Theoretical Physics 1
Answers to Examination 2003

Warning — these answers have been completely retyped. .. Please report any
typos/errors.
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Q1. Bookwork: Hamilton’s principle is 0 [ dt L(g;, G;,t) = 0 and leads (via the calculus

of variations) to
doL oL
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i.e. N 2nd-order equations for the coordinates ¢;. The position of the mass is

(1)

r =asinwt +[sinf; y = —acoswt —lcosh (2)
where ¢ = 6(t) is the single variable of the problem. The Lagrangian is
L=T-V= % (a2w2 + 1262 + 2alwb cos(wt — 9)) + mg(acoswt +lcosf) (3)
and the canonical momentum is
po = ml*6 + mlaw cos(wt — 6) (4)
After considerable simplifications, the equation of motion is
mi%0 4+ mgl sin @ = maw? sin(wt — ) (5)

For small oscillations (§ < 1) and in the limit aw?/lg < 1 we can set sin§ ~ 0
and sin(wt — 6) & sinwt so that the linearised equation is

126 + gl ~ aw® sin wt (6)

This has general solution

2

. W
0 = ASID(Wot + 5) + m

sin wt (7)
where w2 = g/l and A, are arbitrary constants. This shows resonance at w = wy
as required.

Q2. Bookwork: the canonical momenta are p; = dL/0q;. The Hamiltonian is
HEZPiCL’—L, (8)

which is a function of (g;, p;) but not ¢;. Hamilton’s equations are
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i.e. a set of 2N first-order equations for the coordinates and momenta. For a
charged particle we add the scalar —q(¢ — A-&) to the Lagrangian. The canonical
momentum is then p = ma + gA, but the Hamiltonian is still H = %mdﬁ + qo.
Expressed as a function of p we have
(p —qA)?
H = 10
5, T 49 (10)

The vector potential (0, Bx,0) has VxA = (0,0, B) as required and E = —V¢ is
clearly OK. The Hamiltonian is

2 2 2
H="*4+—— - - 4+ -2 _gF 11
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The Hamiltonian doesn’t depend on y, z or ¢, so p,, p. and H are constants of the
motion. The equations for p,, x and y are

. qB . Pz . py—qBx
pr=-—(py,—qBr)+qE; t="; y="1—— (12)
m m m

Differentiating the @ equation and substituting we get the required result

E
jj—l—wg.ic:%—k%py (13)

where wy = ¢B/m, the Larmor frequency. This has general solution

E
m:Asin(wot—i-(F)—I—piy—i— d 5 (14)
wom  mwg

where A, are arbitrary constants. It shows that, in this gauge, the p, parameter
represents an offset in x. We complete the solution by substituting x(t) into the g
equation. The p, term cancels and we have

E
Y = —woAsin(wot + §) — B (15)
which has general solution
Et
y = Acos(wot + ) — B (16)

The path is a helix (free motion in z) that drifts at a rate —E/B in the y
direction.

Q3. The quantity — [ m;c*dt/y; = — [ myc*dr;, where 7; is the proper time of the
particle, so Lorentz invariance is assured. The canonical momentum p; = m;v;x;
as expected (also a way to derive the Lagrangian) and the Hamiltonian is

> miCQ%.
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For the ring L = —moc?(1 — w?a?/c?)'/2. The generalised coordinate is the
rotation angle, so the angular momentum is the canonical momentum
J = 0L/0w. The Hamiltonian is H = wdL/0w — L. These evaluate to

ma’w me?

J = H =
\ﬂl — w?a?/c?) \ﬂl — w?a?/c?)

(17)

We have already seen that the action S is Lorentz invariant. The transformation
of the time interval is d¢’ = ~,dt, where ~, is the Lorentz factor of the frame F’
relative to F'. The Lagrangian therefore is L' = L/~,. In frame f’ the time
dilation means that the ring rotates more slowly, so ' = w/v,. The Hamiltonian
is the transformed energy, so H' = H~,. The angular momentum is j' = 9L'/dw’
so is invariant J' = J.

Q4. Cauchy theorem says
y{ dzf(z) = 2mi ) _(residues) (18)
c

with the counterclockwise closed contour C'. This is proved by expanding f(z) in
a Laurent series about a singular point zg

f&) = 3 fale— ) (19)

n=—oo

and showing that only the f_; term contributes (proof will not be required). The
example has poles at z = 4. We convert to a closed contour by completion in
(say) the upper half-plane. The residue at i is 1/2i, hence result. Closing the
contour in the lower half-plane is also possible, the residue is —1/2i and the sign
in Cauchy’s theorem must be reversed (clockwise contour).
(a) Integrand has poles at e*™/4 *37/4 and we can close over the upper
half-plane (either way is fine). The residue at x = e™/* is (draw a diagram!)

1 1 11—

. . . . , —— = = 20
(6772/4 _ 6771'1/4)(671'1/4 _ e37m/4>(e7rz/4 _ 67371’1/4) ﬁﬁlﬂ(l + Z) 4\/§ ( )

Similarly the residue at # = e ™/ is (1 —4)/4y/2. Using Cauchy’s theorem we
have the result 27i Y (residues) = 7/v/2.

(b) 4
o0 Cos ax o0 erar
/—oodme—l-bQ:?R(/_oodmx?—i—bQ) (21)

For a > 0 close over the upper half-plane. Residue of the pole ar x = b is
e~ /(2ib), so integral evaluates to me=%/b.

Q5. Preferred version of (¢t,w) Fourier transform and its inverse is

o= [Tagmer s fo=o [T fee @)
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For the (z, k) pair I prefer the opposite sign — the reason being the it is the
convention in QM that ei(k‘”f“’t) represents a positive energy wave travelling in the
+z-direction (remember ifiy) = E1)). The Green function can be calculated as

e—zwt

(23)

1 o)
G(t;0 :—/ d ,
(£0) 27 —mw—w2—1w7+w§

There are poles at w = iy/2 + i), where Q = /wé —72/4. Complete using lower
half-plane for ¢ < 0) and upper half-plane for ¢t > 0, generating a Heaviside

1o
function step #(t) as required for causality. The residues are +e~27*% /20 so, by
Cauchy’s theorem we have (generalising to G(¢;t')

1
e 27 gin Q(t — t')

G(t:t)) = 6(t — 1)) 5

(24)

We use the Green function to solve for the response to source f(t) by calculating

y(t) = [ at’ GEE)A() (25)

For the present case we have f(t') = fy for 0 <t < 7. We have to be careful
about the step functions; for ¢ < 7 we need [; dt/, for t > 7 we use [; dt'.
Changing variable to s =t — t’ we get for t < 7 and t > 7 respectively

1
t —27%4in Q) t “27%s5in Q)
£t :/ ds S PR e :/ ds & SIS (26)
0 Q t—T Q

The final expressions for f(t) are for t < 7

1 1
y(t) = o (QQ — e 2" (2Q cos Qt + vysin Qt)) (27)
0
and for t > 7
1 1 , RN &
y(t) = 52 (—e 27" (2Q cos Q' + v sin Qt )) (28)
Wo t—7
Q6. e Need to describe, for a discrete ID process with length scale a and timescale

7 the idea that the transitions rates into Pyq(m) are given by
w(m,m’) Py(m)

e Principle of detailed balance is w(m, m’)P(m’) = w(m’,m)P(m) for each
pair m, m’

e The idea of the derivation presented in the notes was to consider the case
when transitions are made only from m to m £ 1, so that

Pyia(m) = w(m,m+1)Py(m+1) —w(m +1,m)Py(m)

+w(m,m — 1)Py(m — 1) — w(m — 1,m)Py(m) (29)
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e If the diffusion is symmetric w = 1/2, and we get the diffusion equation with
coefficient D = a?/7

e If there is a vertical asymmetry due to gravity, then transitions to k — 1 are
preferred over those to k + 1, giving the first-derivative term in

(30)
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e The argument leading to the coefficient on this term will probably be
circular (appeal to Boltzmann factors. .. ), but never mind.

The steady-state solution of this equation is
P(z) o< exp(—mgz/kT) (31)

The critical size of particle is that for which mga/kT ~ 1. Evaluating this for the
given parameters we find a ~ 1076 m.
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