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Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice [Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Bose-Hubbard model [Jaksch et al., PRL 81, 3108 (1998)]
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Strongly correlated regime for U/J ≫ 1
at particle density n ∼ 1.

T = 0: competition between

• superfluid (BEC)

• Mott insulators, at n = 1, 2, . . .

[Fisher et al., PRB 40, 546 (1989)]

Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002)]
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Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation [Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Rotation frequency, Ω

Quantized vortices

Vortex density nv = 2MΩ
h

[Coddington et al. [JILA], PRA 70, 063607 (2004)]

Strong correlation regime for Ω → ω⊥



Filling Factor ν ≡
n2d

nv
[NRC, Wilkin & Gunn, PRL 87, 120405 (2001)]

Critical filling factor νc ≃ 6

• ν > νc: Vortex Lattice (BEC)

• ν < νc: Bosonic versions of fractional quantum Hall states:
Laughlin, hierarchy/CF, Moore-Read & Read-Rezayi phases, smectic +...?

[For a review, see: NRC, Adv. Phys. 57, 539 (2008)]

Experimental challenges:

• the interaction scale at ν ∼ 1 is small

• rotating gas susceptible to “heating” by static perturbations.



Atomic Bose Gases on a “Rotating Lattice”

• Rotating lattice [Tung, Schweikhard, Cornell (2006); Williams et al. (2008)]

• Tunneling phases [Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005)]

Bose-Hubbard model with “magnetic field” (2D square lattice)
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Particle density, n

Interaction strength, U/J

Vortex density, nv
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(0 ≤ nv < 1)

What are the groundstates of bosons on a “rotating lattice”?



Single particle spectrum is the “Hofstadter butterfly”
[Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955); Hofstadter, PRB 14, 2239 (1976)]
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n, nv ≪ 1 ⇒continuum limit [Sørensen, Demler & Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Are there new strongly correlated phases on the lattice for n ∼ nv ∼ 1?

Hard-core limit U ≫ J ⇒0 ≤ nα ≤ 1 [frustrated spin-1/2 quantum magnet]



Composite Fermions

Rapidly rotating bosons in the continuum

Composite fermion = a bound state of a boson with one vortex.
[NRC & Wilkin, PRB 80, 16279 (1999)]

ΨB({ri}) ∝ PLLL

∏

i<j

(zi − zj) ψCF({ri})

nCF
v = nv − n

CFs fill p Landau levels for

n

nCF
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n
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p
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⇒(trial) incompressible states of interacting bosons,
describe exact groundstates well for ν = 1/2, 2/3, (3/4)

[NRC & Wilkin, PRB (1999); Regnault & Jolicoeur, PRL (2003); . . .]



Lattice: CF spectrum is the “Hofstadter butterfly” [Kol & Read, PRB 48, 8890 (1993)]

0 0.2 0.4 0.6 0.8 1

n
v

CF

-4

-2

0

2

4

E

Filled band of CFs at (n, nCF
v ) ⇒trial incompressible state of bosons at (n, nv)

There can exist incompressible states with no counterpart in the continuum



Gaps for non-interacting CFs [G. Möller & NRC, arXiv:0904.3097]
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Do these new phases describe the exact groundstates?



Numerical Methods

• Exact Diagonalization

Lx × Ly square lattice, with
periodic boundary conditions
(torus).

N = nLxLy

Nv = nvLxLy 1 2 Lx

1

Ly

2

• Low-energy spectrum (Lanczos) for hard-core interactions U ≫ J .

• Limited by finite size effects, N ≤ 6.



Composite Fermion Wavefunction

Continuum

ΨB({ri}) ∝ PLLL

∏

i<j

(zi − zj)

︸ ︷︷ ︸

ψCF({ri})

Slater det. of lowest Landau level wavefunctions:
ν = 1 state of fermions.

Lattice [G. Möller & NRC, arXiv:0904.3097]

ΨB({ri}) ∝ ψ
(φx,φy)
J ({ri})

︸ ︷︷ ︸
ψ

(−φx,−φy)
CF ({ri})

ν = 1 state of fermions.

• Hard-core bosons.

• Generalized periodic boundary conditions: phases (φx, φy).

- Recovers the two ν = 1/2 Laughlin wavefunctions in continuum limit.
[Haldane & Rezayi, PRB 31, 2529 (1985)]



CF states stabilized by the lattice

Evidence for strongly correlated states
at a series of these new cases.
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On nv = 1
2(1 − n):

Groundstate is consistent with the CF state for n <
∼ 1/5



Overlap with trial CF state

n nφ N Lx Ly |〈Ψ|ΨtrialCF〉|
2 dim(H)

1/7 3/7 2 2 7 0.437 91
1/7 3/7 3 3 7 0.745 1330
1/7 3/7 4 4 7 0 [0.2753] 20.5k
1/7 3/7 5 5 7 0.5631 324k
1/7 3/7 6 6 7 0.3284 5.2M
1/9 4/9 2 2 9 0.3603 153
1/9 4/9 3 3 9 0.8407 2925
1/9 4/9 4 4 9 0 [0.1515] 58.9k
1/9 4/9 4 6 6 0.3061 58.9k
1/9 4/9 5 5 9 0.4585 1.2M
1/9 4/9 6 6 9 0 [0.1957] 25.8M

• Sizeable overlap with CF state (no free parameters!)

• Correct groundstate degeneracy on the torus (1).

• Correct Chern number (2), tested for N ≤ 5.

Evidence for wider applicability of CF ansatz.



Summary

• Ultracold atomic Bose gases on a rotating lattice offer the possibility to explore
novel aspects of the FQHE: the FQHE of bosons; the interplay of the FQHE and
lattice periodicity.

• A generalized composite fermion construction leads to the prediction of strongly
correlated incompressible phases of bosons at certain (n, nv), including states
which are stabilized by the lattice.

• We find numerical evidence for uncondensed incompressible fluids for several of
the predicted cases. This shows a wider applicability of the CF construction than
its continuum formulation.

• There are many other cases (n, nv) to understand: points of failure of the CF
construction can help to identify other competing phases.


