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Overview

• Surface Acoustic Waves

• Motivation(s)

• Classical Effects
– Weiss Oscillations (spatial periodicity)
– “Weiss-like” oscillations (spatial + temporal periodicity)

• Quantum Effects
– Theories for ZRSs
– Quantum Effects of SAWs

• Summary



Surface Acoustic Waves

ω = sq s ≃ 3000 m/s

φ(x, t) = φ0 sin(qx− ωt) ⇒ ~E = E0 cos(qx− ωt)~̂x

σxx(ω, q) ⇒acoustic attenuation & velocity shift.



Acoustic attenuation in B-field [Pippard, 1957]

ω ≃ 0 ⇒Geometrical commensurability

2Rc

λ

2Rc ≃ nλ ⇒ 2
mvF
eB

≃ nλ

Measurement of cyclotron radius of composite fermions close to ν = 1/2
[Willett et al., 1993]. (ω ∼ 2π × 6GHz, λ ∼ 0.5µm)



Motivation(s)

• Zero resistance states in microwave-irradiated GaAs devices. [Mani et al., Zudov et al.]

• High-ω SAW-generation in microwave-irradiated GaAs devices. [I.V. Kukushkin et al.]

• SAWs + MWs ⇒probing collective excitations. [V.I. Talyanskii, I.V. Kukushkin]

Need to understand response of high quality 2DEGs on small lengthscales
(λSAW ≪ lmfp), and the resulting non-equilibrium states.

We study the effects of SAWs on the d.c. resistivity.

[Typically λSAW ≫ aB, λF and s = ω
q ≪ vF ⇒some simplifications.]



Microwave-induced Resistance Oscillations
[Mani et al., Nature 420, 646 (2002)] [Zudov et al., PRL 90, 046807 (2003)]
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“Classical” magnetic fields (many Landau levels), kBT >
∼ ~ωc.

Multiple peaks ⇒translational invariance is broken (Kohn’s Theorem).



Classical Effects

Weiss oscillations: resistivity correction due to a static periodic potential.
Due to geometric commensurability. [Weiss et al., Europhys. Lett. 8, 179 (1989)]

[Beenakker, PRL 62, 2020 (1989)]



Guiding centre drift due to SAWs

m~̈r = −e
(

~E + ~v × ~B
)

~B = B~̂z

Guiding centre co-ordinates:

X = x−
vy
ωc
, Y = y +

vx
ωc
.

(

ωc =
eB

m

)

(X,Y)

(x,y)

Ẋ =
Ey(~r, t)

B
Ẏ = −

Ex(~r, t)

B

SAW potential: ~E(~r, t) = Eωq cos[qx− ωt]~̂x



Perturbation theory:

Ẏ ≃ −
Eωq
B

cos[qx0(t) − ωt] , Ẋ ≃ 0

where x0(t) is the trajectory in the absence of the SAW.
e.g. ignoring disorder:

x0(t) = X0 +Rc cos (ωct− ψ) , y0(t) = Y0 +Rc sin (ωct− ψ)

Resistivity change: SAW induced drift of electron cyclotron orbit – enhanced
diffusion

δDyy =

∫ ∞

0

〈Ẏ (t)Ẏ (0)〉dt
short-range scattering

−→

∫ ∞

0

e−t/τ〈Ẏ (t)Ẏ (0)〉X0,ψdt

(Averaging over location, X0, and phase, ψ, of the orbit.)



Final Result:

δρxx
ρ0

=
δDyy

D0
= 2

(

vF τeEωq
ǫF

)2 ∞
∑

p=−∞

Jp(qRc)
2

1 + (ω − pωc)2τ2

δρxy = δρyy = 0

When qRc ≫ 1

δρxx
ρxx

≃ 4
(vF τeEωq)

2

πqRcǫ2F

∞
∑

p=−∞

cos2(qRc + pπ
2 − π

4)

1 + (ω − pωc)2τ2



Kinetic equation

• Distribution function

f(t, x, φ, ǫ) = fT (ǫ) +
∑

ωq

e−iωt+iqx
∑

m

fmωq(ǫ)e
imφ

• Kinetic equation in relaxation-time approximation (short-range scattering)

L̂f(t, x, φ, ǫ) = −
f − f0

τ
−
f0 − fT (ǫ− ǫF (t, x))

τin
,

L̂ =
∂

∂t
+ v cosφ

∂

∂x
+

[

ωc −
eE

mv
sinφ

]

∂

∂φ
+ evE cosφ

∂

∂ǫ

• Elastic scattering time τ(ǫ), inelastic scattering time τin



Solution:

i) Assume τ(ǫ) = τ is energy-independent and τin ≫ τ
ii) Solve for fωq(φ)
iii) Use solution for fωq(φ) to find correction to f00(φ)
iv) f00 gives dc current, and hence dc resistance

Resistivity correction:

δρxx
ρ0

= 2 (vF τqE)
2
ℜ

{

K

1 −K

}

E ≡
eascEωq
ǫF

K ≡

∞
∑

p=−∞

Jp(qRc)
2

1 + iτ(pωc − ω)

[Thomas-Fermi screening.] [Simplifies to the result found previously if qRc ≫ 1.]



Classical Results

Comparison with Weiss oscillations
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Summary of classical results
• Resonances at ω/ωc ≃ integer modulated by geometric commensurability.

• Even (odd) integer peaks are in (out of) phase with geometric resonances.

_π
ωt = 

��
�
�
�
� ��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

t = 0

Even Harmonic

Odd Harmonic

Force due to static potential

Force due to dynamic potential
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Quantum Effects: Theories for the microwave-induced

resistance oscillations

Quantum Mechanics, ωcτ ≫ 1 ⇒oscillatory density of states

Durst, Sachdev, Read & Girvin: disorder-induced scattering
[PRL 91, 086803 (2003); see also Vavilov & Aleiner PRB 69, 035303 (2004)]
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Dmitriev, Mirlin & Polyakov: oscillatory structure in distribution function
[PRL 91, 226802 (2003); Dmitriev, Vavilov, Aleiner, Mirlin & Polyakov, cond-mat/0310668]

Stationary kinetic equation

E2σ
D(ω)

2ω2γ2

∑

±

γ̃(ǫ± ω)[f(ǫ± ω) − f(ǫ)] =
f(ǫ) − fT (ǫ)

τin

Assume weak DOS modulations:

γ̃(ǫ) =

[

1 − Γ cos

(

2πǫ

ωc

)]

γ Γ = 2e
− π
ωcτq ≪ 1

This implies oscillations in the elastic scattering rate τ−1(ǫ) = τ−1 γ̃(ǫ)
γ .

Consider kBT ≫ ωc ⇒No SdH oscillations.

Nevertheless, there are microwave-induced corrections to the d.c. conductivity.
Larger than those from the disorder-induced scattering mechanism by τin/τq.



Analysis for SAWs

• For ω ≪ ωc the balance equation is

∑

±ωq

|Eωq|
2σωq
γ̃

∂ǫ

[

γ̃2

γ2
∂ǫ(f

0
00 + fT )

]

=
f0
00

τin

• Distribution acquires an oscillatory part f0
00 = δf0(ǫ).

To lowest order in |Eωq|
2

δf0(ǫ) = 4τin
|Eωq|

2σωq
γ2

∂ǫγ̃ ∂ǫfT

• Average over energy ⇒isotropic magneto-oscillations (1/τ <
∼ ω ≪ ωc)

δqραα
ρ0

=
δqσαα
σ0

= −
2τin
τ

∣

∣

∣

∣

4πΓǫF
~ωc

∣

∣

∣

∣

2

E2J2
0 (qRc)



Comparison of classical and quantum contributions

• Quantum correction to resistance is isotropic, classical is anisotropic.

• Quantum correction has opposite sign to classical contribution.

Final results for τ−1 <
∼ ω ≪ ωc are

δρxx
ρ0

≈
δσyy
σ0

= 2J2
0 (qRc) E

2

[

v2
F

s2
−
τin
τ

(2πΓν)
2

]

,

δρyy
ρ0

≈
δσxx
σ0

= −2J2
0 (qRc) E

2 ×
τin
τ

(2πΓν)
2
,

[filling fraction, ν = 2ǫF/(~ωc)]

The parameter controlling the resistance anisotropy is η = 2πΓνs
vF

√

τin
τ .

⇒possibility of zero resistance states at ω ≪ ωc.



Conclusions

• New experimental regimes of SAW frequency and 2DEG quality require new
theoretical investigations.

• We have studied the effects of SAWs on the d.c. magnetoresistance of a 2DEG
in the regime vF ≫ s, ωcτ ≫ 1, and λSAW ≫ aB, λF .

• The classical results can be understood in terms of the guiding centre drift. We
find combined geometrical and temporal resonances (qRc and ω/ωc).

• We have computed the quantum corrections arising from the oscillatory
non-equilibrium distribution function (the leading effect for τin ≫ τ).

• We find the possibility of SAW-induced zero resistance states when ω <
∼ ωc,

which will show geometric oscillations as a function of qRc.


