
Theoretical Physics 1
Answers to Examination 2005

Warning — these answers have been completely retyped. . .
Please report any typos/errors to emt1000@cam.ac.uk

Q1. Bookwork: Hamilton’s principle is δ
∫

dt L(qi, q̇i, t) = 0 and leads (via the
calculus of variations) to

d

dt

∂L

∂q̇i

=
∂L

∂qi

(1)

i.e. N 2nd-order equations for the coordinates qi.

The Lagrangian is

L = T − V =
m

2

(
l2θ̇2 + l2ω2 sin2 θ

)
+ mgl cos θ (2)

Evaluating the Euler−Lagrange equation

d

dt

(
∂L

∂θ̇

)
=

∂L

∂θ
(3)

gives
ml2θ̈ = −mgl sin θ + ml2ω2 sin θ cos θ (4)

For small oscillations around θ = 0 this may be rewritten as

ml2θ̈ = −mglθ + ml2ω2θ (5)

For stability this requires that

ml2ω2 > mgl (6)

The rotation rate for which θ = 0 is no-longer stable is then

ωC =

√
g

l
(7)

For the stable point with θ > 0 at frequencies ω > ωC we assume that the
system performs small oscillations around the angle θ0 so that θ = θ0 + δ.
Substituting this into equation 4 we find

lδ̈ =
(
−g sin θ0 + lω2 sin θ0 cos θ0

)
+

(
−g cos θ0 + lω2

(
cos2 θ − sin2 θ

))
δ (8)

Simple harmonic motion only occurs if

g sin θ0 −mlω2 sin θ0 cos θ0 = 0 (9)
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Since we know that 0 < θ0 < π then sin θ0 > 0 and therefore from Eqn. 9

cos θ0 =
g

lω2
(10)

This reduces Eqn. 8 to

lδ̈ =
(
−g cos θ0 + lω2

(
cos2 θ − sin2 θ

))
δ (11)

Substituting from Eqn. 10 into Eqn. 11

lδ̈ = −lω2

(
1− g2

ω4l2

)
δ (12)

Small oscillations around θ = θ0 therefore have frequency

Ω = ω

√
1− g2

ω4l2
(13)

Q2. To write the given Lagrangian in components (with the convention of
summation over pairs of repeated indices): L = 1

2
aij q̇iq̇j − V (q). Strictly

following the definition of the canonical momentum, we obtain [8]

pk =
∂L

∂q̇k

=
1

2
aijδikq̇j +

1

2
aij q̇iδjk = akj q̇j.

The Hamiltonian is H = piq̇i − L, with all q̇j substituted by q̇j = a−1
jk pk. This

gives, after a little algebra, the required answer [6]

H =
1

2
a−1

ij pipj + V (q).

For the particular case of matrix A given in the question you’ll have

L =
1

2
(q̇2

1 + q̇2
3 + 2q2

1 q̇
2
2 − 2q1q̇2q̇3) +

1

2
log q1.

This you need, if you prefer not to invert the matrix aij to write down the
Hamiltonian directly. Either way you should obtain

H =
1

2

(
p2

1 + 2p2
3 +

p2
2

q2
1

+
2p2p3

q1

)
− 1

2
log q1.

Now write down the Hamilton equations for the components of momentum:

ṗ1 = −∂H/∂q1 =
p2

2

q3
1

+
p2p3

q2
1

+
1

2q1
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ṗ2 = −∂H/∂q2 = 0

ṗ3 = −∂H/∂q3 = 0.

The last two conditions prove that the corresponding components are the
constants of motion. [10]

Now we are told that p1 is fixed (and equal to zero), so the first of the
equations gives the condition [5]

p2
2

q3
1

+
p2p3

q2
1

+
1

2q1

= 0.

Resolving this to find the required p2
3, we obtain

p2
3 =

(
−2p2

2 + q2
1

2p2q1

)2

= 1 +
p2

2

q2
1

+
q2
1

4p2
2

.

This has a minimum with respect to either of its variables, q1 or p2; a sketch
would be nice but not necessary. [5]

Q3. First of all, let’s write down the Lagrangian in the simplifying case. Now
(dx0, dx1) = (cdt, dx) and

gµν =

(
g(x) 0

0 −g(x)

)

which gives, after multiplication under the root, [4]

L = −m0

√
c2g(x)− ẋ2g(x) = −m0c

√
g
√

1− v2/c2

The l.h.s. of the Euler-Lagrange equation will then take the form [4]

d

dt

(
m0
√

g
ẋ√

c2 − ẋ2

)
=

d

dt

(
m0v

√
g√

c2 − v2

)

(the factor following the m0v is therefore denoted as Γ in the question. The
r.h.s. is

∂L

∂x
= −m0c

√
1− v2/c2

(
1

2
√

g

∂g

∂x

)
= −m0

Γ

∂

∂x
[
1

2
g(x)]

where φ is the expression in square brackets. [8]

For the general case of L = −m0

√
gµν ẋµẋν we just need to be careful with

components and indices. For the three spatial components of the 4-vector
variable, we’ll have in the l.h.s. of the Euler-Lagrange equation:

d

dt

(
∂L

∂ẋi

)
=

d

dt


−m0

2giµẋ
µ

2
√

gµν ẋµẋν


 ≡ d

dt
(γgiµẋ

µ)
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Here i = (1, 2, 3) and µ, ν = (0, 1, 2, 3). Now evaluating the derivatives in the [10]

r.h.s. we should group terms together into γ = −m0/
√

gµν ẋµẋν (or,

equivalently, without m0 as this cancels on both sides of the linear equation):

∂L

∂xi

= −m0
(∂gµν/∂xi)ẋ

µẋν

2
√

gµν ẋµẋν
≡ 1

2
γ

(
∂gµν

∂xi

)
ẋµẋν .

[8]

Q4. Cauchy theorem says
∮

C
dzf(z) = 2πi

∑
(residues) (14)

with the counterclockwise closed contour C. This is proved by expanding
f(z) in a Laurent series about a singular point z0

f(z) =
∞∑

n=−∞
fn(z − z0)

n (15)

and showing that only the f−1 term contributes (proof will not be required).

The solution of each of the three integrals is based on noticing that the
denominator is a quadratic of a quadratic. The first integral has double poles
at z = ±i. These are found easily because the denominator is a quadratic in
x2. We convert to a closed contour by completion in (say) the upper
half-plane.

Res(x = i) = lim
x→i

1

(2− 1)!

d

dx
(x− i)2 1

(x− i)2(x + i)2
= −2(2i)−3 (16)

This imples that the integral is

I = 2πi.− 2(2i)−3 =
π

2
(17)

The third integral also has a quadratic form for the denominator. It may be
be rewritten

(1+x)2+(1+1/x)2+1 = (x+1/x)2+2(x+1/x)+1 = (x+1/x+1)2 = 0 (18)

The solutions are therefore

x = − exp(±i
π

3
) (19)

As before each root is doubly degenerate. We close the contour in the u.h.p

Res(x = i) = lim
x→− exp(−i π

3
)

1

(2− 1)!

d

dx

x2

(x + exp(iπ
3
))2

= −2

9

√
3i (20)
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The integral then becomes

I =
4

9

√
3π (21)

The second integral should be rewritten with the substitution z = exp(iθ) so
that dz = izdθ. The cosine terms should be rewritten cos θ = (z + 1/z)2. A
contour around the unit circle is used

I =
∮ 1

1
4
(z + 1/z)2 + 1

2
(z + 1/z) + 1

.
dz

iz
(22)

The denominator is a quadratic that has the solution

z +
1

z
= −1− p

√
3i p = ±1 (23)

This is a second quadratic which has the solution

z =
1 + p

√
3i

2
+

q

2

√
(1 + p

√
3i)2 − 4 q = ±1 (24)

The term in the square root can be rewritten

(1 + p
√

3i)2 − 4) = −4
√

3(

√
3

2
− p

i

2
) = −4

√
3 exp(−ip

π

6
) (25)

The poles therefore occur at

z =
1 + p

√
3i

2
+ q31/4i exp(−ip

π

12
) (26)

These may be evaluated on a calculator to be
z = 0.159 + 0.4052i, 0.1593− 0.4052i, 0.840 + 2.173i, 0.840− 2.173i.
Evaluation is considerably aided by noticing that if z is a solution then so are
z∗, 1/z, 1/z∗. Only the first two poles are in the unit circle. The integral is
then

I = 2πi (Res(z1) + Res(z2)) = π
31/4

√
2

3

(
1 +

√
3
)

(27)

Q5. In the opening “essay part” must mention that a potential flow (that is, a
potential φ(x, t) exists such that v = ∇φ) requires that curlv = 0. This
means zero vorticity – as a consequence: (a) no viscous dissipation, (b)
Bernoulli equation applicable. Incompressible fluid then satisfies ∇2φ = 0. [8]

Looking at the circular sandbank from above, there are two separate regions,
in which we must solve the Laplacian condition ∇2φ = 0, for φ1 inside (over
the bank) and for φ2 outside the bank. 2D polar coordinates are
recommended in the question, which means ignoring the vorticity region
around the edge of the bank.
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The boundary conditions are (require 2 for each of φ1,2): At r →∞ the
radial component ∂rφ(2)vr(2) = u0 cos θ for the uniform flow. At r → 0 we
will require no singularity in the solution φ1 (see below). At the interface,
r = a, we want to match the potentials, φ1 = φ2 (which is a similar level of
approximation as ignoring the z-nonuniformity near the edge). Finally, we
need to consider the mass conservation, i.e. the water flowing into the bank
must have the same volume as that flowing over it: matching the flow rate
Q1 = vr(1) · [area] = vr(1)[2πad/2] inside, with the flow rate
Q2 = vr(2) · [area] = vr(2)[2πad] outside (where the depth d is twice that
over the bank). This gives ∂rφ1 = 2∂rφ2 at r = a. [8]

The solution of the Laplacian in 2D polars should be well known to you, as
the multipole expansion:

φ1,2 = a0 ln r +
∞∑

n=0

(
anr

n +
bn

rn

)
cos nθ.

(This format is equivalent, but easier than using formal Legendre
polynomials.)

Now, outside the bank, at r →∞, we have

vr(2) = ∂rφ2|r→∞ =
∞∑

n=0

nanr
n−1 cos nθ.

Matching this with the required u0 cos θ only leaves the mode n = 1, with
a1 = u0. Since we’ll need to match φ1 = φ2, the requirement of only single
harmonic (n = 1) applies to the inside as well. So,

φ1 =
(
A1r +

B1

r

)
cos θ; φ2 =

(
u0r +

b1

r

)
cos θ

Now, at r = 0 we don’t want the singularity in φ1 and, therefore, B1 = 0.
This means φ1 = A1r cos θ, or the velocity vr(1) = A1 cos θ. This is a uniform
flow over the bank! (as in many “dielectric problems” you’ve seen). [8]

We only need to match the solutions at the bank edge, r = a. Here

[φ :] A1a cos θ = (u0a + b1/a) cos θ; [vr :] A1 cos θ = 2(u0 − b1/a
2) cos θ

These are two linear equations for the unknowns A1, b1. Resolving them we
obtain that A1 (which is the value of uniform flow velocity over the bank) is
equal to 4

3
u0. [10]

Q6. The Langevin equation can be written for each of the Cartesian components
of particle coordinate/velocity:

mẍ = −γẋ + qE + ξx(t)
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mÿ = −γẏ + ξy(t)

mz̈ = −γż −mg + ξz(t)

with the identical properties of the delta-correlated stochastic force in each [8]
direction: 〈ξi〉 = 0, 〈ξ2

i 〉 = Γ .

In the overdamped limit we can neglect the inertial (ballistic) component of
motion, that is set the acceleration to zero ẍ = 0. This also means losing the
memory of the initial condition for the particle velocity and only consider the
balance of forces in the l.h.s. of the Langevin equations. [6]

Formal stochastic solution in the y-direction, which is not affected by any
force, is y(t) = (1/γ)

∫
ξ(τ)dτ . So 〈y〉 = 0 and 〈y2〉 = (Γ/γ2)t, the basic

diffusion. [5]

Solution in the x-direction is x(t) = (1/γ)
∫

ξ(τ)dτ + (qE/γ)t. So
〈x〉 = (qE/γ)t, the constant drift velocity. The mean square has the
cross-term vanishing: 〈x2〉 = (Γ/γ2)t + 〈x〉2, which means the deviations
from the drift velocity are diffusive, with D = Γ/γ2. [5]

Strictly, the same applies to the z-motion, since it also has the constant force
applied. However, since there is a restriction (the impenetrable bottom of the
vessel at z = 0), the constant-velocity drift is not going to happen
indefinitely. Instead the system will approach the steady state. The
equilibrium (t-independent) probability requires writing the kinetic equation.
There are several methods suggested in lectures, the most comprehensive
(Fokker-Planck) is to convert

ż = −(mg/γ) + (1/γ)ξ into ∂tf(z, t) = ∂z[(mg/γ)f ] + (Γ/2γ2)∂2
zf

The steady state is obtained by setting the r.h.s. to zero and integrating the
l.h.s. over z:

mg

γ
f = − Γ

2γ2
∂zf or

df

f
= −2γmg

Γ
dz

and obtaining the required Boltzmann distribution

f(z) = const e−mgz/kT

(because Γ = 2γkT in the present notations). [10]
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