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Abstract
We present recent improvements to the ONETEP code.
ONETEP is an ab initio electronic structure package for to-
tal energy calculations within density-functional theory. Its
main distinguishing features are true ‘linear scaling’, in that
the total computational effort scales only linearly with sys-
tem size, and ‘plane-wave’ accuracy, in that the convergence
of the total energy is systematically improvable with increas-
ing cutoffs. We present recent improvements to the parallel
performance of the code, and thus in effect considerable in-
creases in the scope and scale of feasible calculations with
ONETEP, especially in solids. On parallel computers com-
prising large clusters of commodity servers, our recent im-
provements make calculations of tens of thousands of atoms
in a solid feasible even for small numbers of cores (10-100).
Efficient scaling with number of atoms is demonstrated for
large systems, and a number of new applications are pre-
sented.

ONETEP Theory

Traditional Kohn-Sham DFT finds single-electron states ψi(r) with ener-
gies ǫi to solve the Schrodinger Equation for an effective potential V [n](r):

Ĥψi(r) =

[

−
~

2m
∇2 + V [n](r)

]

ψi(r) = ǫiψi(r) , (1)

In linear-scaling DFT, we use the density matrix ρ(r, r′) rather than the
eigenstates. In terms of ψi(r) and occupation numbers fi, this is

ρ(r, r′) =
∑

i

fiψi(r)ψ
∗
i (r

′) , (2)

or in terms of a set of localised nonorthogonal functions φα(r)

ρ(r, r′) =
∑

αβ

φα(r)Kαβφβ(r′) , (3)

where the matrix Kαβ, the density kernel, is a generalisation of occupa-
tion numbers to a nonorthogonal basis.

Figure 1: (left) An extended eigenstate for an oligopeptide molecule
(right) Example localized NGWFs in the same molecule

Approaches that use eigenstates inevitably scale as O(N3) with the num-
ber of atoms N : the system has O(N) eigenstates, each of size O(N),
and each needing to stay orthogonal to O(N) others. Localised-orbital
approaches, however, can scale as O(N). In an insulator, the kernel Kαβ

can be truncated beyond some cutoff radius RK , so the matrix is sparse.
The overlap matrix Sαβ = 〈φα|φβ〉 is also sparse for localised φα(r),

as are elements of the Hamiltonian matrix Hαβ = 〈φα|Ĥ|φβ〉. With

Hαβ and the density n(r) =
∑

αβ φα(r)Kαβφβ(r) we can find the total
energy E with O(N) scaling by using

E[{Kαβ}, {φα}] =
∑

αβ

KαβHβα + EDC[n(r)] , (4)

and simulatenously minimising E with respect to the kernel and the coef-
ficients describing the NGWFs, subject to the constraint that the density
kernel remains idempotent and that its trace equals the number of elec-
trons.

Figure 2: (left) A psinc function (middle) FFT box containing overlap-
ping NGWFs (right) Example of NGWF optimisation of a p-orbital.

ONETEP combines O(N) scaling with ‘plane-wave’ accuracy, in that the
convergence of the total energy is systematically improvable by increas-
ing cutoffs. The localised basis in ONETEP comprises ‘Nonorthogonal
Generalised Wannier Functions’ (NGWFs) expressed in terms of a ba-
sis of periodic bandwidth-limited delta functions, or psinc functions, (see
Fig 2) strictly localized to spherical regions of radius Rφα. These psinc
functions, with coefficients Ci,α, are centered on the grid points ri of a
regular grid specified by a plane-wave cutoff energy Ecut.
The minimisation of the energy occurs via nested loops: The outer loop
minimises the energy with respect to the coefficients Ci,α

Emin = min
{Ci,α}

L({Ci,α}) , (5)

while inner loop, performed at fixed Ci,α, minimizes the energy with

respect to the kernel elements Kαβ

L({Ci,α}) = min
{Kαβ}

E({Kαβ}; {Ci,α}) . (6)

Parallel Optimisation

ONETEP was developed from the beginning as a parallel code and its
efficient scaling and performance on isolated molecules, nanotubes and
similar systems with a high degree of sparsity has been well-documented.
Recent work has focused on improving performance in solids, where com-
munications bottlenecks in large systems has previously limited the useful
applicability of the code.

Matrix Algebra

One time-limiting component of
ONETEP calculations is sparse
matrix algebra, especially during
kernel optimisation. As Fig 3
shows, the pattern of filling of the
sparse matrices representing Sαβ,

Hαβ, and Kαβ can be highly
structured, allowing considerable
optimisation of the communica-
tion and computation patterns.
Recent improvements include:

• Hierarchical sparsity: division
of matrix into node-node ’seg-
ments’ and atom-atom ’blocks’:
dense storage used when filling
exceeds threshold η.

• Efficient dense matrix algebra
used on the level of segments
or segments as appropriate.

• Reduced total comms volume
by communicating only those
blocks or segments of multipli-
cands contributing to matrix
product.

Combined, these developments
have dramatically improved both
the speed and scaling (with sys-
tem size and number of parallel
processors) of matrix algebra.

Figure 3: Sparsity patterns of
(KS)αβ for: ∼4000-atom systems:

C Nanotube, DNA Strand, GaAs
Nanorod, Crystalline Silicon
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Figure 4: Total data sent per
process (left) and Total time per
operation (right), for a matrix
product operation performed for
a 4000-atom Carbon nanotube
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Figure 5: Speedup from Divi-
sion over segments, against η

NGWF Operations
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Figure 6: Timings for row sums
operations on 16 nodes, for a
range of systems (C Nanotube,
Organic BgK toxin, Al2O3 Crys-
tal, GaAs Nanorod, Si Crystal).

Another major contributor to the
computational work is from the
‘row sums’ operations, for calcu-
lating all the contributions to a
matrix or other quantity that in-
volve a given φα(r). Examples in-
clude kinetic and local potential
matrices and energies, the elec-
tron density and the NGWF gra-
dient:

i) Ekin = Kαβ〈φα|T̂ |φβ〉

ii) Eloc = Kαβ〈φα|Vloc|φβ〉 ,

iii) n(r) = Kαβφα(r)φβ(r) ,

iv) ∂E/∂φα(r) = Qαβφβ(r) + ... .

The sparsity pattern of the over-
lap matrix can be used to ‘plan’
in advance which pairs of NG-
WFs contribute to these expres-
sions. This plan allows each node
to request the NGWFs it requires
from other nodes in advance of
when they are needed, minimis-
ing communications latency.

Parallel Scaling
Combined with other parallel optimisations, these improvements have
resulted in very considerable decreases in the total computation time:
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Figure 7: (left) Scaling with system size for DNA strands: clear linear
scaling of the total time is observed (right) Scaling with number of cores
on which the calculation is run — efficient speedups are obtained up to
at least 256 cores.

Recent Applications

GaAs / ZnO Nanorods
The properties of III-V and II-VI semiconductor nanorods in the Wurtzite
structure, including polar bonding and lack of inversion symmetry, are
of interest to a variety of fields, including spintronics and photovoltaics.
Linear-scaling DFT with ONETEP enables simulation of realistic systems
of thousands of atoms, elucidating the the complex interplay between
bonding and long-range electrostatic effects required to model these sys-
tems.

Figure 8: Electrostatic Potential of a pair of GaAs Nanorods.

Defects in Ceramics
Understanding defects and defect clusters in crystalline materials is a
tough challenge for electronic structure methods due to the requirement
of embedding, large systems in periodic hosts, with significant finite size
errors if the supercell used is too small. In metal oxide systems, the
presence of oxygen requires a dense grid when using plane-waves and
norm-conserving pseudopotentials, making the calculations even tougher.
The system sizes available to linear-scaling DFT make calculations on
supercells of thousands or even tens of thousands of atoms feasible. This
allows investigation of properties of charged defects, including defect for-
mation energies, migration barriers, defect concentrations and diffusion
coefficients. Grain boundaries and dislocations are also possible.
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Figure 9: Formation energies of Aluminium and Oxygen vacancies in
Al2O3 as a function of system size, showing slow convergence and requir-
ing large system sizes for accurate results.

Strongly Correlated Systems
We have recently completed an implementation of the DFT+U method
within ONETEP, which allows treatment of systems where so called
”strong-correlation” effects are important. This is the case wherever there
are electrons occupying localised states in tightly-bound d- or f -subshells
which are partially occupied.

Figure 8: Scaling of DFT+U calculations on NiO nanoclusters. The
method incurs minimal overhead compared to a standard calculation.

Protein-Ligand Binding Energies
ONETEP is also ideal for quantum-mechanical investigation of biological
systems. Recent investigations have included binding of protein fragments
with nanoparticles.

Figure 8: C60 fullerene binding with peptides from a protein involved
in formation of amyloid fibrils.
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