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Topological Invariants

1

Gaussian curvature x =
RiR>

negative, zero and positive K

1

oy kdA = (2—2g) Gauss-Bonnet Theorem
7r

closed surface

genus g = 0,1,2,... for sphere, torus, 2-hole torus...

Topological invariant: g cannot change under smooth deformations
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Topological Features of 2D Bands

[Thouless, Kohmoto, Nightingale & den Nijs (1982)]

/ Chern number v = 1/ d’k Q
—— — 27 Jpz,

1 k! Berry curvature  Qp = —iVy x (u|Vgu) - 2

crystal momentum k, Bloch state |uy)

Topological invariant:

v cannot change under smooth variations of the energy band
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Physical Consequences

E
Chern band filled with fermions ‘ ‘
(“Chern insulator”): — —
&2
e quantized Hall effect, o,, = VW [TKNN (1982)]
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Physical Consequences

Chern band filled with fermions ‘ ‘
(“Chern insulator”): — —

2

: e
e quantized Hall effect, o,, = VW [TKNN (1982)]

e v gapless chiral edge states @
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Dynamical changes in band topology?
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Dynamical changes in band topology?

Bosons / BEC: Adiabatic

— Adiabatic formation of vortex lattice

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]
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Dynamical changes in band topology?

Bosons / BEC: Adiabatic

— Adiabatic formation of vortex lattice

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

Fermionic Band Insulator: Non-adiabatic

— Effects of quenching between band topologies?

[M.D. Caio, NRC & M.J. Bhaseen, arXiv:1504.01910]
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Outline

Bosons: Adiabatic Formation of Vortex Lattice
Harper-Hofstadter Model
Adiabatic Route

Fermions: Quench of Band Topology
Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Harper-Hofstadter Model

7

y/dy 4

Effective magnetic field

H o |4 flux density ny = ;
— O x/dy ™
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Harper-Hofstadter Model

7

y/dy 4

Effective magnetic field

o<— o
flux density ngy = —
r/d. 2m

— «/ds

Imprint phases on tunneling matrix elements
[Jaksch & Zoller '03; Mueller '04; Sgrensen, Demler & Lukin '05; Gerbier & Dalibard 2010; Struck et al. (2012)...]

e.g. tilted lattice miT,Lmu)

2

Jegp ~ inherits phase difference of the Raman beams
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Bosons: Adiabatic Formation of Vortex Lattice

Harper-Hofstadter Spectrum

Harper-Hofstadter Model
Adiabatic Route

. «
Flux density ny, = o
m

ny = p/q:

E/J
o

— g bands with (in general) non-zero Chern numbers

— weakly interacting BEC in band minimum
=>vortex lattice with vortex density ny
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Harper-Hofstadter Spectrum

. «
Flux density ny, = o
m

_ } 0z 0F o5 08 1
ng = p/q: a/2m

— g bands with (in general) non-zero Chern numbers

— weakly interacting BEC in band minimum
=>vortex lattice with vortex density ny

Can one adiabatically create such high vortex densities?
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

e.g. ny=1/3 (o =2m/3) o

2n/3

2n/3

magnetic unit cell
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Bosons: Adiabatic Formation of Vortex Lattice

Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

e.g. ny=1/3 (o =2m/3)

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

magnetic unit cell
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Quantum Qu

2n/3 o
>
=
2n/3 20
>
I
2n/3 a
>
=

hes in Chern Insulators

_Jeia
_Je—i(y

—J




Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

e.g. ng =1/3 (o = 27/3) o "
2n/3 -2a

2n/3 o .

magnetic unit cell >

For fixed unit cell, vary phase « = 0 — 27/3
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

e.g. ny =1/3 (a =2m/3) e o el
2n/3 20
> _Je—i(y
2m/3 a
magnetic unit cell o —J

For fixed unit cell, vary phase « = 0 — 27/3

. : 27
e.g. RF + Raman Je'® = Jpr + Jraman€ ' 32
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

e.g. ny =1/3 (a =2m/3) e o el
2n/3 20
> _Je—i(y
2m/3 a
magnetic unit cell o —J

For fixed unit cell, vary phase « = 0 — 27/3
e.g. RF + Raman Je'® = Jpp + JRamanef’.%y

=-adiabatic path from uniform BEC to vortex lattice
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: Essential Idea

[S. Baur & NRC, Phys. Rev. A 88, 033603 (2013)]

e.g. ny =1/3 (a =2m/3) e o el
2n/3 20
> _Je—i(y
2m/3 a
magnetic unit cell o —J

For fixed unit cell, vary phase « = 0 — 27/3
e.g. RF + Raman Je'® = Jpp + JRamane*"%y
=-adiabatic path from uniform BEC to vortex lattice
E E E E
. T o
(XW w \i/ %MB
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Bosons: Adiabatic Formation of Vortex Lattice Harper-Hofstadter Model
Adiabatic Route

Adiabatic Route: more specifically...

Repulsive interactions select a particular vortex lattice unit cell

o i 2
Same periodicity as  Jx, = Jrr + JRamane€ ity) 33 [cf. MIT, LMU]

« a | —2a
—2« « «
a | 2« «

BEC is loaded into the stable vortex lattice as v = 0 — 27/3
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

Outline

Bosons: Adiabatic Formation of Vortex Lattice
Harper-Hofstadter Model
Adiabatic Route

Fermions: Quench of Band Topology
Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

Haldane Model [F. D. M. Haldane, PRL 61, 2015 (1988)]

Cold atom realization: [Jotzu et al. [ETH], Nature 515, 237 (2014)]
Tunnel A Staggered
couplings flux ®

~ Q@ Honeycomb lattice
?; 2 A, B sublattices
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

Haldane Model [F. D. M. Haldane, PRL 61, 2015 (1988)]

Cold atom realization: [Jotzu et al. [ETH], Nature 515, 237 (2014)]
Tunnel A Staggered
couplings flux ®
B X®

Honeycomb lattice
A, B sublattices

()
[ON=YO)

H= -t (?:,-T?:j—i—h.c.) — b Z ( ’“"‘Jc C + h. c)

(i) ()
nearest neighbour next n.n. +M Z n—M Z n;
icA i€B
pjj = £ breaks time-reversal symmetry _ band gap

M breaks inversion symmetry
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents

Haldane Model: Phase Diagram

[After Jotzu et al. [ETH], Nature 515, 237 (2014)]

Boundaries where gaps close at two Dirac points

Non-topological (v = 0) Topological (v = +1)
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Fermions: Quench of Band Topology

Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Quenches in the Haldane Model

[Marcello Caio, NRC & Joe Bhaseen, arXiv:1504.01910]

t2

6| v=20

2 | A

v=1
2] N M, ),
()
(Mo, ¢o

-6t
Change Chern number of lowest ( +mg —c ke + iaky]>
band (sign of m,) —c[ke — iaky] —mg
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Haldane Model

. Preservation of Chern Number
Fi : h of B. Topol .
ermions: Quench of Band Topology Relaxation of Edge Currents

Quenches in the Haldane Model

[Marcello Caio, NRC & Joe Bhaseen, arXiv:1504.01910]

M

t2

6 v=20

2 “X v=—1

v=1
()
| (Mo, ¢o

Gl
Change Chern number of lowest +mg, —c [k + ictky]
band (sign of m,) —c[ke — iaky] —mg

e non-interacting fermions

e isolated system (unitary evolution)
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

(1) Momentum space: time-evolution of Chern number, v

Occupied single particle states:
Va(k)) = aa(k)eiiE‘I)(k)t |l (k)) + ba(k)eiiEg(k)t |ua(k))

[I/u denote lower/upper bands]
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

(1) Momentum space: time-evolution of Chern number, v

Occupied single particle states:
tha(k)) = aa(k)eiiE‘I)(k)t |l (k)) + ba(k)eiiEg(k)t |ua(k))
[I/u denote lower/upper bands]

Chern number of the state

v(t)= ) —osignma (; - |ba(o>|2>

a==1
~[ba(00)[|aa(0)| cos[(E4(00) — Ex(00))t + ]

But, b,(c0) = 0 always... so Chern number of state unchanged
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents
axa I

Preservation of Chern Number

Band Hamiltonian describes a “spin” in an effective magnetic field
F=—hye- 6 band gap =|hy| # 0
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Preservation of Chern Number

Band Hamiltonian describes a “spin” in an effective magnetic field
F=—hye- 6 band gap =|hy| # 0

h
v is the number of times |hik wraps the sphere in the BZ
k

e.g. BZ of the honeycomb lattice

The “spins” precess in new hy, but preserve their winding number

[D’Alessio & Rigol, arXiv:1409.6319]

Nigel Cooper Cavendish Laboratory, University of Cambridge Quantum Quenches in Chern Insulators



Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Preservation of Chern Number

Band Hamiltonian describes a “spin” in an effective magnetic field
F=—hye- 6 band gap =|hy| # 0

h
v is the number of times |hik wraps the sphere in the BZ
k

e.g. BZ of the honeycomb lattice

The “spins” precess in new hy, but preserve their winding number

[D’Alessio & Rigol, arXiv:1409.6319]

Out of equilibrium, the Chern number of the state is different from
that of the (new) Hamiltonian
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents

(2) Real Space: Edge States and Edge Currents

At equilibrium, the Chern insulator

has v gapless edge states @
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents

(2) Real Space: Edge States and Edge Currents

At equilibrium, the Chern insulator

has v gapless edge states @

How do edge currents change after a quench to new Hamiltonian?
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents

(2) Real Space: Edge States and Edge Currents

At equilibrium, the Chern insulator

has v gapless edge states @

How do edge currents change after a quench to new Hamiltonian?

Finite-width strip (infinite length)

N rows of lattice sites
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Edge States

t=1t6=1/3 M=1 N=20

Non-topological (¢ = 7/6) Topological (¢ = 7/3)

Topological phase has edge states
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Dynamics of Edge Currents

Quench from topological to non-topological phase
=1 t,=1/3, ¢ =n/3, M =1.4— 16 (inset,2.2)]

INOR

2

In(t

=

N = 30 (circles)
N = 40 (crosses)

2 4 6 t

Red Line: Ground state current of final Hamiltonian
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Dynamics of Edge Currents

Quench from topological to non-topological phase
=1 t,=1/3, ¢ =n/3, M =1.4— 16 (inset,2.2)]

In(t JN(t)‘*ﬂ
| 2
[ & Do

=

N = 30 (circles)
N = 40 (crosses)

2 4 6 t

Red Line: Ground state current of final Hamiltonian

=fast relaxation to (close to) the ground state edge current of the
new Hamiltonian
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Haldane Model

Fermions: Quench of Band Topology S;T:)e(;:?;:'(;foédcg';ezlul\r‘:alr':t]:er

Dynamics of Edge Currents

Quench from non-topological to topological phase
Jedge(t)
4

Red Line: Ground state current of final Hamiltonian

—fast relaxation to (close to) the ground state edge current of the
new Hamiltonian

Nigel Cooper Cavendish Laboratory, University of Cambridge
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Experimental Consequences

(1) Momentum space: Preservation of the Chern number v

Measure the wave function, e.g. by time-of-flight

[Zhao et al., PRA 84, 063629 (2011); Alba et al., PRL 107, 235301 (2011); Hauke et al., PRL 113, 045303 (2014)]
Amplitude Phase Berry curvature

ey

=k [Flaschner et al.[Hamburg], arXiv:1509.05763]
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Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents

Fermions: Quench of Band Topology

Experimental Consequences

(1) Momentum space: Preservation of the Chern number v

Measure the wave function, e.g. by time-of-flight

[Zhao et al., PRA 84, 063629 (2011); Alba et al., PRL 107, 235301 (2011); Hauke et al., PRL 113, 045303 (2014)]
Amplitude Phase Berry curvature

ey

=k [Flaschner et al.[Hamburg], arXiv:1509.05763]

(2) Real space: Relaxation dynamics of edge currents

Measure currents, e.g. as for two-leg ladders

[M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes & I. Bloch, Nat. Phys. 10, 588 (2014)]

[Local version (microscope) should show light-cone spreading]
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Haldane Model
Preservation of Chern Number

Fermions: Quench of Band Topology Relaxation of Edge Currents

Summary

e Optical lattices allow dynamical changes in the topology of
energy bands.

e For a BEC, the evolution can be adiabatic:
— allows adiabatic preparation dense vortex lattices.

e For fermionic band insulators, the dynamics is non-adiabatic:
— the Chern number of the state is preserved;
— edge currents quickly relax to (close to) the equilibrium for
the new Hamiltonian.

=Out of equilibrium there can be a sharp distinction between
the topology of the state and local observables.
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