞

dx
sin(x)

x
= π

[12]

(Hint: sin z = (eiz − e−iz)/2i)
How are branch cuts dealt with in contour integration? Illustrate your

answer by showing that:
∫

∞

0

dx
xα

1 +
√

2x+ x2
=

√
2π

sin(απ/4)

sin(απ)
.

[12]

for −1 < α < 1.

5 Derive the Kramers-Kronig relations between the real and imaginary parts
of the generalized susceptibility for a perturbation potential of the form
V = −x.f where x(t) is a position coordinate and f(t) a force. [8]
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The equation of motion for a damped harmonic oscillator has the form:

ẍ+ γẋ+ ω2x = f(t)

Derive the relationship between the Green’s function for this differential
equation G(t− t′), the position coordinate x and the force f . [4]

Derive an expression for the Fourier Transform of the Green’s function
G(ω) and write down the Kramers-Kronig relations for its real and imaginary
parts. [7]

Convert the principal-value integrals to contour integrals and find their
poles. [7]

By evaluating one of these integrals show that the corresponding
Kramers-Kronig relation is obeyed by this Green’s function. [8]

(Hint: P
∫

∞

−∞
f(x)dx = Limǫ→0[

∫

−ǫ

−∞
+

∫

∞

ǫ
]f(x)dx for a pole at x = 0.)

6 Thermal (Johnson) noise in a resistor is modelled as a white-noise voltage
source, with a mean-square amplitude 〈V 2〉 = 2RkBT , connected in series with
an ideal resistor R. Consider a circuit consisting of such a resistor connected
across a capacitor C. Show that the equation of motion for the charge on the
capacitor obeys a Langevin equation. [6]

Describe the standard form for the Langevin (stochastic) equation,

q̇α = Fα(q) +Gk
α(q)Ak(t) ,

and its relation to classical Brownian motion. [6]
Outline principles leading to the Fokker-Planck (kinetic) equation for the

probability density f(q, t): [8]

∂f(q, t)

∂t
=

{

−∂Kα(q)

∂qα
+

1

2

∂2

∂qα∂qβ
Qαβ(q)

}

f(q, t) ,

with Kα = Fα +
1

2

∂Gi
α

∂qβ
Gk

βδik; Qαβ = Gi
αG

k
βδik .

Obtain the Fokker-Planck equation for the probability density f(q, t) of the
charge on the capacitor. [4]

Show that the equilibrium probability density f(q) of the charge on the
capacitor is proportional to exp[−q2/2CkBT ] and comment on its form. [10]
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