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Overview

e Surface Acoustic Waves
e Motivation(s)

e Classical Effects
— Weiss Oscillations (spatial periodicity)
— “Weiss-like" oscillations (spatial + temporal periodicity)

e Quantum Effects
— Theories for ZRSs
— Quantum Effects of SAWSs

e Summary



Surface Acoustic Waves
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w = sq s ~ 3000 m/s

d(x,t) = gosin(qgz —wt) = E = Eycos(qr — wt)T

0. (w,q) =-acoustic attenuation & velocity shift.



Acoustic attenuation in B-field [Pippard, 1957]

w ~ 0 =Geometrical commensurability

2Re

2R, ~n\ = vaF ~ N\
eB

Measurement of cyclotron radius of composite fermions close to v = 1/2
(Willett et al., 1993]. (w ~ 27 X 6GHz, A ~ 0.5um)



Motivation(s)
e /ero resistance states in microwave-irradiated GaAs devices. [Mani et al., Zudov et al]
e High-w SAW-generation in microwave-irradiated GaAs devices. [I.V. Kukushkin et al]
e SAWs + MWSs =-probing collective excitations. [V.I. Talyanskii, I.V. Kukushkin]

Need to understand response of high quality 2DEGs on small lengthscales
(Asaw < lmsp), and the resulting non-equilibrium states.

We study the effects of SAWSs on the d.c. resistivity.

[Typically Asaw > ap, Ap and s = % < vp =-some simplifications.]



Microwave-induced Resistance Oscillations

[Mani et al., Nature 420, 646 (2002)] [Zudov et al., PRL 90, 046807 (2003)]
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“Classical” magnetic fields (many Landau levels), k5T 2 hw.,.
Multiple peaks =-translational invariance is broken (Kohn's Theorem).




Classical Effects

Weiss oscillations: resistivity correction due to a static periodic potential.
Due to geometric commensurability. [Weiss et al., Europhys. Lett. 8, 179 (1989)]

[Beenakker, PRL 62, 2020 (1989)]
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Guiding centre drift due to SAWs

m'F:—e<E+17><§) B =B:
Guiding centre co-ordinates: (X,y)

X =x — &, Y =y+ Yo

We We

(==50)
We = —
m

PO G B O L)
B B

SAW potential:  E(7,t) = E,, coslqz — wt|



Perturbation theory:

. E, .
Y ~ —Fq coslqro(t) —wt] , X ~0

where x((t) is the trajectory in the absence of the SAW.
e.g. ignoring disorder:

xO(t) = Xo + R cos (wct — ¢) 3 yO(t) = Yo + R.sin (wct — ¢)

Resistivity change: SAW induced drift of electron cyclotron orbit — enhanced
diffusion

Dy = [ 070 o H [ 5 )5 0)
0 0

(Averaging over location, X, and phase, 1, of the orbit.)



Final Result:

o o 5Dyy — 9 UFT@qu ’ i Jp(ch)2
0 Dyg 1+

0Py = 0pyy = 0
When qR,. > 1
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Kinetic equation

e Distribution function

f(t T Qb, _ _|_ Z —iwt+iqx Z zm¢

e Kinetic equation in relaxation-time approximation (short-range scattering)

Ef(t,:lj‘,q57€) _ _f_fo—fo_fT(ET_GF@’x)),

T

/ 0 0 [ el ]8 0

— a+Ucosq5 + wc——smgb qbJrevE(:osgb

e Elastic scattering time 7(¢), inelastic scattering time 7,



Solution:

1) Assume 7(¢) = 7 is energy-independent and 7, > 7

i) Solve for f,,(¢)
iii) Use solution for f,,(¢) to find correction to fuo(¢)

iv) foo gives dc current, and hence dc resistance

Resistivity correction:

Po - K
E= €sclivg K = i J.p(QRC)Z
€p S 1417 (pwe — w)

[Thomas-Fermi screening.] [Simplifies to the result found previously if gR. > 1.]



Classical Results

Comparison with Weiss oscillations

Dynamic modulation
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Summary of classical results
e Resonances at w/w,. =~ integer modulated by geometric commensurability.

e Even (odd) integer peaks are in (out of) phase with geometric resonances.

b4 Comparison of static and dynamic
—@—— potentials and their effects on £/ x B

o= \T -l \‘T d rlft
' ‘ ' : Even Harmonic

f Force due to static potential

l} Force due to dynamic potential

! | ! | Odd Harmonic

Classical resistance is increased by SAWs



Quantum Effects: Theories for the microwave-induced
resistance oscillations

Quantum Mechanics, w.7 > 1 =-oscillatory density of states

Durst, Sachdev, Read & Girvin: disorder-induced scattering

[PRL 91, 086803 (2003); see also Vavilov & Aleiner PRB 69, 035303 (2004)]
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Dmitriev, Mirlin & Polyakov: oscillatory structure in distribution function
[PRL 91, 226802 (2003); Dmitriev, Vavilov, Aleiner, Mirlin & Polyakov, cond-mat/0310668]

Stationary kinetic equation

okl ny (e £0)[f(e £w) - f(e)] = L1109

2w2~2 Tin

Assume weak DOS modulations:

2 T
v(e) = [1—FCOS( WE)]v I' =2¢ wema <« 1

We

This implies oscillations in the elastic scattering rate 7 1(e) = 71 2<
Consider kg1 > w. =No SdH oscillations.

Nevertheless, there are microwave-induced corrections to the d.c. conductivity.
Larger than those from the disorder-induced scattering mechanism by 7, /7.



Analysis for SAWs

e For w < w,. the balance equation is
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e Distribution acquires an oscillatory part f§, = 6. (e).
To lowest order in |E,,,|*

Ew 2 w
579(c) = dr 22 Ten 5 5 5 1
Y

e Average over energy =-isotropic magneto-oscillations (1/7 S w < w,)
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Comparison of classical and quantum contributions

e Quantum correction to resistance is isotropic, classical is anisotropic.
e Quantum correction has opposite sign to classical contribution.

Final results for 77! S w < w, are

% = 2J RC g - 2 F 9
00 o0 0 (q ) g2 T ( n V)

Tin 2
= —2J2 (qR.) E* x = (27T'v)~,
p” - § (qRe) €7 x == (2nT'w)

Q
|

[filling fraction, v = 2ep/(hw.)]

The parameter controlling the resistance anisotropy is n = 27;2”8\/7;“.

—-possibility of zero resistance states at w < w...



Conclusions

e New experimental regimes of SAW frequency and 2DEG quality require new
theoretical investigations.

e We have studied the effects of SAWs on the d.c. magnetoresistance of a 2DEG
in the regime vp > s, w.7 > 1, and Agaw > ap, \p.

e The classical results can be understood in terms of the guiding centre drift. We
find combined geometrical and temporal resonances (¢R. and w/w.).

e \We have computed the quantum corrections arising from the oscillatory
non-equilibrium distribution function (the leading effect for 7, > 7).

e We find the possibility of SAW-induced zero resistance states when w < w,,
which will show geometric oscillations as a function of ¢R..



