Theoretical Physics 1
Answers to Examination 2000

Warning — these answers have been completely retyped...Please report any ty-
pos/errors. Suggestions for improvement/more detail are welcome.
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QL.

Q2.

Kinetic energy is T = 1ma?6? + 1162, where the moment of inertia I = ma?/3. We
therefore get T = 2ma®6?/3 as required.

For the second rod, the centre of mass is at
z=2asinf +asing ; y=—2acosf —acosg, (1)

= 4% + 9% = a?(46% + ¢* + dacos(6 — ¢)0) . (2)
Adding the rotational and potential terms, we get the Lagrangian L=T —V

L =ma® (202 + §¢2 + 2cos(f — ¢)0¢) + mga(3 cos 0 + cos @) . (3)

Lagrange’s equations are (after some cancelations):

ma® (13—60 + 2cos(f — ¢)¢) = 2ma?sin(f — ¢)¢> — 3mgasin b n
ma® (%qﬁ + 2 cos(f — ¢)0) = 2ma’sin(f — $)6? — mgasin ¢

for small 0, ¢ we ignore the third-order 62, ¢? terms, set cos(§ — ¢) = 1 and use
sinf = 6 etc to get

46 +60 = —3(g/a)p ; 66+ 166 = —9(g/a)¢ (5)

as required.

We look for normal modes of the form #,¢ o exp(—iwt), so that the eigenvalue
equation becomes

3g9/a — 4w? —6w? _ 2 oq 2 4_
6w 99/a — 160° | ~ 0=27(g9/a)’ — 84w?g/a+28w* =0  (6)
which has solution
1 1
239 (24 ) 7
The Lagrangian is
—m002(1 _ q2/02)1/2 _ V(q) (8)
so that the canonical momentum is
oL .
P= 5o =mody 9)



as expected. The Hamiltonian is
H = mey(¢® — (1 — ¢°/c*)) + V(g) = moc®y + V(q) (10)

and is a constant of the motion because the Lagrangian is independent of . To
show it explicitly, use Lagrange’s equation in the form

. oV
mey§ = ~ B (11)

and multiply by ¢. Remember that dV/dt = ¢oV/dq.
For the case V = ;kq® we get

E = k@ + mod(1 — @/ V2 = ] m3ct (12)
=z —q°/c =c¢|l— ——F—=.
2 q 0 q q (E _ %kq2)2
For periodic motion of amplitude b the period is therefore
4 b d
r=- a (13)
cJo m2ct
1 — _10—
(E-3kg?)?

At ¢ = b the mass is stationary so that E = mgc? + 3kb?. Subtracting ;k¢* from
both sides we have 2
E —Skq

—2 - =1 v — ¢ 14
“B 1o - ), (14

where a = k/2mgc?.

The next bit is too difficult, and not surprisingly the answer given is wrong! The
substitution ¢ = bsin § yields

_ 4 W/2d0 cos B(1 + ab? cos? 9)

T : (15)
¢ Jo \/(1 —ab?cos?6)?2 -1
Expansion in powers of « yields
4 /2 3ab?
— 1 2 2\2
r cm/o de ( += c030+(’)((ab))> (16)
Integrating, we get
2 3ab?
r=—"_[(1+2 1L O((at?)?)) . (17)
V2« 8

The non-relativistic limit is 7 = 274/mg/k as expected.



Q3. Hamilton’s equations are

. _OH . OH
qZ_ apz ) pl_ aqz -

(18)

For a phase-space volume V with surface S the 6 N-dimensional flux » = (g, p)
satisfies
7{ dS-#=0. (19)

Proof:
0 OH 0 OH

?{dSr /dV <3Qi3pz‘ 3pz‘3qi> 0 (20

Liouville’s theorem implies that volumes in phase space evolve like an incompress-
able fluid. For an ensemble described by probability density p(g,p) the Gibbs’
entropy S = —k [dV plogp is a constant of the motion.

The principle of least time implies

6/dz %/H(q')?:o. (21)

The canonical momentum

!

D2 —Tgng, (22)

PTeiv@r

so that p, ¢ will satisfy Liouville’s theorem.

The visualisation of the phase space volume is always a bit mind-boggling, but here
we are helped by setting n = 1, so that the rays remain straight. If § < 1 as well
then we can find a simple expression for the boundary after propagation by length
b.

Start with a parametric form for the ellipse:
g(0)=acosu; p(0)=bsinu, (23)
then after length [ we have
g(l) =acosu+blsinu ; p(l) =bsinu . (24)
The equation of the distorted ellipse is
(a® + b*1?)p? — 2lb*pg + b?¢* =1 (25)

which has a determinant oy — 8% = a?b? which doesn’t depend on [, so that the
area is constant.



Figure 1: Phase-space volume for ¢ = 0, 1, 2 showing distortion but no change of volume.

Q4. Noether’s theorem is extremely general and powerful — this is just a simple example
of it. Doing exactly what it says in the question we get

_dc 31/13£+ az/;aﬁ L VY 3V1/1 oL
T da  da o Oa oy Oa 3V1/1

We now see that, for ¢(« ) = 1/16”‘

+ terms in ¢* . (26)

The Euler—Lagrange equatlons are
oL 00L oL (28)

9~ ooy T ovy

and the same for ¢* Substituting this in (26) we assemble total derivatives; for
example the first couple of terms give

ooL _.0L O oL

Ot By oy Ot \ 9y
The * terms come in with the opposite sign, so that we finally have Noether’s
theorem in the form

, 0L\
3 (755~ ) = (aws v awr) = )

(29)




Q5.

The momentum density for the free quantum particle is

(t,r) = ihlp[? (31)
and the current is 2
j(tr) = 5 (V- YV (32)

I would have preferred the condition in the form §,A* = 0. .. Explictly
10

Af = (p, A); 0,= (- 33
(QO? ) ) [ (C at, V) ( )
so that, as required, 5
1 0g
it of A . 34
c Ot Vv (34)
We want to find the Green’s function that satisfies
t, !
o(t,r) = [ dtar' Gt,r; t, 1) 6”') . (35)
0
The Green’s function itself satisfies the equation
1 %G 9 3
EW—V G=5(t—t')5 (7‘—7") . (36)

The Green’s function depends only on |r — 7/|.

Perform a 4-dimensional Fourier transform on G(t,7) to G(w, k) to get

(‘”—2—k2>é=1. (37)

Now back transform

G(t,r) =

There are two poles in the w plane at +ck; separating them by partial fractions we
get

Glt,r) = (2—7Cr)4 /dwdk (w —1 ck  w -i ck) eXp(i(l‘;Z ) '

Taking the residues at these poles, we get the causal Green’s function for ¢ > 0

(39)

G(t,r) = ﬁ / dk %exp(ik-r) . (40)

Now do the angular part of the k integration, taking the § = 0 along the direction
of r. The ¢ integral is easy and we get

sin ket

G(t,r) = ﬁ [ ko K sin exp(ikr cos f) . (41)

5



The 6 integral is next, leaving

c
= i i : 42
G(t,r) 27r2r/dk sin ket sin kr (42)
The final integral over k yields
c
=—0(r—ct). 4
G(r,t > 0) 47rr6(r ct) (43)

This last step is rather subtle...to see it, write

T . _ L e ik (iket ket
/0 dksmkrsmkot——g/_w(e —e )(e —e ) : (44)
We now use the golden rule
/oo dk e'*" = 276(r) , (45)

which generates 4 terms, but the §(r + ct) ones are killed by the causal Heaviside
function. This explains the final factor of 2.

Q6. I'll do this later. .. (perhaps).



