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Preface

It has been a privilege and a pleasure to spend the last three

years thinking about liquid crystal elastomers. The richness of

their behavior and the comparative simplicity of its description have

made this field an extremely engaging and enjoyable one in which

to learn the art of research. I have also been consistently comforted

to know that liquid crystal elastomers are real macroscopic materials

that one can see, touch and stretch. I have been extremely lucky to

have been supervised on this journey by Mark Warner who is in many

ways the father of the field and who’s deep understanding has guided

me through many intellectual quagmires. Mark has also been an ex-

ceptional and dedicated teacher, and I hope that I have learnt from

him not only his field but something of his insightful and intuitive

approach to physical reasoning.

This thesis documents my first steps into the world of research, taken

mainly in the Theory of Condensed Matter Group in Cambridge Uni-

versity’s Cavendish Laboratory where I have been enrolled as a Ph.D.

student. However, I have also been closely supervised by Kaushik

Bhattacharya, first during an extended visit by me to the Califor-

nia Institute of Technology’s Mechanical Engineering department and

then during his sabbatical in Cambridge. Kaushik’s experience with

martensitic metals has provided an invaluable guide for my thoughts

about polydomain elastomers. Kaushik also taught me about elastic-

ity, and, perhaps as importantly, convinced me that formal mathe-
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matics can really be helpful in physical problems.

Many other people have guided and supported me during the last

three years. I have had occasional but highly informative discussions

with Eugine Terentjev, Kenji Urayama, James Adams, Daniel Cor-

bett, Carl Modes and David Khemelinski, and it has always been re-

assuring to know that my second supervisor, Mike Payne, would help if

I encountered difficulties. I have also enjoyed some highly engaging if

unrelated supervision from Ben Simons. I would like to thank Tracey

Ingham and Micheal Rutter for keeping TCM and its computers run-

ning, and Thomas Fink and Rob Farr for producing the style-sheet

for this thesis. I acknowledge financial support from the Cambridge

University Sims Fund and the Powell Foundation who supported me

in Cambridge and Caltech respectively, and Corpus Christi College,

which has provided a stimulating community, a beautiful home and

many friends. Finally I thank my family for supporting and nurturing

my interest in science, and my fellow Ph.D. students Alex Silver, Jamie

Blundel, David O’Regan, Jonathan Edge and Robert Lee for provid-

ing intellectual and emotional support throughout the last three years.

This thesis is the result of my own work and includes nothing which

is the outcome of work done in collaboration or which has been sub-

mitted for a previous degree except where specifically indicated in the

text. It is also less than 60,000 words in length. Most of the results in

this thesis have already been published as papers in scientific journals

on which I am first or sole author. The results in Chapter 2 were

published in [14], and those in Chapter 3 in [11]. Chapter 4 combines

ideas from a review paper [12] and a research paper [13], while the

main ideas in Chapter 5 were presented in a short letter [16], and a

longer manuscript [15] has been prepared for publication but not yet

submitted to a journal. However, I hope that in this thesis these ideas

xiv
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form a coherent narrative with consistent notation, recurring themes

and minimal repetition.

John Simeon Biggins

Corpus Christi College

May 2010
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Summary

L iquid crystal elastomers (LCEs) are rubber like materials

formed by cross-linking liquid crystal polymers that combine

the mobile orientational order of liquid crystals with the extreme

stretchiness of rubber. A powerful symmetry argument introduced

by Golubovic and Lubensky suggests that LCEs should permit cer-

tain deformations to be imposed without energetic cost. These “soft”

deformations are associated with Goldstone like rotations of the liquid

crystal director inside the elastomer, and consequently depend on the

existence of an isotropic state accessed when the elastomer is heated

to destroy the liquid crystal order.

In this thesis I discuss the limitations of the above symmetry argument

and consider the elastic behavior of less idealized but more realistic

models. If an elastomer is prepared by cross-linking a nematic polymer

in a high temperature isotropic state then, on cooling, the rods align

locally but choose different liquid crystal directors at different points

in the elastomer, resulting in the formation of a polydomain that is

macroscopically isotropic. If the elastomer is to be prepared as a mon-

odomain then a preferred alignment direction must be imprinted at

cross-linking, breaking the isotropy of the state and limiting the soft-

ness of the elasticity. I present phenomenological arguments showing

that the resulting monodomain will still show qualitatively soft be-

havior, and, at some stretches, the modulus for additional extension

will vanish altogether. Furthermore, chiral nematic monodomains will
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exhibit strain-induced electrical polarization, unlike nematic liquids or

conventional elastomers.

One of the most dramatic consequences of soft and “semi-soft” elastic-

ity is the formation of textured deformations. These are deformations

in which the elastomer breaks into many small regions each of which

undergoes a different low energy deformation, allowing the elastomer

to undergo some macroscopic deformations softly that would have

been energetically expensive to impose affinely. In this thesis I review

our current understanding of textured deformations in liquid crystal

elastomers and present new results about the morphology of some tex-

tured deformations in both nematic and smectic monodomain LCEs.

I also consider the polydomains, both nematic and smectic, formed

in the absence of imprinting and show that, through the formation of

textured deformations, these elastomers can deform very softly. How-

ever, polydomains cross-linked in an aligned polydomain state rather

than the isotropic state will be as hard as a conventional elastomer.

This is in marked contrast to monodomain samples which display the

same “semi-soft” behavior irrespective of the cross-linking state.

xvii



Nomenclature

This thesis assumes that the reader is familiar with standard

mathematical notation at a level commensurate with a numer-

ate undergraduate degree. A few conventions that will be followed

throughout are recorded here to avoid confusion. Vectors will be set

in bold, while second rank tensors will be double underlined. The in-

dividual components of either may be referenced using suffix notation,

so ui refers to the ith component of u and λxz refers to the x−z com-

ponent of λ. The indices i j and k will be used following the Einstein

summation convention, while the more explicit x, y and z indices will

not. A list of commonly used symbols is given below.

Commonly used symbols

a Persistence length of a polymer, and the step length of the

corresponding random walk

a Vector in the plane separating two deformations in a textured

deformation in the reference state.

a′ Vector in the plane separating two deformations in a textured

deformation in the final state.

b Length of the smaller arm in an L shaped monomer

ĉ Electrical Polarization in SmC*

d Dipole of a chiral nematic monomer

F Free energy density and Free energy

kb Boltzmann’s constant



nomenclature

k Smectic layer normal

Kqc The set of all deformations made soft after full, possibly tex-

tured, relaxation of the energy

K0 The set of all soft affine deformations

Km The set of all deformations made soft after the use of mth rank

laminates

ℓ Step length tensor for liquid crystal polymer in the final state

ℓ0 Step length tensor for liquid crystal polymer in the cross-

linking/reference state

L Arc length of a polymer

m Boundary normal between two deformations in a textured de-

formation in the reference state.

m′ Boundary normal between two deformations in a textured de-

formation in the final state.

n̂ Liquid crystal director in the final state

n̂0 Liquid crystal director in the cross-linking/reference state

ns Number density of cross-links in an elastomer

N Number of steps of length a in the random walk describing a

polymer

p Electrical Polarization

Q Liquid crystal order parameter tensor

Q Liquid crystal scalar order parameter

R Rotation Matrix

R Polymer Strand Vector and vector between points embedded

in elastic solid

r Anisotropy ratio of ℓ

S Symmetric Matrix

T Absolute temperature

xix
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û Vector pointing along a liquid crystal rod

V Polymer binormal

W Generic energy function/cost function

α Parameter of semi-softness

γ Deformation gradient from the cross-linking state

δ Identity matrix

λ1, λ2, λ3 The principal values of the matrix λ, with λ1 ≤ λ2 ≤ λ3. In

some contexts λ1 is also used as a threshold extension.

λ A scalar extension ratio

λ Deformation gradient tensor

Λ Deformation from an unstable state

µ Shear modulus of rubber, normally nskbT

Ω Region of space occupied by an undeformed elastic body

σ Engineering stress σ = dF
dλ

xx
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Chapter 1

Introduction

L iquid crystal elastomers are remarkable materials that sit

at the interface between solids and liquids. A causal observer

presented with a sample would conclude that it was a fairly ordinary

piece of rubber, and most certainly a solid. However, if our observer

probed the sample more carefully, they would discover that their rub-

ber changed length dramatically when heated past a certain temper-

ature, and that, while in one direction it stretched just like a elastic

band, in the other two directions it offered scarcely any resistance to

stretching at all. We are familiar with many substances that do not

resist deformation, but we usually call them liquids and say that they

are flowing. Liquid crystal elastomers, which resist some deformations

and not others, are a completely novel type of material that truly does

blur the distinction between a solid and a liquid.

It is perhaps less surprising to find liquid crystal elastomers occu-

pying a space between solids and liquids when we consider their two

constituents. Liquid crystals are liquids of rod shaped molecules in

which the rods point in the same direction, so although they flow like

a liquid, they are anisotropic and have long range orientational or-

der like a solid crystal. Elastomers, in contrast, are melts of polymer

molecules in which chemical cross-links between the polymer strands
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have been introduced, turning the liquid melt into a solid rubber. Al-

though elastomers resist deformation like a solid, they have no long

range order and the individual polymer strands are in thermal motion

just like in a liquid polymer melt. Liquid crystal elastomers, which

are a hybrid of these two ideas achieved by cross-linking liquid-crystal-

polymer melts, therefore combine two elements that already mix the

properties of liquids and solids.

This thesis is an exploration of the elastic theory of liquid crystal

elastomers focussing on the two questions “when do liquid crystal

elastomers deform without resistance?” and “what limits how small

the resistance they offer actually is?” The remainder of this chapter

will be devoted to the essential building blocks of the subject: elas-

ticity, liquid-crystals, polymers rubbers, and symmetry breaking soft

elasticity. Chapter 2 will examine deformation without resistance in

monodomain nematic elastomers, providing a phenomenological de-

scription of the terms in the free energy that limit their softness but

that still predict true zeroes in the shear modulus at certain exten-

sions. Chapter 3 will show that, although idealized perfectly soft

mono-domain nematic elastomers cannot show strain induced electri-

cal polarizations, real non-ideal samples can. Chapter 4 describes how

the addition of a few soft modes of deformation into an otherwise solid

energy function can result in the formation of rich microstructures

in response to imposed deformations and describe the morphology of

some such microstructures, while Chapter 5 will use results originating

in the study of textured deformations to show that some polydomain

elastomers can deform even more softly than their monodomain coun-

terparts.

Except where explicitly marked, the work in this thesis is the result of

my own original research. The introduction and chapter 4 necessar-

4
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ily include extended descriptions of older results that my work builds

upon.

1.1 Describing Deformations

Elasticity is rich and venerable subject, and over the years many com-

plimentary approaches to the subject have been developed and many

excellent books have been written [6, 43]. Here we will use a descrip-

tion based on the deformation gradient λ which is well suited to liquid

crystal elastomers because it can describe the full geometric effect of

arbitrarily large strains and rotations of both the final and target

state.

To study elasticity problems we must first consider a body in a

reference configuration to deform. We consider an elastic body at rest

in a reference configuration, and define the region of space it occupies

to be Ω and each point in the body to be labeled by a position vector

x. Any deformation of the body can be described by a vector function

x′(x) that gives the new position vector of each point in the body, the

result of which will be to cause the body to occupy a different region

of space Ω′. This is illustrated in Fig. 1.1.

Figure 1.1: Left: An undeformed solid body occupying a region of
space Ω. Each point on the body is labeled by its position vector
x. Right: The same body after a deformation has been applied,
now occupying the region Ω′. A point at x in the old body is now
at position x′(x). The crosses in both diagrams correspond to the
same point in the material.

5
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To characterize the distortion of the above body caused by this

deformation we imagine embedding a small vector R between two

points in the reference state and calculating what it becomes in the

deformed state. If the vector spans between x1 and x2 in the reference

state (R = x1−x2) then in the deformed state it will be R′ = x′(x1)−
x′(x2). This configuration is drawn in Fig. 1.2. Taylor expanding x′

about x′(x1) and keeping only the first order term (because x2 is near

x1) we see that R′ = dx′

dx R. We define this important first derivative

that characterizes the local distortion of the body as the deformation

gradient λ(x) = dx′

dx . A deformation is called homogenous if λ is

constant throughout the body. In this case there are no higher order

terms in the Taylor expansion of x′(x) so any vector R embedded

between two points in the reference configuration will become λ ·R in

the deformed configuration.

Figure 1.2: A vector connecting two material points, R becomes R′

after the deformation x′(x) is applied. The two vectors are related

by R′ = λ · R where λ(x) = dx′

dx if the two points are very close to
each other.

The deformation gradient tensors for homogenous deformation are

the same as the transformation matrices met in elementary mathemat-

ics — if the deformation was a rotation it is a rotation matrix, if it was

a shear it is a shear matrix etc. If a second deformation is applied to

the deformed state the total deformation gradient is simply the matrix

product of the two separate deformations. Elasticity in elastomers of-

ten involves very large deformations so, unlike in many other systems,

6
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these matrix products cannot be expanded and linearized about the

identity matrix.

We can gain great insight into the nature of homogenous deforma-

tions by applying the polar decomposition theorem to the second rank

tensor λ. This tells us that we can always write λ = R · S where R

is a rotation matrix, and S is a symmetric matrix and hence in some

frame diagonal. This means that any deformation can be thought of

as a simple stretch, with three orthogonal principal axes, followed by

a body rotation. Since only the former involves any distortion of the

body, the amount of distortion is completely described by the three

(positive) eigenvalues of S, λ1 ≤ λ2 ≤ λ3, which are called the prin-

cipal values of the deformation λ. The volume of the deformed body

is simply the volume of the body in the reference state multiplied by

detλ = λ1λ2λ3, which can easily be visualized by imagining a unit

cube in the reference state whose edges align with the principal axes

of S — after deformation the cube will be a cuboid with edges of

length λ1, λ2 and λ3 so its total volume has increased by a factor of

detλ.

Although the deformation gradient tensor λ(x) contains all the

information about a deformation, there is one important consideration

that must not be forgotten, namely that λ is the gradient of a vector

field, so that a λ(x) only corresponds to a legitimate deformation if it

is curl free.

1.2 Polymers and Elastomers

The most basic question one might ask about an elastic deformation is

how much energy it cost to impose. To answer this question we need

to express the energy of the system as a function of the deformation

gradient, that is we need to find E(λ), and if we can construct E(λ)

7
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from microscopic considerations then it will connect our microscopic

understanding of the material with its macroscopic elastic properties.

In this section we will recall how this is done for the simple case

of gaussian rubber, before extending this to liquid-crystal rubbers in

later sections.

Figure 1.3: A polymer conformation in 2D with a characteristic
length a over which the tangent vector does not change (left) can
be modeled as a random walk with with a step length a (right).

Polymers are molecules that are characterized by being very long

and thin. They are synthesized in polymerization reactions in which

many copies of an underlying monomer are joined together in a long

string, so the resulting polymer may be thousands of times longer than

it is wide. In a melt of many such polymer strands the individual

strands undergo a great deal of thermal motion, causing them not

only to move past each other, but to wrap round each other and buffet

each other. This overall result of this motion is that the conformation

of a given strand is constantly changing. Polymers have a certain

amount of rigidity which makes them difficult to bend over small arc

distances, so we define a characteristic distance a (corresponds to the

length of one monomer for many systems) which marks the division

between length scales the polymer does and does not bend over in the

melt. If we then divide the length of the polymer strand into N pieces

of length a, we expect each piece to be essentially straight, but the

adjacent pieces to be pointing in different completely uncorrelated

directions, so we can model the conformations of the polymer by a

8
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random walk with N steps each of length a, as illustrated in Fig. 1.3.

If the direction of the ith step is given by the vector vi then the end

to end span vector associated with a given conformation R (see Fig.

1.4) is simply

R =
N
∑

i=1

avi. (1.1)

In the limit of large N we can apply the central limit theorem to

Figure 1.4: The vector R is the span of the polymer conformation.

each of the three spatial dimensions of this sum, remembering that

< vx · vx >= 1
3 in 3D, to conclude that

P (R) ∝ exp

(

−3R · R
2Na2

)

. (1.2)

Recognizing Na = L, the contour length of the chain, we can rewrite

this as

P (R) ∝ exp

(

−3R · R
2La

)

. (1.3)

As with any random walk, typical strands have span vectors that are

proportional to the square root of their total arc length. If we have

a melt of such polymer strands, their span vectors will be following

this distribution. We turn such a melt into a rubber by introducing

cross-linking molecules that form chemical links between the chains,

preventing the strands from macroscopically flowing. Provided there

are enough cross-links that every strand is cross-linked into the net-

9



hard and soft LCEs

work, but few enough cross-links that the span between cross-links is

still very much larger than a, then the distribution of span vectors

between cross-links will also follow the above distribution, where N

is now the number of steps between cross-links rather than between

ends.

We bridge the gap between these probability distributions and an

energy function by using statistical mechanics. The partition function

Z for a chain constrained to a span vector R is simply proportional to

P (R) since all conformations have the same energy, so the free energy

of such a strand is given by F = −kBT lnZ, giving

F (R) = kbT
3R ·R
2La

+ C, (1.4)

where C is an irrelevant additive constant that we will subsequently

ignore. If we now consider applying a deformation λ to our solid

rubber, then a span between cross-links that was previously R will

become λ · R, and the free energy associated with the span will be

F (λ · R). Averaging F (λ · R) over initial span vectors R, using the

above distribution for the initial span vectors, we get the average free

energy per cross-link of the deformed rubber

〈Fs〉 = 1
2kbTTr

(

λ · λT
)

. (1.5)

Multiplying this by the number density of cross-links ns and defining

the shear modulus µ = nskbT , the energy density of our rubber is

simply

F = 1
2µTr

(

λ · λT
)

. (1.6)

This is the energy function that allows us to calculate the cost of

imposing a deformation. We notice it has two important symmetries,

if we replace λ by either R · λ or λ · R, where R is a rotation matrix,

10
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then the energy of the system is unchanged. This corresponds to

the energy not changing if we rotate the sample after we apply the

deformation, reflecting the isotropy of space, and not changing if we

rotate the sample before deformation, reflecting the isotropy of the

rubber.

The above energy appears to be minimized at λ = diag(0, 0, 0),

which would correspond to the rubber collapsing to a point. This is

because we have neglected to include the energetic cost associated with

the monomers being squeezed on top of each other, which in reality is

very high. This causes rubber to have a bulk modulus several orders

of magnitude higher than µ, so rather than include it explicitly in the

energy, it is better to replace it by the constraint that detλ = 1.

1.3 Liquid Crystals

Liquid crystal phases are also mixtures of long thin molecules, but in

this case the molecules are rigid rods rather than floppy chains, and

the molecules typically have fairly modest aspect ratios (3-10) rather

than the huge aspect ratios of polymers. An extensive understanding

of liquid crystals has been developed over the last 50 years, and, as

with elasticity, they are the subject of several books [26], but here

the briefest of overviews will suffice. In an isotropic fluid made of rod

shaped molecules, if we associate each molecule with a vector û which

points along its length, then the average of û over all the rods in the

liquid, 〈û〉, will certainly be zero, if it was not then the fluid would

have some preferred direction and not be isotropic. If we calculate the

expectation of the next moment of the rod distribution, 〈uiuj〉 (where

the subscripts denote the spatial components of û and the average

is once again over all the rods), then this is simply 1
3δij , since the

average of cos2 θ in 3 dimensions in a third. Reassuringly, this is also

11
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isotropic.

Figure 1.5: In an isotropic liquid the rods have no average alignment
(right) while in a nematic liquid (right) they do.

Nematic order arises when a fluid of rods is cooled down. Below

some temperature the rods tend to align in an average direction, al-

though they do not have any positional ordering and the resulting

material is still a liquid. Nematic phases are quadropolar, meaning

that although the phases distinguishes one axis — the alignment axis

— it does not distinguish up from down along this axis, so reflecting

the whole phase in a plane perpendicular to this axis does not appear

to change the phase at all. This means that in the nematic state 〈û〉
is still zero. However, if each rod makes an angle θ with the axis of

average alignment, illustrated in Fig. 1.5, and we assume the the az-

imuthal directions are evenly distributed the next moment, 〈uiuj〉, is

given by

〈uiuj〉 =

〈







1−cos2(θ)
2 0 0

0 1−cos2(θ)
2 0

0 0 cos2(θ)







〉

. (1.7)

As we have already observed, if the distribution is isotropic then this

collapses to 1
3δ. We can make a good order parameter that is zero in

the isotropic state and finite in the nematic state by subtracting 1
3δ

12
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from this average to make it traceless. Convention dictates that the

actual order parameter Q is then three-halves of this quantity, giving

Qij =
〈

3
2uiuj − 1

2δij
〉

, (1.8)

which can be represented in terms of the scalar order parameter Q =
〈

1
2 (3 cos2(θ) − 1)

〉

, which expresses the magnitude of the ordering, and

n̂ which captures the direction of the alignment, as

Q = Q
(

3
2 n̂n̂− 1

2δ
)

. (1.9)

The isotropic phase then corresponds to Q = 0, while the nematic

phase is specified by a finite values of Q and a direction of alignment

n̂.

Having identified the correct order parameter, we can now conduct

a Landau expansion of the free energy (called a Landau de-Gennes

expansion in this context) to study the mean field behavior of the

phase transition, writing

F (Q) = ATr
(

Q ·Q
)

+BTr
(

Q ·Q ·Q
)

+ CTr
(

Q ·Q ·Q ·Q
)

+ ...

(1.10)

For the purposes of this thesis, it is sufficient to note that this contains

odd powers of Q so the transition from the isotropic to the nematic

will be first order. Furthermore, it is possible to construct microscopic

theories of the isotropic-nematic transition that predict the values of

these coefficients and consequently the transition temperature. Again,

for the purposes of this thesis, such development is not necessary,

except to note that the characteristic scale of the free energy is kBT

per rod.

13
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1.4 Liquid Crystal Polymers

The ideas of liquid crystals and polymers collide in liquid crystal poly-

mers [29]. These are polymer melts which incorporate rigid liquid

crystal rods either directly into the main chain of the polymer or as

pendent like side chains. These two possibilities are illustrated in Fig.

1.6. The effect of the liquid crystal phase is to bias the polymer so

Figure 1.6: Liquid crystal rods can be incorporated into polymer
strands either as constituents of the main chain (left) or side chains
(right)

that any given segment is more likely to be aligned with the nematic

direction than any other. We can include this in our random walk

model of polymer distributions by biasing the walk, either by making

it more likely to take steps along the nematic director or, equivalently,

by making the effective step length for steps along the director longer

than steps taken in perpendicular directions. Taking this latter view,

the new span vector distribution can be derived exactly as before, but

the variance is now different in the directions parallel and perpendic-

ular to the nematic director, giving

P (R) ∝ exp

(

− 3R2
⊥

2Na2
⊥

)

exp

(

−
3R2

‖

2Na2
‖

)

. (1.11)
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We can write this in a form very reminiscent of eqn. (1.3) — if the

total contour length of the chain in L then we can introduce a step

length tensor ℓ = (N/L)(a2
⊥δ + (a2

‖ − a2
⊥)n̂n̂) and write this as

P (R) ∝ exp

(

−
3R · ℓ−1 · R

2L

)

. (1.12)

In the isotropic phase a⊥ = a‖ = a, L = Na and ℓ = aδ, so we recover

the original isotropic distribution. In the nematic phase the average

length of the component of the span along the director is longer than

the perpendicular components, so the polymer tends to adopt oblate

conformations that are extended along the nematic director.

The characteristic length over which a polymer can change direc-

tion is not changed by the presence of a liquid crystal phase, so the

underlying persistence length a = L/N is still an important and un-

changing quantity. This makes it sensible to define ℓ = a(δ+(r−1)n̂n̂),

where r is a dimensionless number that records the coupling between

the nematic phase and the polymer conformations. In our previous

notation r = (a‖/a⊥)2 .

Although the above discussion is rather phenomenological in na-

ture, one can easily develop microscopic models of this type of behav-

ior which relate r to Q and link a and N to the microscopics of the

polymer in question. The very simplest example would be to replace

the liquid crystal polymer by chains built out of N freely jointed rods

of length a which are forming a nematic field with order parameter

Q. This model then leads to the relation [64]

r =
1 + 2Q

1 −Q
. (1.13)

15
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1.5 Elastic Model of liquid crystal elastomers

We have now developed all the tools to build the free energy that

governs the elasticity of liquid crystal elastomers. The derivation, first

published in [17], follows exactly the same route as the gaussian rubber

derivation in section 1.2, but now we must include the possibility that

as well as deforming the rubber, the liquid crystal order may also have

changed since cross-linking. Liquid-crystal elastomers are the subject

of a recent book [64] which discusses more fully this and many other

topics introduced briefly in this thesis. Returning to the derivation,

as before, the free energy per strand is simply −kBT lnP (R) giving

Fs(R) = kbT
3R · ℓ−1 ·R

2L
+ C. (1.14)

If a strand was cross-linked into the network with a span R and then

a deformation λ was applied, causing the span to change to λ ·R, then

the new free energy of the strand will be

Fs(R) = kbT
3
(

λ · R
)

· ℓ−1 ·
(

λ · R
)

2L
+ C (1.15)

where ℓ is the step length tensor caused by the nematic phase in the

final state. To get the free energy of the whole sample we must average

this over initial span vectors R, remembering that the probability

distribution of initial span vectors is fixed at cross-linking as

P (R) ∝ exp

(

−
3R · ℓ0−1 · R

2L

)

. (1.16)

where ℓ0 is the step length tensor caused by the nematic phase in the

cross-linking state. Performing the average over R, the average free
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energy per strand is

〈Fs〉 = 1
2kbTTr

(

λ · ℓ0 · λT · ℓ−1
)

. (1.17)

Multiplying this by the number density of strands ns and once again

defining the shear modulus µ = nskBT , this gives a free energy density

of

F = 1
2µTr

(

λ · ℓ0 · λT · ℓ−1
)

. (1.18)

As in the gaussian rubber case, the bulk modulus of nematic elas-

tomers is several orders of magnitude higher than the shear modulus,

so rather than include it explicitly in the model, it is better to add

the constraint detλ = 1.

The above free energy is caused by the conformational entropy of

the polymer chains, and has magnitude ∼ kbT per cross-link. This

polymer free energy should really be supplemented by the free energy

of the nematic rods. However, this term will have magnitude kbT per

rod, and since there are many rods per chain, it will be very much

larger than the chain free energy. This means that when minimizing

the energy over Q to find the behavior of the nematic field, the chain

free energy will have almost no influence on the magnitude of Q which

will be fixed by the far larger liquid crystal free energy. Since the liquid

crystal free energy has no dependence on the direction of n̂ or λ, it is

therefore sufficient to regard the liquid crystal free energy as imposing

a magnitude of Q, and therefore r, and then study the elasticity of

liquid crystal elastomers by considering just the elastic part of the

energy.

17
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1.6 Soft Elasticity

Consider a liquid crystal elastomer cross-linked in the isotropic state

but then cooled to the nematic state after cross-linking. In the isotropic

state r = 1 giving ℓ = aδ, while in the nematic state ℓ = a(δ + (r −
1)n̂n̂). The elastic energy of the liquid crystal elastomer is

F = 1
2µaTr

(

λ · λT · ℓ−1
)

. (1.19)

We notice that this energy is unchanged by replacing λ by λ ·R, where

R is a rotation matrix, reflecting the fact that rotation of the cross-

linking state does not cost any energy since it is isotropic. We also

expect it to be unchanged under a rotation of the final state, since

body rotation of the whole sample should not cost any energy. This

is indeed the case, but to perform this rotation we must replace λ by

R · λ and n̂ by R · n̂ so that we have rotated both the body and the

liquid crystal field. To minimize this energy over λ we use the polar

decomposition theorem to write λ = S · R, where S is a symmetric

matrix and R is a rotation matrix. As discussed, the energy does not

depend on R since the cross-linking state was isotropic, and since ℓ−1

is uniaxial, we expect the energy to be minimized by a uniaxial choice

of S that is coaxial with ℓ. Volume conservation requires det(S) = 1

so we can write S = 1/
√
λδ+(λ−1/

√
λ)n̂n̂ = diag(λ, 1/

√
λ, 1/

√
λ) in

a frame with n̂ along the x axis. Substituting this into the free energy

gives

F = 1
2µ

(

λ2

r
+

2√
λ

)

, (1.20)

which is minimized at 3
2µr

1/3 by λ = r1/3. This means that when the

elastomer cools from the isotropic to the nematic, it must stretch by

a factor of r1/3 along the nematic director. This is one of the most

dramatic behaviors of nematic elastomers, and is shown in the photos

18



Introduction

Figure 1.7: Photos of a nematic elastomer cooling from a high
temperature isotropic state (left) to a low temperature aligned and
stretched state (right).

in Fig. 1.7. Elastomers that spontaneously stretch by 400% have been

synthesized, suggesting that systems can be made with r anywhere

between 1 and 50.

The spontaneous extension on cooling has a second dramatic con-

sequence. Since the cross-linking state was isotropic, on cooling the

nematic director could have formed in any direction, causing the elas-

tomer to stretch in any direction, as illustrated in Fig. 1.8. This

means that there are many equivalent low energy nematic states, each

of which has a different nematic director and a different deformation

with respect to the cross-linking state. If one deforms one such aligned

stretched energy minimizing state into another, equivalent to moving

around the arc in Fig. 1.8, this second deformation cannot cost any

energy to impose — it must be completely soft. Therefore we see that,

as a result of the symmetry breaking nature of the isotropic-nematic

transition, we must have a set of completely soft deformations. This

symmetry argument for soft elasticity was first proposed by Golubovic

and Lubensky [36], and is one of the cornerstones of the theory of ne-

matic elastomers.

We can observe the existence of soft elastic modes in our elastic
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Figure 1.8: A liquid crystalline polymer is cross-linked in the high
temperature isotropic state - centre, bottom row. On cooling, a
nematic phase is formed and the elastomer stretches along the new
nematic director. Since any director could have been chosen there
are many equivalent low energy states, shown in an arc around the
isotropic state. Deformations around the arc will not cost energy.

energy by considering deformations from the aligned stretched state.

Substituting λ = λ2 ·
(

1/
√
λδ + (λ− 1/

√
λ)n̂n̂

)

into eq. (1.19), so

that λ2 is the deformation from the aligned stretched state, gives,

F = 1
2µr

−1/3Tr
(

λ2 · ℓ0 · λ2
T · ℓ−1

)

. (1.21)

In the above energy ℓ0 points along the nematic director in the relaxed

aligned state that λ2 is the deformation from, and is constructed out

of the two spontaneous deformation terms, while ℓ is defined in the

final state, after the application of λ2
1 To see soft modes in the above

free energy, we observe that not only is it minimized by λ2 = δ and

1That the energy takes on this form, which is functionally identical to eq. 1.18,

is extremely useful, since it means that it is not necessary to keep track of the

cross-linking state and complex cross-linking history of a nematic elastomer — the

energy function for deformations from a given relaxed state is as if the elastomer

had been cross-linked directly in that state.
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ℓ = ℓ0, it is also minimized by

λ2 = ℓ1/2 · R · ℓ0−1/2, (1.22)

with any choice of director for ℓ and any choice of rotation matrix R.

This is a continuous set of deformations that can be applied to the

aligned nematic state without energy cost. These microscopic argu-

ments for soft elasticity, pioneered in [48, 61], go beyond the purely

symmetry based arguments in one important respect. Although we

have been considering a system cross-linked in the isotropic state and

for which the symmetry argument for the existence of soft modes is

very compelling, the above energy, eqn. (1.21), is the same as that for

a system cross-linked in the nematic state. Therefore, at least within

the approximation of homogenous gaussian chains, soft elasticity also

arises if the system is cross-linked in the nematic state. This is be-

cause, on heating such an elastomer a completely isotropic state is

formed, with no memory of the original cross-linking director, and

the symmetry arguments can then be applied to this state.

The nematic elastomer energy takes on a particularly simple form

if we take the isotropic state as the elastic reference state, then con-

sider cooling the sample to the nematic state, which fixes the value

of Q and hence r, and then imposing a deformation λ. The nematic

director n̂ will then adopt the direction that results in the minimal

free energy, so the energy we wish to consider is

F = 1
2µamin

n̂
Tr
(

λ · λT · ℓ−1
)

. (1.23)

Once again using the polar decomposition theorem to write λ = S ·
R, and defining the principal values of S as λ1 ≤ λ2 ≤ λ3, we can

straightforwardly conduct the minimization over n̂, which will result in

n̂ pointing along the principal direction of S with the largest principal
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value, giving

F = 1
2µ

(

λ2
1 + λ2

2 +
λ2

3

r

)

. (1.24)

This energy is minimized by λ3 = r1/3 and λ2 = λ1 = r−1/6, how-

ever, since these are the principal stretches of λ, this corresponds to

a stretch by r1/3 in any direction. We can easily add the requirement

of volume conservation into this form of the energy be writing

F (λ) =







1
2µ
(

λ2
1 + λ2

2 + λ2
3/r
)

if λ1λ2λ3 = 1

∞ otherwise.
(1.25)

A two dimensional slice of this energy function is plotted in Fig. 1.9

for both r = 1 (conventional rubber) and a r = 8. The latter nematic

case clearly shows a ring of minima, corresponding to a degenerate set

of low energy states.

1.7 Hints of complexity - stripe domains

The elastic energy described in the previous sections is extremely rich

and underpins our understanding of many exotic behaviors found in

liquid crystal elastomers. We will conclude this introduction by exam-

ining one of the most subtle — the formation of textured deformations.

Consider stretching a well aligned nematic elastomer in a direction

perpendicular to the alignment direction. Taking the initial alignment

direction as the z direction, the initial state can be though of as a de-

formation from the isotropic state of λ1 = diag(r−1/6, r−1/6, r1/3). The

elastomer would also be in a low energy state if the deformation ap-

plied to the isotropic state had been λ3 = diag(r1/3, r−1/6, r−1/6), and

in this case the alignment would be in the x direction. If we take the

elastomer aligned in the z direction and stretch in the x direction then

we will be applying stretches of the form λ2 = diag(λxx, 1/(λxxλzz), λzz),
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Figure 1.9: Energetic cost of imposing a uniaxial stretch on an
isotropic elastomer (left) and nematic elastomer from the isotropic
reference state (right) given by eqn. (1.24). The plots are as a func-
tion of the two dimensional vector ρ, and the value of the function
at ρ is the cost of imposing a uniaxial stretch of magnitude |ρ|+ 1
in the direction of ρ. We see that in the nematic state, the isotropic
reference configuration is unstable, and the function is minimized
by a uniaxial deformation by r1/3 in any direction, and that defor-
mations that move the elastomer around the ring of minima will be
soft.

.
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Figure 1.10: A nematic elastomer with its director aligned with the
z axis (left) can be stretched along the x, causing the director to
rotate to the x axis (right).

and the total deformation from the isotropic will be λ2 · λ1. This is

equal to λ3 when λxx =
√
r and λzz = 1/

√
r, so after the elastomer

has been stretched this far, the director will have swung round by 90o

to lie along the x axis, and the energy of the elastomer will not have

changed. The geometry of this situation is shown in Fig. 1.10.

The above analysis raises the question what happens at interme-

diate stretches between λ2 = δ and λ2 = diag(
√
r, 1, 1/

√
r). If we

consider stretches of the from λ2 = diag(λ, 1, 1/λ), and substitute

λ = λ2 · λ1, which is the total deformation from the isotropic, into

eqn. (1.25), then, we get

F (λ) =







1
2µ
(

r−1/3 + λ2r−1/3 + 1
r1/3λ2

)

if λ ≤ r1/4

1
2µ
(

r−1/3 + λ2

r4/3
+ r2/3

λ2

)

if λ ≥ r1/4.
(1.26)

This is only minimized by the two values of λ we have already identi-

fied, namely λ = 1 and λ =
√
r, so it would appear that the elastomer

must cross an energy barrier to get between the two aligned low en-

ergy states. However, it is possible to pass between these states softly

by adopting a textured deformation. If we consider deformations of
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the form

λ2
± =







λ 0 ±λxz

0 1 0

0 0 1/λ






, (1.27)

then it is clear that 1
2λ2

+ + 1
2λ2

− = λ2. Furthermore, substituting

λ2
± · λ1 into eqn. (1.25), it is possible to find a λxz such that the en-

ergy is minimized for both of these deformations for every value of λ

between 1 and
√
r. The required value of λxz is zero at 1 and

√
r but

finite between them. This means that if the elastomer can split into

equal volume fractions that have undergone 1
2λ2

+ and 1
2λ2

− then the

average deformation will be the desired λ2 but the deformation will

be soft. Furthermore, if the oscillations between the two deformations

happens on a small enough scale then the discrepancy between the ac-

tual and desired shape of the elastomer will be very small. However,

finding two soft deformations that average to the required deformation

is only half the problem, we must also show that the two deformations

can be fitted together in such a way as to make a legitimate, compat-

ible deformation field, that is the gradient of a displacement. To do

this, we notice that vectors in the x − y plane are mapped to the

same vectors under both deformations. This means that if we apply

the deformations in two adjacent regions separated by a plane with

normal ẑ then, since each vector in the plane is mapped to the same

vector under both deformations, the plane will not fracture, so the

two deformations will form a compatible deformation field. This is

not true of any other plane, and for two general deformations this

may be true of no planes at all. In this case, if the sample splits into

very fine stripes separated by boundaries which are x− y planes then

the two deformations can alternate between stripes, forming a com-

patible soft textured deformation that allows the elastomer to deform

softly throughout the reorientation process. A complete diagram of
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Figure 1.11: Intermediate strains that do not form cause full re-
orientation result in the formation of stripe-patterns of alternating
director rotation and shear.

Figure 1.12: A view of the cloudy stripe phase though cross-polars,
the alternating stripes of director rotation are clearly visible. The
length scale of the stripes is of the order of 10 microns.

the process is shown in Fig. 1.11.

The stripe patterns discussed above are one example of the com-

plex elastic responses induced by the introduction of a set of soft

modes to a material. The stripes were first observed by Kundler and

Finklemann [39], and explained theoretically shortly afterwards [32].

In the experiment the stripes were just micrometers wide, and in-

troduced lots of light scattering into the sample, so that the clear

mono-domain elastomer becomes cloudy on stretching and then clear

again when the stripe domain is replaced by the perpendicular mono-

domain. A photograph of a real stripe domain taken between crossed

linear polarizers is shown in Fig. 1.12.
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Chapter 2

Semisoft elastic response of

mono-domain nematic elastomers

Despite the symmetry arguments made in the introduction,

real nematic elastomers do not deform completely softly — there

is always a preferred alignment direction and small restoring force.

This is because, in order to synthesize a mono-domain elastomer with

a homogenous director orientation throughout the sample, a preferred

direction for this alignment must be imprinted on the sample using

magnetic, electric or stress fields. This imprinted direction breaks the

symmetry of the isotropic state, allowing the material to provide a

weak resistance to deformation.

This chapter is an exploration of the free energies that describe semi-

soft elasticity. A simple microscopic model of semi-soft behavior,

called the compositional fluctuations model, has enjoyed almost uni-

versal success in describing the behavior of real nematic elastomers,

despite the fact that the microscopic model itself is very specific and

rather implausible. In this chapter we will show that this is because

the form of the free energy predicted is in fact very general. We will

then show that, although this energy is semi-soft, there are certain

points in the energy landscape where the modulus for an incremen-

tal deformation is zero. Finally, we will show that these zeroes in
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the shear modulus are even more general than the original model, de-

pending only on the symmetry of the system and the possibility of

director rotation coupled to strain. These latter results are equivalent

to those obtained by Lubensky et al. by consideration of a Landau

theory equivalent to a nematic liquid crystal in crossed electric and

magnetic fields [65,66].

2.1 The Compositional Fluctuations Model

The essential idea behind the compositional fluctuations model is that

different polymer strands will couple to the nematic field with differ-

ent strengths, so the constant value for r used in the ideal model must

be replaced by different values for each strand. One simple way this

could come about is if the strands incorporate different numbers of

rod like units in their backbones. If we cross-link such a melt in the

nematic state then each chain will be sampling its optimal conforma-

tion distribution, but when we try to deform the resultant rubber,

strains that are soft for chains with one value of r will not be soft for

all values of r so the deformation will cost energy.

Following [57], we turn this idea into a free energy by averaging

the free energy per strand, eqn. (1.17), across all the different strands,

which now have different values for r, giving,

〈Fs〉 =
〈

1
2kbTTr

(

λ · ℓ0 · λT · ℓ−1
)〉

r
(2.1)

= 1
2kbTTr

(

λ · ℓ0 · λT · ℓ−1
)

+ 1
2kbT

(〈

1

r

〉

− 1

〈r〉

)

Tr
(

(δ − n̂on̂o) · λT · n̂n̂ · λ
)

,

where the step length tensors are defined with the average anisotropy,

〈r〉, and n̂ is the liquid crystal director in the final state and n̂0 is
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the director in the cross-linking state. Defining the coefficient of non-

ideality

α =

〈

1

r

〉

− 1

〈r〉 , (2.2)

and, once again multiplying by the number density of cross-links ns

and defining the shear modulus µ = nskbT , this energy takes the form

F =1
2µTr

(

ℓ
o
· λT · ℓ−1 · λ

)

+ 1
2µαTr

(

(δ − n̂on̂o) · λT · n̂n̂ · λ
)

,

(2.3)

which is the compositional fluctuations free energy. The semi-soft

term introduces a penalty for rotations of the director away from n̂0,

which makes the previously soft deformations cost energies of magni-

tude αµ.

2.2 Predictions and successes of compositional fluc-

tuations

The response of the compositional fluctuations model has been exten-

sively studied in the context of the experiment described in Fig. 1.11 in

which a nematic monodomain is stretched perpendicular to its initial

alignment. As discussed in the introduction, the ideal model predicts

the formation of a striped-textured state that allows the elastomer

to stretch completely softly until director reorientation is complete,

by which time a stretch
√
r has been imposed. The compositional

fluctuations model of semi-softness predicts that the response of an

elastomer to a finite elongation perpendicular to the initial director

will be one of three possibilities depending on the amount of elonga-

tion. The full forms for the deformation responses (λ
i
) and director

rotations that result from applying the stretch λxx = λ, which are

stated below, were derived in [58] and are discussed in [64]. The ge-
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Figure 2.1: Experiment in which an elastomer is prepared with the
director aligned in the z direction then stretched in the x direction
causing director rotation and the formation of sympathetic shears.

ometry used in these expressions is illustrated in Fig. 2.1. Introducing

the threshold strain

λ1 =

(

r − 1

r − 1 − αr

)1/3

, (2.4)

if λ ≤ λ1 the director does not rotate, (θ = 0) and the deformation

tensor (λ
i
) is simply that expected from a classical rubber:

λ
i
=







λ 0 0

0 1/
√
λ 0

0 0 1/
√
λ






. (2.5)

If λ1 ≤ λ ≤ √
rλ1 then the director starts to rotate and the deforma-

tion tensor includes sympathetic λxz shears:

sin2 θ=
r(λ2 − λ2

1)

(r − 1)λ2
, λ

i
=







λ 0 λxz

0 1/
√
λ1 0

0 0
√
λ1/λ






. (2.6)

See Fig. 2.2 for a comparison of this prediction for θ(λ) with experi-

mental data. The shear is
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Figure 2.2: Left: Director rotation (θo) as a function of stretch (λ)
for samples prepared by several different groups. The solid line is a
theoretical curve (from eq. (2.6)) fitted to the data for one sample.
Right: Plotting reduced rotation against reduced extension causes
all the data sets to collapse onto one master curve. The solid line
is the theoretical prediction derived from eq. (2.6). Figure adapted
from [64], see also [32] for the original analysis.

λ2
xz =

(λ2 − λ2
1)(rλ

2
1 − λ2)

rλ2λ3
1

. (2.7)

If
√
rλ1 ≤ λ then the director rotation is complete (θ = π/2) and the

elastomer once again deforms as a classical rubber would:

λ
i
=







λ 0 0

0 r1/4/
√
λ 0

0 0 1/(r1/4
√
λ)






. (2.8)

The model also predicts that the stress strain curve for the elas-

tomer should have a different gradients in these three regions, with

a much lower gradient in the middle region forming a stress plateau

(see [64]). This stress prediction is confirmed over a huge range of

strains; typical data is shown in Fig 2.3. Since the model predicts

all three stress gradients and also the position of the two kinks in

the curve (five quantities) in terms of three underlying constants, it
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Figure 2.3: Stress-strain data for an elastomer showing a thresh-
old to a subsequent stress-strain plateau and then final classical
behaviour. The solid lines show the stress curves predicted by the
compositional fluctuations model. Data provided by S. M. Clarke.

is already highly non-trivial. These 5 quantities have already been

shown to match the model predictions by several groups [32, 42, 55],

as has the form of the director rotation, as shown in Fig. 2.2. We must

therefore conclude that the compositional fluctuations free energy is a

very good model. However, as noted in [58], if we take the microscopic

model literally and try to predict α, which can be done for example by

considering chains that are random mixtures of two types of rods with

different couplings to the nematic field, then the predicted values of

the semisoftness parameter are α ∼ 10−5, which is several magnitudes

smaller than the observed values, which are typically around 0.1. It

also seems implausible semi-softness in all the different elastomers,

with very different syntheses and imprinting techniques, has the same

microscopic origin. This motivates us to consider a phenomenological

description of the compositional fluctuations free energy, to under-

stand the observed universal behavior.
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2.3 Models of semi-softness

In this section we consider the scope for models of semi-softness other

than the compositional fluctuations model. We first show that, de-

spite its initial derivation, the compositional fluctuations free energy

is in fact the most general quadratic free energy that only manifestly

contains one direction in both the initial and final states. We then

show how recovering the ideal model amounts to assuming that there

is an isotropic reference state. Finally we consider the scope for other

models that contain more directions and are not quadratic in the de-

formation tensor.

2.3.1 Generality of the compositional fluctuations form

of the semi-soft free energy density

The compositional fluctuations model of semi-softness breaks ideality

by introducing a distribution of coupling strengths between the poly-

mer backbone chains and the nematic mean field. Since there are other

ways (for instance by introducing aligned rigid-rod crosslinks) one

could imagine breaking ideality, the success of this particular model in

describing experimental data raises a question — is it simply the case

that compositional fluctuations are the dominant cause of non-ideality

or is there an underlying reason why, whatever the microscopic cause

of non-ideality, the same or similar form of the semi-soft free energy

results? To address this question, we consider a sample of non-ideal

nematic elastomer that is subject to a deformation Λij ≡ ∂Ri/∂xj

that takes it from a reference state (x) to a target state (R). Here

we use Λ rather than λ because we reserve λ for deformations from

relaxed states, and this reference state may not be relaxed. If it is

not relaxed, there will be a spontaneous relaxing deformation, Λ
r
, to

a relaxed state. Functions of Λ can be recast in terms of deformations
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from the relaxed state (λ) by substituting

Λ = λ · Λ
r
. (2.9)

The first subscript on Λij (i) is clearly a target state subscript and

should only be contracted with subscripts from other target state

variables. The second (j) is a reference state subscript which must

be contracted only with reference state subscripts if rotational invari-

ance is to be observed. Therefore the most general free energy we can

write down that is quadratic in Λ is of the form

F =
∑

i,j

Tr
(

A
i
· ΛT ·B

j
· Λ
)

, (2.10)

where the matrices A
i
are constructed out of reference state vectors

and scalars, while the matrices B
j
are constructed out of target state

scalars and vectors. If we assume that the reference state is charac-

terised by a single direction n̂0 and the final state by a single direction

n̂ (so both states are uniaxial), this becomes

F =Tr(HΛTΛ + Jn̂on̂oΛ
TΛ

+Kn̂on̂oΛ
T n̂n̂Λ + LΛT n̂n̂Λ). (2.11)

In general this free energy will not be relaxed and will undergo a

spontaneous deformation to a relaxed state. The relaxing deforma-

tion, Λ
r
, must also be volume-preserving so it must have determinant

of 1. For the resulting free energy not to have any soft deformations,

this spontaneous deformation must not break the uniaxial symme-

try of the reference state. If it were to break this symmetry, there

would be other equivalent deformations that break the same symme-

try differently, leading to multiple relaxed states and soft deformations
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mapping between them. Experimentally, the spontaneous distortions

of monodomain elastomers on changing conditions are always along

the original director. Therefore, n̂ must be equal to n̂o and Λ
r

must

be of the form

Λ
r
= a

(

δ +

(

1

a3
− 1

)

n̂on̂o

)

, (2.12)

where a is a constant to be determined. Substituting this deformation

into eqn. (2.11) and taking the trace gives

F = a2

(

2H +
H + J +K + L

a6

)

. (2.13)

Minimising this with respect to a we obtain the preferred value:

a6 =
H + J +K + L

H
. (2.14)

We can now recast the original free energy in terms of deformations

away from the relaxed state, λ, by substituting Λ = λ · Λ
r
, giving

F =a2Tr

(

HλTλ+ LλTn̂n̂λ+

(

J + H

a6
− H

)

n̂on̂oλ
Tλ

+

(

K + L

a6
− L

)

n̂on̂oλ
T n̂n̂λ

)

. (2.15)

Inspecting this form, we see that relaxation has reduced the number

of unknown constants in the theory from four to three because we can

write

F =a2Tr
(

HλTλ+ LλTn̂n̂λ+ Mn̂on̂oλ
Tλ

− (M + L) n̂on̂oλ
T n̂n̂λ

)

. (2.16)
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where M = (J +H)/a6 −H. The coefficients in this free energy can

be rewritten without loss of generality as

a2H =1
2µ

a2L =1
2µ

(

α+
1

r
− 1

)

(2.17)

a2M =1
2µ(r − 1).

Substituting these forms into F we recover the form of the free energy

identical to the expression stemming from the compositional fluctu-

ations model, eqn. (2.3). Since this derivation is not microscopic, it

does not provide microscopic interpretations of the quantities in F ,

in particular the identification of r as the degree of anisotropy of the

second moment of the chain shape distribution is not strictly justified.

However, since this identification is exact for the ideal model (Gaus-

sian chains all with the same anisotropic second moment), r is likely

to retain a very similar meaning in any microscopic non-ideal model

that tends to the ideal model (as opposed to just the ideal free energy)

in its α→ 0 limit.

2.3.2 Recovering Ideality

The above equations can easily be inverted to find α, r and µ in terms

of H, J , K and L giving

µ =2(H + J +K + L)
1

3H
2

3 ,

r =
H + J

H + J +K + L
, (2.18)

α =
L

H
− K + L

H + J
.
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Interestingly, if K = J = 0 then α = 0 and the ideal elastomer free

energy is recovered. Inspecting the original form of the free energy,

we see that this corresponds to the reference state being isotropic

because the terms that depend on n̂on̂o have been set to zero. This

is a manifestation of the Golubovic-Lubensky theorem [36] that an

isotropic state leads to soft modes of deformation. In this case, the

spontaneous deformation does break symmetry because it introduces

a direction n̂o into an otherwise isotropic system. More generally,

α = 0 if
J

H
=
K

L
, (2.19)

which is equivalent to demanding that F factorises to the generic form

F = Tr
(

(Nδ + P n̂on̂o)Λ
T (Rδ + U n̂n̂)Λ

)

. (2.20)

This F also has an isotropic state which can be demonstrated by

substituting Λ = λ(Nδ + P n̂on̂o)
−1/2, giving

F = Tr
(

λT (Rδ + U n̂n̂)λ
)

(2.21)

which has no n̂o dependence. This means that any directions that can

be defined in the state obtained by applying Λ = (Nδ + P n̂on̂o)
−1/2

do not enter into the free energy of deformations imposed from this

state. Therefore this state is in effect isotropic.

2.3.3 Route to semi-softness by introducing another di-

rection

The above argument demonstrates that non-ideal elastomer theories

are made by destroying the existence of an isotropic state, in accor-

dance with the Golubovic-Lubensky theorem. Further, it shows that if

this is done simply by introducing a single direction, typically n̂, into
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the reference state one must end up with the generic model, eqn. (2.3),

or remain with the ideal model. However, this does not mean that

there are no other non-ideal models; it only means that in order to

find them we must introduce new directions into the theory or deviate

from the quadratic form in (2.11) by introducing terms that depend

on symmetry-allowed variants of Λ. We can introduce a new direction

straightforwardly by defining a new reference state direction ko, and

a corresponding final state vector k. The vector k can either be a

free direction that we minimise over for a given deformation (like n̂)

or can be defined as a final state vector derived from the initial state

vector through variants of Λ such as Λko or Λ−Tko. This last possi-

bility is how a vector area expressed by a normal to the plane would

be expected to transform, provided detΛ = 1. This is discussed at

length under the theory of smectic elastomers in [64].

Having introduced a new direction into the problem it becomes

much harder to write down a general form for F because, not only

do we have to consider cross terms between the two direction in both

states, we can also define various scalars (such as n̂ · k and k · k)

the coefficients of which could be functions of Λ. Also allowing terms

that are not quadratic in Λ leads to even more possible terms. Since

relaxation only removes one degree of freedom from a system, these

considerations lead us to conclude that, by including such terms, a

large number of alternative models could be constructed if physical

phenomena were to be found that the above generic semi-soft free

energy can not explain.

A very simple example would be introducing a new direction ko

that is initially aligned with n̂o but, unlike n̂, transforms under the

deformation Λ as k = Λ−Tko. One possible relaxed free energy (be-

cause it is relaxed, we use λ rather than Λ) constructed using this
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direction is

F = 1
2µTr

(

ℓ
o
· λT · ℓ−1 · λ

)

− α

(

n̂ · λ−Tko

|λ−Tko|

)2

(2.22)

which has a simple physical interpretation — the elastomer is semi-

soft because it contains regions of weakly ordered SmA phase. For

weak smectic order there would be a small energy penalty for rotating

the director away from the current layer normal, k̂ ∝ λ−Tko. Thus

the semi-soft term in eqn. (2.22) is effectively −α(n̂ · k̂)2.

Kundler and Finkelmann have observed (using X-rays) embry-

onic regions of smectic order in macroscopically nematic elastomers,

and have termed such specimens cybotatctic nematic elastomers [40].

However, it has been observed in such systems with smectic fluctua-

tions that the semi-soft behavior — that is, the precise form of the

director rotation (from 0 to 90 degrees, along with singular edges),

the correlation between the length of the semi-soft plateau and the

magnitude of spontaneous thermal distortions, and the variation of

semi-softness (and hence the initial threshold) with degree of smectic

ordering — was well described [40] by the generic model.

2.4 Soft elasticity in semi-soft elastomers

Having established that real elastomers conform very well to the com-

positional fluctuations free energy, and understood that this is be-

cause, on phenomenological grounds, this is the simplest possible non-

ideal energy, it might appear that truly soft deformation has been

ruled out. However, in this section we will show that at certain points

the generic compositional fluctuations type free energy does predict

incremental deformations without elastic cost. To do this we consider

a two step experiment, illustrated in Fig. 2.4, in which a monodomain
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!

director

x

z

λ
xx

= λ

θ

λ
xz

= γ

θ + δθ

Figure 2.4: A two step experiment in which the sample is pre-
pared with the director along the z axis, then a stretch λxx = λ is
imposed (which may lead to director rotation (shown) and sympa-
thetic shears (not shown)), then a small λxz = γ shear is imposed
at constant stretch.

elastomer prepared with its director aligned with the z axis is first

stretched by some amount in the x direction before a small additional

x− z shear is applied. We will see that the modulus associated with

the incremental x− z shear vanishes at the onset and end of director

rotation.

In general small-shear (λxz . 10−4) mechanical experiments offer

a much more limited route to exploring constitutive relations of liquid

crystal elastomers than large strain experiments (λxx . 5) which at

the same time induce large (90 degree) rotations of nematic order

upon which the new properties of nematic elastomers are predicated.

Experiments of the type discussed here which compound small strain

rheology with large pre-stretches can explore a much wider range of
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the elastomer’s response. This type of experiment was first considered

by Lubensky and Ye [66]. They analyzed the elastomers response

using a phenomenological lagrangian-strain minimal model of nematic

elastomers in which the director had been integrated out, so that

the energy only depended on the strain. However, the calculation

that follows is the first to consider such experiments using the full

and experimentally verified compositional-fluctuations form of the free

energy.

2.4.1 Semi-soft response to small shears compounded with

large strains

Using the geometry described in figure 2.4, we wish to calculate the

apparent shear modulus for the final infinitesimal shear (C5) as a

function of the arbitrary finite stretch λ imposed during the first stage

of the experiment. If after applying the initial stretch λ, causing an

initial deformation λ
i
and the director to make an angle θo with the z

axis, we then impose an additional infinitesimal shear λ
2

= δ + γx̂ẑ,

which causes θo to change to θo + δθ, then, since both perturbations

are small, we can expand the resulting free energy in powers of δθ and

γ,

F = Dγ2 + Eδθ2 +Gδθγ. (2.23)

There are no linear terms in this expansion because there is no sponta-

neous shear or director rotation. Minimising this energy with respect

to δθ gives δθ = −Gγ/2E. Putting this value back into F we can

read off the apparent shear modulus, C5, as twice the coefficient of

the quadratic term in γ,

C5 = 2

(

D − G2

4E

)

. (2.24)
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In order to calculate C5 we must evaluate eqn. (2.3) at a total defor-

mation λ = λ
2
· λ

i
and director angle θ = θo + δθ, expand the result

to second order in γ and δθ and then read off the coefficients (D, G

and E) we need for eqn. (2.24). Since the λ
i
are large deformations,

we must compound rather than add the two consecutive deformations

(multiply the tensors). In the first region (below the strain threshold

— λ ≤ λ1) we have

F =
µ

2λ

[

(

λ3 + γ2r
)

(

1 +

(

1

r
− 1

)

sin2 θ

)

+ αλ3 sin2 θ

+2γr

(

1

r
− 1

)

sin θ cos θ + r

(

1 + cos2 θ

(

1

r
− 1

))

+ 1

]

. (2.25)

Expanding this out around θ = 0 we can read off the coefficients we

need for C5 as

D =
µr

2λ
,

E =
µ

2λ

(

λ3

(

1

r
− 1 + α

)

− 1 + r

)

, (2.26)

G =
µ

λ
(1 − r).

Substituting these expressions into (2.24) gives the apparent shear

modulus before the semi-soft threshold,

C5(λ) =
µr

λ

(

λ3 − λ3
1

λ3 − rλ3
1

)

. (2.27)

The calculation in the second region of the semisoft plateau (λ1 ≤ λ ≤
√
rλ1) is more involved because of the more complicated deformations.

Substituting the appropriate form for λ
i

(eqn. (2.6)) into the free
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energy we find an F that is valid for arbitrary θ:

F =
µ

2λ



sin2 θ(1 − r)





λ3

rλ3
1

+

(

√
λλxz + γ

√

λ1

λ

)2




+λ3+
λ

λ1
+ r

(

√
λλxz + γ

√

λ1

λ

)2

+ (r + (1 − r) cos2 θ)
λ1

λ

+ 2(1 − r) sin θ cos θ

√

λ1

λ

(

√
λλxz + γ

√

λ1

λ

)]

(2.28)

Expanding out about θo we can extract the coefficients to calculate

C5:

2λD

µ
= sin2 θo(1 − r)

λ1

λ
+ r

λ1

λ
(2.29)

2λE

µ
= cos 2θo(1 − r)

(

λ3

λ3
1r

+ λλ2
xz −

λ1

λ

)

− 2 sin 2θo(1 − r)
√

λ1λxz

2λG

µ
=2 sin 2θo(1 − r)

√

λ1λxz + 2cos 2θo(1 − r)
λ1

λ
.

Calculating C5 is now simply a matter of using eqns. (2.6) and (2.7)

to replace θo and λxz by λ in these expressions then compiling the

expressions into C5 using eqn. (2.24). The details of this manipulation

can be found in the Appendix (section 2.8), the result is

C5 =
4µr

(

β2(1 + r) − β4 − r
)

λβ3(r − 1)2
. (2.30)

where β = λ/λ1.

In the region after the semi-soft plateau, when the director rotation

is complete, (λ >
√
rλ1), substituting the appropriate λ

i
(eqn. (2.8))
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into the free energy gives,

F =
µ

2λ

[

(

λ3 + γ2√r
)

(

1 − r − 1

r
sin2 θ

)

+ αλ3 sin2 θ

−γ
√
r
r − 1

r
sin 2θ +

√
r

(

1 − r − 1

r
cos2 θ

)

+ 1

]

. (2.31)

Expanding this about θ = π/2 gives the coefficients

D =
µ

2
√
rλ
,

E =
µ

2
√
rλ

(

λ3

√
r

(

1 − 1

r
− α

)

+ 1 − r

)

, (2.32)

G =
µ√
rλ

(1 − r),

which, when substituted into eqn. (2.24) give

C5 =
µ√
rλ

(

λ3 − r
3

2λ3
1

λ3 −√
rλ3

1

)

. (2.33)

The full graph of the apparent shear modulus (C5) variation with

λ and the strength of semi-softness α is shown in Fig. 2.5. A slice

through this graph at constant α is shown in Fig. 2.6. The graphs

clearly show kinks in C5 along the zeroes at the beginning and end of

director rotation. Differentiating the form for C5(λ), it is straightfor-

ward to show that at the first kink C5 ∝ |λ−λ1| and at the second kink

C5 ∝ |λ −√
rλ1|. The constants of proportionality in these relations

are different on each side of each kink.

2.5 General Consequences of Director Rotation

Although we have argued that the compositional fluctuations form

of the free energy is very generic, it is possible to construct models
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Figure 2.5: C5 vs λ and α calculated with the chain anisotropy
parameter r = 2.
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Figure 2.6: C5 vs reduced extension (λ/λ1) calculated with the
chain anisotropy parameter r = 2 and α = 0.1.
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that go beyond it. Not only might there be additional directions,

as considered earlier in the chapter, but if the chains deviate from

gaussian distributions, there may be higher powers of λ in the free

energy. In this section we will give general arguments that none of

these effects can alter the key signature of semi-soft elastomers, the

stress-plateau, or eradicate the zeroes in the shear modulus discussed

in the previous section.

If we once again consider an experiment such as that described in

Fig. 2.4, any model of a non ideal elastomer will predict a free energy

density for the elastomer as a function of the imposed stretch, θ and

all the other components of the deformation tensor:

F = F (λ, θ, λxz, ...). (2.34)

Before we impose the incremental shear, the behavior of the elastomer

will be given by minimising F over all the variables except λ. We

define Fθ to be the free energy after minimising over all variables

except λ and θ. Both before director rotation, and when θ is still very

small, we can expand Fθ in powers of θ. Since nothing in the setup

distinguishes ±x only even powers of θ can appear, giving:

Fθ = A(λ) +B(λ)θ2 + C(λ)θ4 + ... (2.35)

This is minimised by taking

θ =







0, B ≥ 0,

±
√

−B/2C, B < 0.
(2.36)

Since before any strain was applied θ = 0, the sample must start

with B ≥ 0. When the director rotates, θ becomes non-zero, and so

B must become negative. Thus at the onset of director rotation, B
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must pass through B = 0 and, if this happens at a threshold λ = λ1,

then B generically behaves as B ∼ λ1 − λ. We thus expect θ to grow

as θ ∝
√
−B ∝ ±

√
λ− λ1. We can calculate the gradient of the

stress-strain curve (the apparent extension modulus at high strains)

on either side of this point as the second derivative of the minimised

free energy with respect to λ:

d2F

dλ2
=







A′′, B = 0+

A′′ −B′2/2C B = 0−,
(2.37)

where ′ indicates derivative with respect to λ. Since C is positive def-

inite (to ensure the theory gives finite values for θ) the stress-strain

curve has a discontinuous reduction in gradient at the onset of rota-

tion, which reflects the start of a stress-strain plateau.

The onset of rotation occurs when the quadratic term in the free

energy vanishes (B = 0) making Fθ quartic to leading order in θ.

In nematic elastomers the director couples to the elastomer network,

that is changes in the director cause deformations of the elastomer

and vice-versa. As θ is adjusted slightly to explore this quartic well

there is an accompanying deformation, λ. The only component of λ

that can reflect the sign of θ is the λxz shear component. Since Fθ

is quartic in θ, the energy cost of imposing such a shear will also be

quartic in λxz, so the corresponding shear modulus disappears at this

point.

Because nematic order is of quadrupolar symmetry, Fθ must be π-

periodic in θ and is in fact more properly expressed as a power series

in sin 2θ. At the end of director rotation θ = ±π/2 so sin 2θ is again

vanishing and F can again be truncated at 4th order. This means

that the cessation of director rotation can be described as the reverse

of the onset director rotation, so the transition is again accompanied
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by a vanishing apparent shear modulus (for x-z shear) and a disconti-

nuity (this time an increase) in the gradient of the stress-strain curve

marking the end of the plateau.

2.6 Additional softness caused by texture

The preceding analysis predicting a vanishing shear modulus at the

onset and end of director rotation assumed that the elastomer de-

formed in the lowest energy affine way, whereas in fact we know that

monodomains subject to extension perpendicular to their director de-

form in a textured way, forming stripes of equal and opposite shear

and director rotation. It is likely that the timescales for the adoption

of such textures are rather long — observations of the stress-strain

plateau often requires the elastomer to relax for minutes or even longer

between measurements — which may place such calculations outside

the spirit of rheological investigation, but analysis of the true lowest

energy equilibrium response is certainly interesting in its own right.

If we allow for the formation of the lowest energy textured state

then the modulus for an incremental shear compounded with a finite

extension vanishes not only at the onset and end of director rotation,

but at every point in between. This is simply because the stretch

imposed between the onset and end of director rotation is associated

with a non-zero sympathetic λxz shear — see eqn. (2.6). The sense

of these shears follow the sense of the director rotation, but switching

the sense of both, that is setting λxz to −λxz and θ to −θ, gives an

exactly equivalent state which must have the same energy. This sym-

metry underpins the zeroes in shear modulus already observed. The

elastomer can form a stripe domain exactly like the one described in

Fig. 1.11 using these two equivalent states with the same x exten-

sion (λ) but different senses of shear λxz. In the introduction 50:50
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stripe-fractions were considered, resulting in a state with no macro-

scopic shear, but by changing this volume fraction a state with a shear

anywhere between +λxz and −λxz can be achieved without changing

the free energy density. Accordingly, the shear modulus associated

with λxz shear, the C5 modulus, must be zero. Furthermore, it is

not just zero to first order because the elastomer is in fact exploring

some quartic rather than quadractic well, rather it is truly zero for all

shears between ±λxz because the free energy function between these

shears is completely flat.

2.7 Conclusions

We have shown that the success of the compositional-fluctuations

model of non-ideal nematic elastomers it in fact predicted a very

generic form for the free energy. We have further shown that any

theory including director rotation will lead to zeroes in the apparent

shear modulus (C5) and kinks in the stress-strain curve (forming a

stress-strain plateau) at the onset and end of director rotation. We

have calculated this modulus as a function of pre-imposed strain for

the compositional-fluctuations model of semi-softness, and shown it

does predict these zeros, but also predicts other features which could

form the basis of further experimental tests. Furthermore, we predict

that in sufficiently slow experiments, the shear modulus should also

vanish between the onset and conclusion of rotation, and for finite as

well as small shears.

The zeroes in the shear modulus that have been the main focus

of the latter part of this chapter were first proposed by Lubensky at

the International Liquid Crystal Elastomer Conference in 2007, and

were the cause of much controversy. Since then several authors have

examined the issue [28, 44, 65] and a consensus has emerged that the
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zeroes must indeed occur, and they have been observed experimentally

[50].
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2.8 Appendix: Algebraic Manipulations between eqn.

(2.29) and (2.30)

Introducing β = λ/λ1 we see immediately that substituting the ex-

pression for sin θo (2.6) into the expression for C gives

2λC

µ
=

r

β3
. (2.38)

The expressions for E and F are more complicated, so it is worth

considering them one part at a time. First we calculate sin 2θ and

cos 2θ:

sin 2θ = 2 sin θ
√

1 − sin2 θ (2.39)

=
2
√
r

r − 1

√

(

1 − 1

β2

)(

r

β2
− 1

)

(2.40)

and,

cos 2θ = 1 − 2 sin2 θ = 1 − 2r

r − 1

(

1 − 1

β2

)

. (2.41)

Second, we reexpress λxz as

λ2
xz =

1

rλβ
(β2 − 1)(r − β2). (2.42)

We can now calculate two larger expressions needed for G:

2 sin 2θ(1 − r)
√

λ1λxz = − 4

β3

(

β2 − 1
) (

r − β2
)

(2.43)

and,

λ1

λ
2 cos 2θ(1 − r) =

2 + 2r

β
− 4r

β3
. (2.44)
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Adding these two expressions to find G, we get

2λG

µ
= 4β − 2

r + 1

β
. (2.45)

To find E we need to first compute one more fragment:

cos 2θ(1 − r)

(

β3

r
+ λλ2

xz

)

(2.46)

=
1

r
(1 + r − 2r

β2
)

(

β3 +
1

β
(β2 − 1)(r − β2)

)

,

which multiplies out to give

= β

(

2 +
1

r
+ r

)

− 3

β
(r + 1) +

2r

β3
. (2.47)

Substituting these results for the three fragments back into (2.29) we

see that
2λE

µ
= β

(

r +
1

r
− 2

)

. (2.48)

We can now substitute these expressions for E C and G into (2.24)

to find C5,

C5 =
µ

λ

(

r

β3
− (2β2 − r − 1)2

β3
(

r + 1
r − 2

)

)

, (2.49)

which simplifies to

C5 =
4µ

λβ3

(

β2(1 + r) − β4 − r

r + 1
r − 2

)

, (2.50)

the result stated in the chapter.
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Chapter 3

Strain induced Polarization in

Non-Ideal Chiral Nematic

Elastomers

N ematic liquids do not exhibit electrical polarizations, and nor

do conventional elastomers, although spontaneous polarizations

in chiral SmC elastomers are common. In this chapter we will show

that, although ideal chiral nematic elastomers cannot exhibit strain

induced polarizations, non-ideal ones, which is to say all real ones,

can. This result will first be argued on symmetry grounds, then con-

firmed by a microscopic model. We will also calculate an example of a

polarization-strain curve for a typical experimental geometry. In this

geometry the polarization is exactly zero at both small and large strain

but pronounced for a large set of intermediate strains corresponding

to the strains that cause incremental rotation of the nematic director.

3.1 Introduction

In this chapter we depart briefly from the elastic response of nematic

elastomers to consider their electrical response to imposed strains.

Our understanding that the key difference between the ideal nematic

elastomer model and the more realistic non-ideal model relates to the
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existence of a completely isotropic reference state [36] in the former

and not in the latter will allow us to establish that while ideal sys-

tems cannot exhibit strain induced polarization, non-ideal ones can.

Two previous papers have looked at polarizations in nematic elas-

tomers. Warner and Terentjev [52,63] developed a microscopic theory

of Gaussian chains of chiral rod like monomers to model chiral ideal

elastomers. It was found that although polarizations did arise in the

model if the nematic director and imposed strain were specified sepa-

rately, if, as would really happen in an experiment, the director was

allowed to rotate to the lowest energy direction, then the polariza-

tions disappeared. Here we argue this is because ideal elastomers

have an isotropic reference state rather than because of the details of

the model. The microscopic model developed in this paper will be a

non-ideal counterpart of the model in this work. Adams [1] explored

several mechanisms to circumvent this relaxation including non equi-

librium dynamics, smectic ordering and a specially prepared semi-soft

elastomer. Here we argue that in fact all semi-soft chiral nematic

elastomers, and hence all real life chiral nematic elastomers, will show

strain-induced polarizations that will not relax to zero on holding the

strain.

Rubbers are much softer than conventional piezoelectric materi-

als such as quartz, so they will exhibit polarizations at much higher

strains but much lower stresses. Their low mechanical impedance will

also help them couple to liquid and gaseous systems rather more ef-

ficiently than ceramic and crystalline transducers. These properties

may eventually lead to applications as sensors in high strain, low stress

environments.

This chapter will be presented in three sections. In the first, sym-

metry arguments will be used to show that ideal elastomers cannot

show electrical polarization, but non-ideal ones can. These will then

54



strain induced polarization

be developed to predict the full form of the polarization as a function

of strain. In the second section a microscopic minimal model of chiral

non-ideal elastomers — Gaussian chains with main-chain chiral liquid-

crystal rods and compositional fluctuations — will be constructed and

shown to exhibit the form of strain-induced polarization predicted by

the phenomenological analysis. Finally, in the third section, an ex-

ample of a polarization-strain curve will be calculated for a specific

geometry, namely stretching a nematic elastomer perpendicular to its

director.

3.2 Phenomenological Approach

In the liquid state chiral nematic liquid crystals form helical phases

called cholesterics. Several authors have used a phenomenological ap-

proach to study strain induced polarization in cholesteric elastomers

[18,49,53], although the subtleties of the symmetry cholesteric phases

lead to incorrect conclusions in at least two of these papers [18, 53].

This work differs from all the above in that it describes strain using the

full (non-linear) deformation gradient tensor, and works directly with

the polarization pseudovector rather than the free energy, and, more

importantly, because it deals with the chiral nematic monodomain

state. This is not a state accessible to fluid liquid-crystals, but can

easily be achieved in an elastomer by cross-linking in the presence of

a stress-field, just like a conventional nematic monodomain.

3.2.1 Symmetry Arguments for the existence of a Polar-

ization

Ideal nematic elastomers have an isotopic reference state which is

found by applying the deformation λ ∝ ℓo
−

1
2 to the relaxed state,

in effect compressing it along the nematic director so that the poly-
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mers follow an isotropic conformation distribution. An isotropic state

clearly cannot show any polarization since every direction is equal,

so no one direction can be distinguished for the polarization to point

along. If a deformation Λ applied to this state (breaking the isotropy)

were to cause a strain induced polarization p, we would like to be

able to write p as a function of Λ so that we could predict what po-

larization a given deformation would cause. Unfortunately there is no

function that can map deformations onto vectors. Intuitively this is

because a deformation from an isotropic state is completely charac-

terized by three double headed perpendicular vectors (the principal

stretches), and even with a handedness and hence the ability to take

cross products, this does not uniquely define any single headed axial

or polar vectors. We can easily prove this more formally by consid-

ering (without loss of generality) a diagonal deformation Λ from the

isotropic state. If the function f maps Λ onto a polarization p,

f
(

Λ
)

= p, (3.1)

then, for any rotation R it must satisfy

f
(

Λ · R
)

= p, (3.2)

because the reference state is isotropic. Similarly

f
(

R · Λ
)

= Rp, (3.3)

because a final state rotation should rotate a final state vector. If R is

a π rotation about one of the principal directions of Λ then R·Λ·R = Λ

but

f
(

R · Λ · R
)

= Rp = f
(

Λ
)

= p, (3.4)
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Figure 3.1: An elastomer prepared with director n̂o is subject to
pure shear that causes the director to rotate to n̂. If the elastomer
was allowed to relax, the director would rotate anticlockwise. Ap-
plying a “right-hand rule” (derived from the handedness of the
chiral nematic rods) to this rotational sense allows an axial vector
v to be defined.

which is only possible if p is along the axis of R. However, we could

have chosen the axis of R to be any of the three perpendicular principle

stretches of Λ, and p cannot be parallel to all of them, so the function

f and hence an electrical polarization cannot exist.

The above argument relies crucially on the existence of an isotropic

reference state, eqn. (3.2), which is the hallmark of an ideal elastomer.

However, non-ideal elastomers do not have an isotropic reference state

so the above reasoning does not apply. Indeed it is easy to see that

a non-ideal elastomer does have low enough symmetry to exhibit po-

larization. Consider a strip of non-ideal elastomer prepared with its

director, no, parallel to the z axis, that is then subject to pure shear

causing the director to rotate to n as shown in Fig. 3.1. Since the

elastomer is non ideal, the energy of the elastomer increases. In this

state the director “knows” about a definite rotational sense — the di-

rection in which it would rotate if the elastomer were allowed to relax

— so if the system also has a handedness, caused by the chiral nature

of the nematic rods, a right hand rule can be applied to the director

and its turning sense to define a single headed pseudovector v along
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which a polarization could lie. This argument fails if the elastomer

is ideal because the elastomer can relax to a zero energy state with

director n so relaxation does not define a rotational sense. There is

also no rotational sense before any strain is imposed, so the relaxed

state is not polarized. More subtly, there is no rotational sense after

some very large strains have been imposed — if a large x stretch had

been imposed the director would lie along the x axis so, on relaxation,

it could rotate back clockwise or anticlockwise to relax to z. However,

the reasoning does apply to all states where the director has started

rotating and applying further deformation causes further rotation.

3.2.2 Strain Dependence of the Polarization

Any polarization in a semi-soft chiral nematic elastomer must be built

out of the following ingredients, n̂o, n̂, λ and ǫijk. To be properly rota-

tionally invariant the polarization must be constructed by contracting

these objects correctly, that is by only contracting final state indexes

(the i on λij and the i on ni) with other final state indexes, and

likewise for reference state indexes (the j on λij and the j on noj).

Finally, since n̂ and n̂o are nematic directors, they are quadrupolar

(double headed) vectors so they must only appear in even numbers so

that the polarization is invariant under the transformations n̂ 7→ −n̂

and n̂o 7→ −n̂o. At zeroth order in λ the only permissible term is

ǫijknjnk (3.5)

which is zero because contracting a symmetric tensor with ǫijk gives

zero. Similarly at first order in λ the only possible term, λijǫjklnoknol

is also zero. At second order in λ there are 5 permissible terms that
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are listed below:

ǫjkl

[

λλT , λn̂on̂oλ
T , λ λT n̂n̂, λn̂on̂oλ

T n̂n̂, n̂n̂λ λT
]

kl
. (3.6)

The first and second of these give zero. The third and fifth are parallel

because both n̂n̂ and λλT are symmetric tensors. Therefore we only

have two potentially independent vectors left,

ǫjkl

[

λλT n̂n̂
]

kl
and ǫjkl

[

λn̂on̂oλ
Tn̂n̂

]

kl
. (3.7)

We expect the elasticity of a chiral nematic elastomer to be governed

by the compositional fluctuations free energy studied at length in the

previous chapter, and that n̂ will rotate to the direction that mini-

mized this energy. The terms in the compositional fluctuations model

involving n̂ are

Tr

((〈

1

r
− 1

〉

λλT +

〈

2 − r − 1

r

〉

λn̂on̂oλ
T

)

n̂n̂

)

. (3.8)

The matrix pre-multiplying n̂n̂ is clearly symmetric and hence, in

some frame, diagonal. Therefore the energy is minimized when n̂ lies

along the eigenvector of this matrix with smallest eigenvalue, giving

the relaxation condition that

(〈

1

r
− 1

〉

λλT +

〈

2 − r − 1

r

〉

λn̂on̂oλ
T

)

n̂n̂ = An̂n̂ (3.9)

for the smallest eigenvalue A. Contracting this relaxation condition

with the ǫijk we see that both the above terms (eq. (3.7)) are also

parallel, so the only admissible vector at quadratic order in λ is

p ∝ ǫjkl

[

λλT n̂n̂
]

kl
. (3.10)
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However, elasticity in nematic elastomers is typically large strain, so

there is little reason to truncate this series at quadratic order. At

higher orders there are other admissible vectors that can be con-

structed. However, rubber-elasticity, particularly Gaussian rubber

elasticity, is extremely well described by just the low order terms even

at large strain, motivating the consideration of just the lowest order

terms.

3.3 Microscopic Minimal Model

The phenomenological analysis above suggests a simple and universal

form for the direction and strain-dependence of polarization in chiral

nematic elastomers — eq. (3.10). In the following section we develop

a microscopic minimal model that also predicts the same form. The

use of this is threefold, it lends weight to the phenomenological anal-

ysis, yields an overall magnitude for the polarization (which tends to

zero as the elastomer becomes ideal) and illustrates a possible micro-

scopic mechanism for the effect. The model developed is a non-ideal

counterpart of that studied in [63].

3.3.1 Setting up the Model

The model is based on two different rigid rod monomers. The first,

species 1, we model as a rigid rod of length a. The second, species 2, we

model as an L shaped molecule with dimensions a and b and an elec-

trical dipole d assigned using a “right-hand rule” — see Fig. 3.2. The

two monomers are polymerized to make random co-polymers, which

we model as freely jointed (Gaussian) chains of N monomers, with bi-

nomially distributed compositions between species one and two. The

rigid rod nature of the monomers allows them to form a joint nematic

phase, which results in the polymers having anisotropic conformation
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Figure 3.2: Dimensions of the two species of rigid rod monomers.
The electrical dipole d is assigned using a “right-hand rule”, d ∝
u ∧ v, making the second species chiral.

distributions. However, the two monomers couple to the nematic order

with different strengths, so a polymer made entirely of species 1 would

have step length tensor ℓ1 ∝ δ+(r1−1)n̂n̂ with anisotropy r1 and one

made of species two would have step length tensor ℓ2 ∝ δ+(r2 −1)n̂n̂

with anisotropy r2. For simplicity we assume that the constants of

proportionality for both these tensors is the same. The random co-

polymers have different overall anisotropies depending on their com-

position. The polymers are cross linked in the nematic state to form a

chiral non-ideal nematic liquid crystal elastomer, which we will show

exhibits strain induced polarization.

This model captures the two essential ingredients for a nematic

elastomer to show electrical polarization, non-ideality (introduced via

compositional fluctuations) and chirality, introduced by the right hand

rule used to assign the electrical dipoles to the L shaped monomers.

The assumptions that both species of monomer have the same

length, and that both step length tensors have the same constants

of proportionality (i.e. the same components perpendicular to n̂) are

somewhat unrealistic. However, these assumptions significantly sim-

plify the algebra. The model can be solved without these assumptions

in the same manner as outlined below, with the end result being sim-
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ply that the coefficient of polarization is slightly altered.

3.3.2 Polymers with homogeneous composition

If a polymer is constructed out of freely jointed monomers of species

2, numbered by α = 1, ..., N , and each monomer has end to end vector

wα = auα + bvα (see Fig. 3.2) then the total end to end vector for

the chain is

R =
∑

α

wα (3.11)

and, defining the binormal of the chain to be

V =
∑

α

uα ∧wα, (3.12)

the electrical polarization of the chain is

p = dV. (3.13)

If the monomers in the chain are freely jointed, their orientations are

independent, and the probability of the chain being in a configuration

with a given R and V is [63]

P2(R,V) ∝ exp

(

− 3

2Na
RT ℓ2−1R− 1

N
VTM−1V

)

× (3.14)

(

1 +
3b

N2a2
[R ∧ ℓ2−1R]M−1V +O(R4, R2V 2) + ...

)

.

where, if the nematic director is n then ℓ2 ∝ δ + (r2 − 1)nn and

M = δ − ℓ2/3a. This model can give a non zero binormal for a chain

if the spanning vector for the chain is not along the liquid-crystal

director. An intuitive sense of this can be developed by considering

a 2D system with perfect nematic order, so all long sides of all the
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Figure 3.3: The four possible orientations for L shaped monomer
units confined to 2D and by perfect nematic alignment in the z
direction. The vector bi-normals, assigned with a right hand rule,
are also shown pointing into out of the page.

Ls align perfectly along the nematic director, z. This means each

monomer can contribute one of 4 vectors to the chain path, shown

in Fig. 3.3. If the overall conformation has a significant component

along z then there must be many more monomers in the first and

third orientations than the second and fourth. If the conformation also

includes a component along x then there must be more monomers in

the first orientation than the third, so an overall binormal is developed.

The equivalent result for a chain made entirely of species 1, and

thus with no binormal, is simply

P1(R) ∝ exp

(

− 3

2Na
RT ℓ1−1R

)

, (3.15)

where ℓ1 ∝ δ + (r1 − 1)nn.

3.3.3 Random Co-Polymers

If a chain has N1 monomers of species 1 and N2 = N −N1 monomers

of species 2, since the chain is freely jointed, the order in which the

monomers are arranged does not effect the conformation probabil-

ity distribution. Therefore, the chain is equivalent to a chain of N1
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monomers of species one connected to a chain of N2 monomers of

species 2, so the new chains distribution is simply

P (R,V) =

∫

P1(R1)P2(R − R1,V)dR1. (3.16)

This distribution can be calculated explicitly (see the appendix —

section 3.6 — for details) by completing the square in the exponent.

The resulting distribution is

P (R,V) ∝ exp

(

− 3

2L
RTℓ−1R − 1

N2
VTM−1V

)

(3.17)

×
(

1 +
3b

L2

r2 − 1

r − 1
(R ∧ ℓ−1R)M−1V + ...

)

where L = Na is the total contour length of the chain, r is the length

weighted average of r1 and r2, that is,

r =
L1r1 + L2r2
L1 + L2

, (3.18)

and ℓ ∝ δ + (r − 1)nn. We see that the distribution for the co-

polymer is identical to that for a homogeneous chain but with modified

coefficients.

3.3.4 Polarization of a strand of Co-Polymer

The polarization of a strand is given as d 〈V〉. This is straightforward

to calculate since

〈V|R〉 =

∫

VP (R,V)dV
∫

P (R,V)dV
. (3.19)
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Evaluating this is a simple case of doing a Gaussian integral (using

eqn. (3.17) as P (V) which has 〈VV〉 = 1
2N2M) and gives

〈V|R〉 =
3N2b

2L2

r2 − 1

r − 1
R ∧ ℓ−1R. (3.20)

If the polymer strand is cross-linked into a nematic elastomer with

nematic director n̂o and span vector Ro between its crosslinked ends,

and then a deformation λ is applied to the system, causing the span to

change to R = λRo and the director to change to n̂, the new binormal

will be

〈V|Ro〉 =
3N2b

2L2

r2 − 1

r − 1
λRo ∧ ℓ−1λRo. (3.21)

Averaging this expression over all possible initial spanning vectors

using 〈RoRo〉 = Lℓo/3 gives

〈V〉 =
N2b

2L2

r2 − 1

r − 1
ǫijk

[

ℓ−1 λ ℓoλT
]

jk
, (3.22)

which gives a polarization per strand of

〈p〉 =
bd

2a

L2

L1 + L2

r2 − 1

r − 1
ǫijk

[

ℓ−1λ ℓoλT
]

jk
. (3.23)

3.3.5 Mechanical response of a Semi-Soft Nematic Elas-

tomer

The arguments in section 3.2 show that a chiral non-ideal elastomer

can develop a polarization under deformation. We thus consider a ran-

dom co-polymer strand cross-linked into a nematic elastomer network.

The mechanical part of its free energy is simply

F = 1
2kBTTr

(

ℓoλT ℓ−1λ
)

, (3.24)

65



hard and soft LCEs

the same as for a non-chiral strand in a nematic elastomer. However,

in this case the anisotropy, r, is a function of the individual strands

composition, so averaging across all the strands in the elastomer gives

〈F 〉 = 1
2kbT

〈

Tr
(

ℓoλT ℓ−1λ
)〉

(3.25)

= 1
2kbTTr

(

λ ℓ̄oλT ℓ̄
−1

+ αλ
(

δ − n̂on̂o

)

λT n̂n̂
)

,

where ℓ̄ ∝ δ + (〈r〉 − 1)n̂n̂ and α =
〈

1
r

〉

− 1
〈r〉 . This is the usual

non-ideal free energy for a nematic elastomer, so it will also follow the

mechanical relaxation condition given in eq. (3.9).

3.3.6 Polarization of a Semisoft Chiral Nematic Elastomer

The polarization per strand given in (3.23) takes the form

p = p(r)ǫijk
[

ℓ−1 λ ℓoλT
]

jk
(3.26)

where the polarizability, p(r), is a coefficient that depends on the

composition of the strand, and hence its anisotropy ratio. To find the

behavior of the whole elastomer we must average this result over all

compositions (all strands in the elastomer). Introducing polarization-

weighted averages as

〈f(r)〉p =
〈p(r)f(r)〉
〈p(r)〉 (3.27)

we get the strand averaged polarization

p = 〈p(r)〉 ǫijk

[

λλT +

〈

1

r
− 1

〉

p

n̂n̂λλT + (3.28)

〈

2 − r − 1

r

〉

p

n̂n̂λn̂on̂oλ
T + 〈r − 1〉p λn̂on̂oλ

T

]

jk

.
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The first and last of these terms evaluate to zero since because they

consist of a symmetric tensor contracted with ǫijk. The middle two

terms are exactly the two terms related by the mechanical relaxation

condition (3.9). Since An̂n̂ is also a symmetric tensor, we can use the

relaxation condition to eliminate one of the two terms, giving

p = 〈p(r)〉
〈

1

r
− 1

〉

(〈

1
r − 1

〉

p
〈

1
r − 1

〉 −
〈

2 − 1
r − r

〉

p
〈

2 − 1
2 − r

〉

)

× ǫijk
[

λλT n̂n̂
]

jk
.

(3.29)

This expression for the polarization has a simple vector part but quite

a complex coefficient. Note that the coefficient gives zero for an ideal

elastomer because then all strands have the same value of r so both

types of average give the same result. They also give the same re-

sult (and hence the coefficient is zero) if all strands have the same

polarizability.

3.3.7 Evaluating the Coefficient for the Random Co-Polymer

Model

In the analysis of a random co-polymer strand we predicted the anisotropy

of the strand, r, and the polarizability of the strand, p(r), in terms of

its composition. Assuming the strands for the elastomer were gener-

ated by randomly polymerizing a mixture of the two monomer units,

a reasonable model for the compositional distribution of the chains is

that all the chains have N monomers, of which N1 are of species 1,

and N1 is distributed binomially with probability q,

N1 ∼ B(N, q). (3.30)
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The effective anisotropy of the chain is given by

〈r〉 =

〈

N1r1 +N2r2
N

〉

= qr1 + (1 − q)r2. (3.31)

Defining ∆ = N1 − Nq, in a large N limit we expect ∆/N ∼ 1/
√
N

to be small, so we can expand the coefficient as a Taylor series in this

quantity and then average and keep the leading term. We can easily

use this method to evaluate 〈1/r〉:
〈

1

r

〉

=

〈

N

N1r1 +N2r2

〉

, (3.32)

substituting N2 for N and N1 for q and ∆ gives

〈

1

r

〉

=

〈

1

r2 + (q + ∆/N)(r1 − r2)

〉

, (3.33)

=

〈

1

〈r〉 + ∆(r1 − r2)/N

〉

. (3.34)

(3.35)

Expanding in ∆/N to second order,

〈

1

r

〉

≈ 1

〈r〉

〈

1 − ∆(r1 − r2)

Nr
+

(

∆(r1 − r2)

Nr

)2

+ ...

〉

. (3.36)

Finally, taking the average over ∆ we see that to leading order

〈

1

r

〉

≈ 1

〈r〉 +
q(1 − q)(r1 − r2)

2

Nr3
+ ... (3.37)

so the semisoft parameter α is given by

α =

〈

1

r

〉

− 1

〈r〉 ≈ q(1 − q)(r1 − r2)
2

Nr3
. (3.38)
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The full coefficient in eqn. (3.29) can be expanded out in a similar

manner to give

〈p〉 =
bd

2a

(r1 − 1)(r2 − 1)(r1 − r2)q(1 − q)

Nr(r − 1)2
ǫijk

[

λλT n̂n̂
]

jk
, (3.39)

which is non zero, so the model does predict a polarization. At first

sight it may appear small because it contains a factor of 1/N . How-

ever so does the measure of non-ideality, α. In the compositional

fluctuations model, non-ideality goes to zero as the chain length be-

comes infinite because the variance of the chain anisotropy vanishes.

Therefore this coefficient is only small because our model is in fact

almost ideal. Taking this at face value and replacing the small (1/N)

factor by α we can (very crudely) estimate the magnitude of the po-

larization for a real non ideal elastomer as |P| ∼ αn bd
2a , where P is

the total polarization per unit volume, n is the number of strands per

unit volume, and we have assumed that the factors involving just r q

and λ are of order unity. Substituting reasonable values (n ∼ 1026,

b/a ∼ 0.1, α ∼ 0.1 and d ∼ e× 1Å) we get |P| ∼ 10−5Cm−2. This is

of a similar magnitude to mechanically induced polarizations induced

in quartz (|P| ∼ 10−4Cm−2 at 0.2% strain) but at much higher strain

(
√
r − 1 vs. 0.2%) and much lower stress (105Pa. vs. 108Pa.).

3.4 Example of a Polarization-Strain Curve

If a non-ideal nematic elastomer is prepared with its director oriented

along the z axis, and is then stretched by a factor of λ along the x axis

the elastomer passes through three regimes. Verwey & Warner [58]

showed that there is a threshold deformation

λ1 =

(

r − 1

r − 1 − αr

)1/3

, (3.40)
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Figure 3.4: For intermediate stretches the energy of the elastomer
is significantly reduced if it also undergoes x-z shear and director
rotation.

for extensions with λ ≤ λ1 the deformation is simply that expected

from a classical rubber, λ = diag[λ, 1/
√
λ, 1/

√
λ], and the director

does not rotate. However, in the second regime, λ1 ≤ λ ≤ √
rλ,

the energy of the elastomer is significantly reduced if the deformation

includes λxz shear and the director rotates to θ with the z axis (see

Fig. 3.4). More precisely,

sin2 θ=
r(λ2 − λ2

1)

(r − 1)λ2
and λ=







λ 0 λxz

0 1/
√
λ1 0

0 0
√
λ1/λ






, (3.41)

where the shear is given by

λ2
xz =

(λ2 − λ2
1)(rλ

2
1 − λ2)

rλ2λ3
1

. (3.42)

In the third regime, λ ≥ √
rλ1, director rotation is complete so the

director lies along the x axis and the elastomer again deforms classi-

cally,

λ = diag[λ, r1/4/
√
λ, 1/(r1/4

√
λ)]. (3.43)

These results were derived in [58] and are discussed in [64].

In the first and third region the vector part of the polarization

gives zero. This is simply because the deformation is symmetric and
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n̂ is along one of its eigen-directions, so

p ∝ ǫijk
[

λλT n̂n̂
]

jk
∝
(

λλT n̂
)

∧ n̂ ∝ n̂ ∧ n̂ = 0. (3.44)

However in the second region λ is not symmetric and the polarization

is non-zero. Calculating the polarization is now a simple matter of

substituting the expression for λ into (3.10) to get

p ∝ rλ3
1 − 1√

rλ3
1(r − 1)

√

(λ2 − λ2
1)(rλ

2
1 − λ2)y. (3.45)

A plot of the polarization function is shown below in Fig. 3.5. The

form of the polarization is rather unusual, with a very steep profile and

non continuous changes of gradient at the onset and end of director

rotation. Taking the derivative of eqn. 3.45 with respect to λ, we see

that the slope is

d|p|
dλ

∝ rλ3
1 − 1√

rλ3
1(r − 1)

λ

(
√

rλ2
1 − λ2

λ2 − λ2
1

−
√

λ2 − λ2
1

rλ2
1 − λ2

)

. (3.46)

This diverges as 1/
√
λ− λ1 near λ1, and similarly near

√
rλ1 at the

end of director rotation, so the slope is actually infinite. Since static

polarizations tend to be screened out by atmospheric ions, it is gen-

erally changes in polarization that are important in experiments and

applications, so the divergence of this derivative is significant.

In reality, if a sample is stretched in this manner without applying

the energy-lowering shear with the clamps then the elastomer will

split into stripes (see [25] for theory or [32] for experiment) each of

which undergo opposite shear so that the average shear of the sample

is zero. These stripes will have opposite polarization. This is shown

in Fig. 3.6. This type of behavior can be eliminated by simultaneously

imposing a stretch and a sympathetic shear. As discussed at the end
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Figure 3.5: Polarization in the y direction as a function of strain for
a elastomer with r = 5 and λ1 = 1.3 The constant of proportionality
in eqn. (3.10) has been set to one.

of the previous chapter, the modulus for shearing a stripe domain into

a mono-domain is zero since the shear is accommodated by changing

the volume fraction of the two types of stripe, so the energy density

of the elastomer does not change. This means that a nematic stripe

domain, which consists of stripes of alternating shear and polarization,

can be sheared into a monodomain with a macroscopic polarization by

an infinitesimal shear stress. and the sign of the polarization can be

reversed by reversing the infinitesimal shear stress. This could make

such a system an extremely sensitive shear stress sensor.

3.5 Conclusions

Semi-soft chiral nematic elastomers have low enough symmetry to ex-

hibit strain-induced polarization. Such polarizations are expected to

be caused by any deformation which causes incomplete director ro-

tation, meaning more of the same deformation would lead to more

director rotation and vice-versa. Rotation of the director through
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Figure 3.6: If an elastomer is subject to simple stretch with simple
clamps then, to achieve the lower energy sheared and stretched
state, it splits into stripes of opposite shear so that the total shear
is zero. The two types of shear have opposite polarization.

the elastomer is at the root of the phenomena because, as the di-

rector rotates away from its preferred orientation, it can distinguish

between rotation back to or further away from the preferred direction.

The introduction of this rotational sense into the elastomer lowers the

symmetry enough for a polarization to form.

On phenomenological grounds, the form of the polarization is ex-

pected to be p ∝ ǫijk[λ · λT n̂n̂]jk, where λ is the deformation tensor

and n̂ is the final state liquid crystal director. A microscopic minimal

model using compositional fluctuations to model non-ideality and L-

shaped liquid crystal mesogens to incorporate chirality also predicts

a strain-induced polarization of this form. The microscopic model

suggests that polarizations of the order of |P| ∼ 10−5Cm−2 could

be achievable, which is comparable to the polarizations observed in

quartz, but is predicted to occur at much higher strain and much lower

stress.
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3.6 Appendix: Conformation Distribution of the Co-

Polymer

We need to calculate P (R,V) given by eqn. (3.16). To complete

the square in the exponent we substitute R2 = R1 − (ℓ1−1/L1 +

ℓ2−1/L2)
−1(ℓ2−1/L2)R. The result of this substitution can be simpli-

fied by noticing that,

ℓ2−1

L2
+
ℓ2−1

L2

(

ℓ1−1

L1
+
ℓ2−1

L2

)

ℓ2−1

L2
=

ℓ

L1 + L2
(3.47)

where ℓ is the step length tensor with average anisotropy r given by

r =
L1r1 + r2L2

L1 + L2
. (3.48)

This is easy to show by direct multiplication of the tensors since ℓ1

and ℓ2 are co-diagonal. The substitution gives the new exponent

− 3

2



R2
T

(

ℓ1−1

L1
+
ℓ2−1

L2

)−1

R2 + RT
ℓ−1

L1 + L2
R



 − 1

N2
VTM−1V.

(3.49)

Having completed the square, we can now treat R2 as a gaussian

distributed variable with second moment proportional to ℓ1−1/L1 +

ℓ2−1/L2 so that the integral can be written as an expectation,

P (R,V) ∝ exp

(

− 3

2(L1 + L2)
RT ℓ−1R − 1

N2
VM−1V

)

(3.50)

×
(

1 +
3b

L2
2

〈

(R − R1) ∧ ℓ2−1(R − R1)
〉

R2

·M−1V

)

.
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Substituting for R2 into the expectation part of this expression using

R − R1 =
L2

L1 + L2
ℓ2 ℓ−1R − R2, (3.51)

we see that it contains terms of zeroth, linear and quadratic order in

R2. The linear terms give zero because the first moment of a Gaussian

is zero. The quadratic terms are also zero because the second moment

tensor is co-axial with ℓ2−1 so their product is symmetric and gives

zero when contracted with ǫijk. This only leaves the zero order term

which, just taking the part inside the expectation, is

(

L2

L1 + L2

)2
(

ℓ2 ℓ−1R
)

×
(

ℓ−1R
)

. (3.52)

Again, because the ℓ matrices are co-diagonal, this can be multiplied

out in a diagonal frame to show it is equal to

(

L2

L1 + L2

)2 r2 − 1

r − 1
R ×

(

ℓ−1R
)

. (3.53)

Substituting this for the expectation in eqn. (3.50) we get the proba-

bility distribution stated in eqn. (3.17).
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Chapter 4

Convexity and Textured

Deformations

Textured deformations are without doubt one of the rich-

est behaviors exhibited by liquid crystal elastomers. The stripe

domains discussed in the previous chapters are the original and best

known textured deformations in liquid crystal elastomers, but many

more have been predicted, some of which have been observed. Tex-

tured deformations also connect the relatively young field of of liquid

crystal elastomers to the more developed field of martensitic metals.

The results on polydomain elastomers developed in the next chapter

rest on several existing results originating in the study of textured

deformations which are sufficiently subtle to necessitate introducing

them first. Although this chapter is mostly a review of other authors

work, the results about the morphology of stripe domains in nematic

and smectic elastomers — sections 4.5.1 and 4.10.2 — are original.

The latter was the subject of a detailed publication [13], but here

only a brief overview will be given. The other parts of this chapter

draw on a commissioned review published in the de Gennes memorial

edition of the Journal of Liquid Crystals [12], and although the results

are not original, they have not previously been assembled into a single

coherent and physically reasoned exposition.



Textured Deformations

4.1 Formulating texture problems

When a deformation is applied to a body we actually specify the con-

figuration of the surface of the body, while the interior can relax to

whatever configuration (consistent with the imposed surface configu-

ration) has the lowest energy. Our intuition suggests that, if we have

deformed the boundary homogeneously, we expect the interior to also

undergo the same homogenous deformation. However, in textured

deformations this is not the case. In these cases the energy of the

interior is minimized by the body adopting a fine mixture of different

deformations that are consistent with the deformed boundary. Our

approach to understanding this type of problem is therefore one of

energy minimization. We expect textures to occur if they are ener-

getically favoured. If we know the materials energy function, W (λ),

which tells us the energy cost of imposing a homogenous deformation

gradient λ, then we wish to study the problem

W r(λ) = min
x′=λx on δΩ

1

Vol.Ω

∫

W(∇x′(x))dx. (4.1)

By this definition, the relaxed energy functionW r(λ) is the average en-

ergy per unit volume of the body after the deformation gradient λ has

been imposed on the boundary of the body and the body has adopted

the most favorable (in general non-homogenous/textured) deforma-

tion x′(x) consistent with the imposed deformation of the boundary.

A function is called quasiconvex if the formation of textured deforma-

tions does not lower the energy further. By definition, relaxed energy

functions are quasiconvex. Although the above definition of W r(λ)

appears to be dependent on the shape of the body, Ω, in fact it is not

— some fairly simple rescaling arguments can be used to show that

if W relaxes to W r in Ω it has the same relaxation for any shape of

body [10].
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4.2 Geometric bound on the deformations made soft

by texture

Since the ideal nematic energy, eq. (1.25), has a large set of relaxed

states, there is scope for making states with other deformations with

respect to the reference state relaxed if they can be made out of tex-

tures of relaxed states. We can place a simple (although, as we will

show later, in practice perfect) bound on the set of deformations that

can be made relaxed through the formation of texture.

Volume conservation requires that detλ = 1 = λ1λ2λ3 so we can

substitute λ2 = 1/(λ1λ3) into eq. 1.25 giving

W (λ) = 1
2µ

(

λ2
1 +

1

λ2
1λ

2
3

+
λ2

3

r

)

. (4.2)

Simple differentiation shows that this is minimized at 3
2µr

−1/3 byλ3 =

r1/3, λ1 = λ2 = r−1/6, which correspond to the ring of minima in Fig.

1.9. This means that any uniaxial stretch by a factor of r1/3 will

turn the reference state into a low energy relaxed state, irrespective of

the axis of the stretch. These are the spontaneous distortions of the

system that are seen on cooling an isotropic sample to the nematic

phase, seen, for example, in [21] and first predicted in [62]. If we define

K0 as the set of minimizers of (4.2) then we can write1

K0 = {λ ∈ M
3×3 : λ1 = λ2 = 1/r1/6, λ3 = r1/3}. (4.3)

We can now put a simple bound on the set Kqc, the total set of

deformations that, for ideal nematic elastomers, can be made relaxed

by the formation of texture. If a texture is to be relaxed it must be

1This set notation will be familiar to mathematicians. The curly brackets denote

a set, ∈ means “is a member of”, : means “such that” and M
3×3 is the set of 3x3

matrices, so this expression reads “the set of 3x3 matrices λ such that the principal

values of λ are λ1 = λ2 = 1/r1/6 and λ3 = r1/3.
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made entirely out of deformations that are relaxed, i.e. members of

K0, so if λ is a member of Kqc, it is built out of members of K0.

Therefore it is impossible for the largest principal value of λ to exceed

r1/3 as this would require λ to be a larger deformation than any of the

deformations that make it up. Similarly, the smallest principal value

cannot be smaller than r−1/6, so we can write

Kqc ⊆ {λ ∈ M
3×3 : r−1/6 ≤ λ1 ≤ λ2 ≤ λ3 ≤ r1/3}, (4.4)

where ⊆ denotes that Kqc is either a subset of or equal to the set on

the right. For example, in Fig. 1.12, the imposed stretch deformation

is in Kqc because it can be made out of a texture of two sheared

deformations that are in K0.

4.3 Continuity of Textured Deformations

To establish that a deformation λ actually is in Kqc we need to explic-

itly construct a texture of zero energy deformations that averages to

λ. To do this, it is not enough to find a set of deformation gradients in

K0 that average to λ and then apply them to small regions of the body

in the appropriate volume fractions. This is because two deformation

gradients cannot in general be applied in adjacent regions without the

boundary between the regions fracturing. For example, it is impossi-

ble to rotate one part of a body and not an adjacent part without the

boundary between the two ripping. Textured deformations require

the deformation gradient to become a function of position in the ma-

terial, so different parts of the material deform differently. However,

when choosing spatially changing deformation gradients, we must re-

member that λ(x) = dx′

dx where x′(x) gives the position vectors after

deformation of points in the material originally at x. If the body is

not to fracture, then x′(x) must be a smooth function which means
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that λ(x), as the gradient of a smooth function, must have zero curl.

The zero curl condition is useful for situations where λ(x) is a

smoothly varying function. However, textured deformations are al-

most never smooth but rather consist of many small regions each with

a constant deformation gradient, and therefore have sharp changes in

the gradient across the boundaries. Applying the condition that λ(x)

has zero curl when it is piecewise constant is difficult. A simpler ap-

proach is to realize that two deformations, λ
1

and λ
2
, applied on either

side of a plane boundary will not cause the material to rip provided

that the boundary plane deforms into the same plane under both de-

formations. If m is the boundary normal in the reference state, this

requires that λ
1
v = λ

2
v for every vector v perpendicular to m, mean-

ing every v in the interfacial plane in the reference state. This will be

true if the deformation gradients are rank-one connected, meaning

λ
1
− λ

2
= a ⊗ m (4.5)

where a is any vector, we will show below that a is actually always a

vector in the interfacial plane in the final state. We can easily prove

that this condition is sufficient to guarantee the material does not rip

by contracting the equation with v giving

λ
1
v − λ

2
v = 0, (4.6)

which is precisely the condition required for continuity.

The condition of rank-one connectivity is equivalent to requiring

that vector areas in the interfacial plane transform to the same vector

areas under both deformations [10],

λ−T
1

m = λ−T
2

m ≡ m′, (4.7)
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where we have defined m′ as the final state boundary normal. Con-

tracting the rank-one connectivity condition from the left with m′ =

λ−T
1

m = λ−T
2

m we see that 0 = (m′ · a) ⊗ m. This means that a is

perpendicular to the deformed state plane normal, m′, and hence is

a vector in the interfacial plane in the deformed state. The geometry

of rank-one connected deformations is shown in Fig. 4.1.

Figure 4.1: A body split into two regions by a plane with normal
m undergoes different deformations λ

1
and λ

2
on either side of the

boundary. The two deformations are rank-one connected (λ
1
−λ

2
=

a ⊗ m) so they do not cause the body to rip at the boundary.

Rather more insight into the nature of the rank-one connectivity

constraint is yielded by writing it as

λ
1

=
(

δ + a ⊗ m′
)

λ
2
, (4.8)

where δ is the identity matrix and, since a and m′ are orthogonal,

the tensor preceding λ
2

on the right is a simple shear - see Fig. 4.2.

This means that the deformation on one side of the boundary rela-

tive to the other side of the boundary is just a simple shear across

the boundary. It is easy to see that a simple shear across a bound-

ary does not cause the material to fracture, as shown in the stripes

of opposite shear in Fig. 1.11. The rank-one connectivity condition

places a very strong constraint on which deformation gradients can

be applied next to each other. Most pairs of deformation gradients

are not rank-one connected, and even if two deformation gradients are

rank-one connected there will only be one plane (with normal m in the
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Figure 4.2: Two deformations that are rank-one compatible differ
only by a final state simple shear across the final state boundary.
The final state boundary normal is m′.

reference state) across which they can join. This rules out most more

complicated texture geometries such as those with curved boundaries.

4.4 Laminate Textures

There is a simple way for a material to form a fine texture out of two

deformation gradients that are rank-one connected — it can form a

laminate. All the planes that separate regions of different deformation

must have the same layer normal (m in the reference configuration),

and hence be parallel so by splitting into a stack of layers separated

by such parallel planes the material can oscillate between the two

deformation gradients on a fine scale, achieving their average macro-

scopically. The Kundler and Finkelman stripe domain, Figs. 1.11 and

1.12, is an example of a laminate texture.

All the textures that have been explicitly considered in the field of

liquid crystal elastomers are laminates. The reason for this is that the

number of different types of boundary increases rapidly with number

of deformation gradients in a texture, so with two gradients there is

only one type of boundary, but with three there are three types and

with four there are six. Each type of boundary needs to be rank-

one connected, so the number of continuity relations that must be

satisfied also increases rapidly. Furthermore, the different types of
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boundaries will not be parallel so intersections between boundaries will

need to be considered which have further continuity constraints, [10].

However, one trick which has been used to construct textures that

involve more than two deformations in both SmC [3] and nematic

[27] elastomers is higher order lamination. This entails lamination

between two deformation gradients that are rank-one connected and

are themselves made relaxed by the formation of laminates, making

a second order lamination between two laminated deformations. This

allows four deformation gradients to make up the final texture while

only having three continuity equations (one for each simple lamination

and one for the second order lamination) and, by separation of length

scales, being able to neglect the intersections between the different

laminate interfaces.

4.5 Laminates in Ideal Nematic Elastomers

4.5.1 Morphology of Nematic Stripe-Domains

The minimizers of eq. (4.2) are any deformations with principal values

λ1 = λ2 = r−1/6 and λ3 = r1/3, meaning any uniaxial stretch of mag-

nitude r1/3. Fig. 4.3 shows two such stretches applied on either side

of a plane boundary. It is clear that only if the boundary bisects the

axes of the two stretches will it be stretched to the same degree along

the boundary by both deformations. However, if the deformations

are simple stretches then, although the boundary will be stretched to

the same degree by both, it will be rotated differently and the body

will still fracture. For the deformations to be rank-one continuous the

stretches must be followed by body rotations that restore the continu-

ity of the boundary. This simple construction shows that the nematic

director, which aligns with the long axis of the stretch, must always

form equal and opposite angles with the boundary normal on either
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side of the boundary, as was observed in the Kundler and Finkelman

experiment, Fig. 1.12. This simple result does not seem to have previ-

ously appeared in the liquid crystal elastomer literature. The results

of the Kundler and Finkelman experiment can be neatly explained

by considering the successive states given by this construction as θ

moves from π/2 (the start of the experiment) to 0 (the end of the

experiment).

Figure 4.3: Left: A body in the reference configuration is split into
two regions by a plane. Middle: Uniaxial stretches are applied
to the two regions. They are not compatible so the sample rips
along the boundary. The arrows indicate the axis of the stretch,
and consequently the nematic director. Right: If the two regions
are now rotated the boundary between them becomes continuous
again. Many repetitions of this structure makes a stripe-domain.

This construction can be put on a more rigorous footing using

two theorems originating in the study of solids showing martensitic

transitions. These theorems are useful for establishing the morphology

of textures. The first states that if Q is a rotation matrix the equation

λ
1
−Q · λ

2
= a ⊗ m (4.9)

has, for fixed λ
1

and λ
2
, either two or zero solutions, which in general

will have different Q, a and m, [8]. The second, known as Mallard’s

law, states that if

λT
1
· λ

1
= R · λT

2
· λ

2
·R (4.10)

for some π rotation R there are certainly two solutions, one of which

has m along the axis of R [30]. There are simple forms for m and a
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for both solutions [10], if s is the axis of R then the two solutions are

I. a = 2

(

λ
1
s−

λ−T
1

s

|λ−T
1

s|2

)

, m = s (4.11)

II. a = ρ̃λ
1
s, m =

2

ρ̃

(

λT
1
· λ

1
s

|λ
1
s|2 − s

)

(4.12)

where ρ̃ is chosen to make m a unit vector. Taking λ
1

and λ
2

as

two uniaxial stretches that minimize eq. 4.2 with axes n1 and n2 (so

λ
1

= r−1/6(δ + (
√
r − 1)n1 ⊗ n1) and likewise for λ

2
) we see that

Mallard’s law is satisfied if the axis of R is taken as either n1 + n2

or n1 − n2 so that Rn2 = ±n1. This means there are certainly two

solutions to the continuity equation, one with m ∝ n1 − n2 and one

with m ∝ n1 + n2. Therefore any two minimizers of eq. (4.2) can,

after an appropriate body rotation, form a laminate texture, and that

the boundary normal of the stripe-domain must always bisect the

nematic directors (which align with the stretch axes) on either side

of the boundary. The first theorem then tells us that these are no

more solutions to eq. (4.9) with minimizers of eq. 4.2 so there are no

stripe-domains between relaxed states that do not have this property.

4.5.2 The full set of low energy textured deformations

We can use the idea of laminate textures to find the full set of de-

formations that can be achieved with the same energy as a relaxed

monodomain by the formation of texture, Kqc. In the following sec-

tion we will explicitly construct textures (double and single laminates)

that allow any deformation in the upper bound on Kqc in eq. (4.4)

to be achieved with this energy density. This is necessarily quite ab-

stract, so less mathematically inclined readers may prefer to skip to
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section 4.6 where the full relaxation result is stated and discussed.

This construction was first given in [27].

LetK1 be the set of deformations that can be made soft by forming

laminate textures between two members of K0. This means that if a

deformation λ is in K1 the elastomer can realize this deformation by

splitting into a stack of layers with layer normal m and undergoing

alternating soft deformations λ+ and λ− (both in K0). For this to

work λ+ and λ− must be compatible (rank-one connected), meaning

that for some a,

λ+ − λ− = a ⊗ m, (4.13)

and the average deformation must be λ, so, if the volume fractions of

λ+ and λ− are α and 1 − α respectively, αλ+ + (1 − α)λ− = λ. We

can write this more compactly as

K1 = {λ =αλ+ + (1 − α)λ− (4.14)

: λ+, λ− ∈ K0, λ+ − λ− = a ⊗ m}.

If λ is in K1 and is made soft by lamination between λ+ and λ− with

texture normal m, we know that, since two of the principal values of

λ+ are r−1/6, there is a whole plane of unit vectors such that |λ+ê| =

r−1/6. This plane must intersect with the plane perpendicular to m

with at least a line, let the vector v be a unit vector on this common

line. Dotting the continuity equation (4.13) onto v we see that

λ+v = λ−v. (4.15)

Therefore λv = λ+v and |λv| = r−1/6, so lamination between two soft

deformations must produce an overall deformation λ with λ1 = r−1/6,

so,

K1 ⊆ {λ ∈ M
3×3 : r−1/6 = λ1,det(λ) = 1}. (4.16)
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Physically this simply means that in the direction perpendicular to

both long stretches (into the page in Fig. 4.3) the total stretch must

be r−1/6. We now construct single laminates to show that all de-

formations with this property can be constructed by lamination of

memebers of K0.

The polar decomposition theorem tells us that any deformation

can be fully characterized by three simple stretches in three orthogo-

nal directions (by the three principal values of the deformation) fol-

lowed by a body rotation. The latter cannot change the energy of the

deformation, and since the reference state is isotropic (see eq. (4.2)),

nor can the choice of directions to impose the three perpendicular

stretches. Therefore we expect the energy of the deformation to be

only a function of the principal values of the deformation.

According to eq. (4.16) the most general set of principal values

that might be compatible with being in K1 are λ1 = r−1/6, λ2 = µ2

and λ3 = µ3 where r−1/6 ≤ µ2 ≤ µ3 and µ2µ3r
−1/6 = 1 but µ2 and

µ3 are otherwise unconstrained. The simplest deformation with these

principal values is the symmetric matrix with the principal values as

its eigenvalues. If λ is this matrix then in some frame it is diagonal

giving λ = diag(r−1/6, µ2, µ3). If we take

λ± =







r−1/6 0 0

0 µ2 ±δ
0 0 µ3






(4.17)

we see that λ = 1
2λ

+ + 1
2λ

− and

λ+ − λ− = 2δe2 ⊗ e3, (4.18)

so λ+ and λ− are compatible and can form a laminate structure that

averages to λ. Therefore, if λ+ and λ− are in K0 (are soft deforma-
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tions) then λ can be made into a soft deformation by adopting this

texture, and is in K1. One principal value of both λ+ and λ− is

r−1/6 (by construction), the other two principal values are given by

the square roots of the solutions of

det





(

µ2 ±δ
0 µ3

)(

µ2 ±δ
0 µ3

)T

− t

(

1 0

0 1

)



 = 0. (4.19)

The solutions of this characteristic equation, which are the same for

both λ+ and λ−, are given by

t = 1
2(µ2

2 + µ2
3 + δ2) ±

√

1
2(µ2

2 + µ2
3 + δ2)2 − µ2

2µ
2
3. (4.20)

This solution explains the placement of δ in eq. (4.17) — we can now

tune its value to adjust the principal values of λ± to ensure they are

in K0. It could not have been placed in either the top row or left-

hand column without disrupting the smallest principal value, which

we need to be r−1/6, but it could equivalently have been placed in the

diagonally opposite slot. For λ+ and λ− to be soft deformations, their

principal values must be r−1/6, r−1/6 and r1/3, so the solutions of this

equation must be r−1/3 and r2/3. These values for the solutions are

obtained by taking

δ =
1

r1/3

√

r2/3 − µ2
2

√

r2/3 − µ2
3. (4.21)

Furthermore, we see that our existing conditions on µ2 and µ3 (r−1/6 ≤
µ2 ≤ µ3, µ2µ3r

−1/6 = 1) ensure that these square roots are always

real, so for any µ2 and µ3 consistent with det(λ) = 1 and the smallest

principal value of λ being r−1/6 we can find a δ such that λ+ and λ−

are both soft deformations that can form a laminate structure aver-

aging to λ. Therefore we have shown that every element in the set
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given in (4.16) is in K1, so this upper bound on the set is in fact the

exact result,

K1 = {λ ∈ M
3×3 : r−1/6 = λ1,det(λ) = 1}. (4.22)

The physical description of these single laminates is straightforward

— they are just a general presentation of the “stripe-domains” that

have already been predicted [60] and observed [32]. They are simply

stripes of alternating shear and director rotation with the directors

and plane normal all being in a common plane, as sketched in Fig.

1.11. All the textures that have been constructed here have equal vol-

ume fractions of two deformations in K0. Clearly laminate structures

with different volume fractions can be made, but this cannot include

any more deformations in K1 only provide alternate laminate textures

for deformations that are already in K1.

4.5.2.1 Second Order Laminates

We have found the set of all deformations that can be made soft

by simple laminate textures, K1, but this is somewhat smaller than

the upper bound for the full set of soft deformations given in (4.4).

This suggests we should look at laminates within laminates, meaning

laminates formed by alternating layers each of which have undergone

a deformation in K1 that is itself soft by virtue of lamination. Let

the set of all soft deformations that require second rank lamination

be called K2,

K2 = {λ =αλ+ + (1 − α)λ− (4.23)

: λ+, λ− ∈ K1, λ+ − λ− = a ⊗ m}.

As in the single laminate case, we expect membership of K2 to only

depend on a deformations principal values. Taking the simplest pos-
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sible matrix with principal values µ1 ≤ µ2 ≤ µ3 (where µ1µ2µ3 = 1),

λ = diag(µ1, µ2, µ3), we see that

λ± =







µ1 0 ±δ
0 µ2 0

0 0 µ3






(4.24)

are again compatible deformations that average to λ, so if we can find

a δ such that λ± are in K1, λ is indeed in K2. One principal value

of λ± is clearly µ2, the other two are given by the square roots of the

solutions to the equation

det





(

µ1 ±δ
0 µ3

)(

µ1 ±δ
0 µ3

)T

− t

(

1 0

0 1

)



 = 0. (4.25)

which is familiar from the previous section. Its solutions are

t = 1
2(µ2

1 + µ2
3 + δ2) ±

√

1
2(µ2

1 + µ2
3 + δ2)2 − µ2

1µ
2
3. (4.26)

For λ± to be in K1, we require that their smallest principal value be

r−1/6, so the smaller root of this equation must be r−1/3. This is true

if we choose

δ = r1/6
√

µ2
1 − r−1/3

√

µ2
3 − r−1/3. (4.27)

Since, by definition, µ1 ≤ µ2 ≤ µ3 this choice of δ is real provided

that µ1 ≥ r−1/6. Clearly any λ with r−1/6 ≤ µ1 ≤ µ3 ≤ r1/3 satisfies

this condition, moreover, since the requirement det(λ) = 1 implies

µ1µ2µ3 = 1, we cannot find any λ with r−1/6 ≤ µ1 but µ3 ≥ r1/3.

The principal values of λ are simply µ1, µ2 and µ3 so we see that

K2 ⊇ {λ ∈ M
3×3 : r−1/6 ≤ λ1 ≤ λ3 ≤ r1/3}. (4.28)
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However, this is precisely the same set as the upper bound on Kqc

given in (4.4). Since Kqc is the set of all deformations that can be

made soft by adopting microstructure, it must be bigger than or equal

to K2. Therefore the only possibility is that both sets and the bound

are all equal, that is

K2 = Kqc = {λ ∈ M
3×3 : r−1/6 ≤ λ1 ≤ λ3 ≤ r1/3}. (4.29)

From this we conclude that the set of all fully relaxed deformations

can be made relaxed by first or second order lamination, so there is

no need to consider higher order laminates.

The physical interpretation of double laminates is a little harder

than the single laminates. They can be thought of as the result of tak-

ing a single laminate structure and trying to stretch it perpendicular

to the laminate normal and the liquid crystal directors (which are all

in a plane). Deformations of this type clearly have the potential to be

soft because the director starts perpendicular to the stretch direction

so it can rotate towards it. However, as the director rotates, as well

as stretching the sample in the required direction, shear also builds

up. It is this shear that is eliminated by the second order lamination,

which is between regions of opposite director rotation and opposite

shear.

4.5.3 Laminates that cost Energy

By inspecting Kqc we see that if a deformation λ is not soft, it must

have its smallest principal value λ1 < r−1/6 (despite detλ = 1 this

does not require λ3 > r1/3, for example λ1 = r−2/3, λ2 = λ3 = r1/3 is

not inKqc). This means that if it is built out of a texture, at least some

of the deformations that make up the texture must also have smallest

principal values less than r−1/6. The energy of a monodomain that
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has deformed without texture is

W = 1
2µ

(

λ2
1 +

1

λ2
1λ

2
3

+
λ2

3

r

)

. (4.30)

If we fix λ1 and minimize over λ3 we see that the lowest energy defor-

mation consistent with this choice of λ1 is given by

λ3 =
r1/4

√
λ1
, (4.31)

which implies

λ2 =
1

λ1λ3
=

1

r1/4
√
λ1
. (4.32)

This is a highly anisotropic deformation with λ3/λ2 =
√
r, which

is that same high anisotropy as deformations in K0. If we apply a

deformation with this λ1 that is more anisotropic in λ2 and λ3 there

is no scope for using textures to lower the energy, so the sample will

just deform as a monodomain with the energy given by (4.30). Let

the set of such deformations be S, where

S = {λ ∈ M
3×3 :

λ3

λ2
≥

√
r,detλ = 1}. (4.33)

This leaves the set

I = {λ ∈ M
3×3 :

λ3

λ2
<

√
r, λ1 <

1

r1/6
detλ = 1} (4.34)

unaccounted for. These are deformations with λ2 and λ3 less anisotropic

than is energetically desirable, so they can lower their energy by split-

ting into textures where each region is made out of more anisotropic

(and hence lower energy) deformations. This sounds like it could get

very complicated, but in fact the result is fairly simple — if you fix λ1,

any deformation with λ3

λ2
<

√
r can be achieved by a single laminate
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structure built out of deformations which have the same value for λ1

but with the optimal values for λ2 and λ3, namely λ3/λ2 =
√
r. Such

a structure has energy

W = λ2
1 +

1

λ2
1λ

2
3

+
λ2

3

r
(4.35)

=
2√
rλ1

+ λ2
1. (4.36)

Showing that this optimal energy can be achieved could be done

straightforwardly by again using the constructions in the preceding

sections to find the laminates that can form between domains with

fixed λ1 and λ3

λ2
<

√
r. However, it is more instructive to consider

these deformations as derived from compressions of K1. Deformations

in K1 also have λ3/λ2 <
√
r because this is enforced by the condi-

tion λ1 = r−1/6. Therefore every deformation in I can be thought of

as a deformation in K1 with principal values λ1 = r−1/6, λ2 and λ3

that has been followed by a uniaxial compression along the direction

of λ1 by γ to give a new deformation with principal values r−1/6/γ,
√
γλ2 and

√
γλ3. Any deformation in I can be constructed in this

way. However, the deformations in K1 were constructed out of lami-

nates of deformations with principal values r−1/6, r−1/6 and r1/3, so

when we compress the structure to get the deformation in I it is still

a laminate structure but built out of deformations with principal val-

ues r−1/6/γ,
√
γr−1/6 and

√
γr1/3. These still have λ3/λ2 =

√
r so

they are precisely the optimal laminate structures that were claimed

to exist in the previous paragraph.
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4.6 Relaxed Energy Functions

We are now in a position to write out the full relaxed energy function

for ideal nematic elastomers,

W qc(λ)
1
2µ

=































3r−1/3 if λ ∈ Kqc

2/(r1/2λ1) + λ2
1 if λ ∈ I

λ2
1 + λ2

2 + λ2
3/r if λ ∈ S

∞ else

(4.37)

where

I = {λ ∈ M
3×3 :

λ3

λ2
<

√
r, λ1 <

1

r1/6
,detλ = 1}

S = {λ ∈ M
3×3 :

λ3

λ2
≥

√
r,detλ = 1}

Kqc = {λ ∈ M
3×3 : r−1/6 ≤ λ1 ≤ λ3 ≤ r1/3,detλ = 1}.

The “else” case only contains deformations with detλ 6= 1 that do not

conserve volume.

However, whilst the arguments in the preceding sections demon-

strate that textures exist that allow the elastomer to relax to this

energy, the arguments that this is the furthest it can relax have not

been at all rigorous. This poses a general question — how do we know

when an energy function is relaxed and no longer susceptible to the

formation of further textures?

When a material is deformed, it will respond with a textured de-

formation if there is a texture of deformations such that the average

of the energy of the deformations is lower than the energy of the av-

erage of the deformations. This suggests the underlying cause of the

formation of textures is a lack of convexity in the energy function.

This suggestion is backed up by the plots of the energy functions for
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nematic and conventional elastomers (Fig. 1.9) which show that the

nematic energy is much less convex than the conventional energy. Re-

assuringly if we plot the same graph for our relaxed nematic energy

function it is now convex, Fig. 4.4.

Figure 4.4: Energetic cost of imposing a uniaxial stretch on a ne-
matic elastomer in the reference state after formation of the optimal
texture — compare with Fig. 1.9. The flat disk at the middle of the
plot is a set of deformations made completely relaxed by texture
formation.

In one dimension lack of simple convexity is indeed the cause of

textured deformations. Consider a long rod that is stretched (affinely)

by a factor of λ at an energetic cost of W (λ). It will be energetically

favorable for the rod to disproportionate by splitting into length frac-

tions f and (1 − f) which undergo stretches λ1 and λ2 respectively if

fλ1+(1−f)λ2 = λ, so the average stretch matches that imposed, and

fW (λ1)+ (1− f)W (λ2) ≤W (λ) which is precisely the condition that

W be a non-convex function. If we plot W (λ) and draw a straight

line between W (λ1) and W (λ2), a point on the line a fraction f of the

distance between the two points gives the average energy and stretch

of a texture consisting of a fraction f of the material undergoing λ1

and a fraction (1 − f) of the material undergoing λ2. If the point lies
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above the curve, the texture does not save energy, but if it lies below it

does. The relaxed energy function is thus simply the convex envelope

of W (λ), meaning the highest valued convex function that is nowhere

larger than W (λ). An example of this construction is shown in Fig.

4.5. This can be constructed using the “common tangent” construc-

tion where regions of non-convexivity are replaced by the straight line

which is tangent to the curve on both sides of the region.

Figure 4.5: Left: A non convex 1D energy function W (λ), the
dotted lines are tangent to points on the curve on either side of
the regions of non-convexity . Right: Texture formation allows the
energy function to relax to its convex envelope, which falls on the
common tangents sketched on the left over intervals in which the
original function was non-convex.

In higher dimensions the notion of convexity is not as helpful in

making progress because W is a function of the deformation gradi-

ent λ not the scalar stretch λ. The problem is that convexity is not

compatible with the principle of frame-indifference, which states that

simply rotating the final state after deformation should not cost any

energy. Consider the deformation gradients λ1 = diag(1, 1, 1) and

λ2 = diag(1,−1,−1). The first is simply identity, which is to say it

does not deform at all, while the second is a π rotation about some

axis. The principle of frame-indifference dictates that both these de-

formations must cost the same amount of energy since they are only
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different by a final state body rotation. If W (λ) was genuinely con-

vex then λ
3

= 1
2λ1

+ 1
2λ2

= diag(1, 0, 0) would have to also cost the

same energy, despite the fact that it has a determinant of zero and

collapses a three-dimensional solid body onto a line. This does not

matter because it is impossible to build a texture out of λ
1

and λ
2

without ripping the body, so although the energy function is not con-

vex between λ1 and λ2 we cannot build textures that exploit this lack

of convexity. However, if λ
1

and λ
2

had been rank-one connected

and hence able to form laminate textures, we would be able to form

textures that exploited the lack of convexity. This means that re-

laxed energy functions need to be rank-one convex [24], meaning that

W r(λ+ γa ⊗ n) is a convex function of γ for any λ, a and n.

A rank-one convex energy function is not susceptible to the forma-

tion of laminate textures. However, such a function may be subject to

the formation of other more exotic textures. The true defining feature

of a relaxed function is that it is quasi-convex, meaning

W qc(λ) = min
x′=λx on δΩ

1

Vol.Ω

∫

Wqc(∇x′(x))dx, (4.38)

which simply states that a function is quasiconvex if its energy cannot

be lowered by texture formation, so the minimum over all possible

textured deformations consistent with imposing λ on the boundary

(right hand side) is simply the same as the energetic cost of impos-

ing λ homogeneously throughout the body (left hand side). However,

proving quasiconvexivity directly is usually very difficult. In the case

of ideal nematic elastomers we can proceed using an important the-

orem proved by Ball [7]. We say that a scalar function W pc(λ) is

polyconvex if there is a another function g with two matrix argu-

ments A and B and a scalar argument c such that g(A,B, c) is convex

in A, B and c and has the property that if you replace A with λ, B
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with λ−T and c with detλ you get W pc(λ). Ball’s theorem says that

a polyconvex function is quasiconvex and hence fully relaxed and not

susceptible to further formation of texture [7], although the reverse is

not true, and the physical meaning of polyconvexity is unknown.

To show that the proposed form, eq. 4.37, is polyconvex, we write

it as a function of α = 1/λ1 and β = λ3 (using detλ = 1) and

then differentiate each part of the result, ψ(α, β), twice to show that

it is a continuous, non-decreasing and convex function of both vari-

ables. This is a tedious exercise so it is not reproduced here. We

then write α = maxê |Aê| and β = maxê |Bê|. These are convex

functions of A and B respectively because the maximum of a sum is

always less than or equal to the sum of the maxima. The function

g(A,B) = ψ(maxê |Aê|,maxê |Bê|) is therefore a convex function of

A and B because a convex non-decreacing function of a convex func-

tion is always a convex function. Finally, since g(λ, λ−T ) = W qc(λ),

we conclude that W qc is polyconvex and hence relaxed.

4.7 Physical Interpretation of W
qc

The physical interpretation of W qc is clouded by the fact that it is

written in terms of deformations from a high energy reference state

whereas in practice one normally thinks of deformations from a well

aligned relaxed state. However, to reach the four different regimes

from an aligned state is straightforward. If you stretch perpendicu-

lar to the director we enter K1 and the elastomer forms zero-energy,

planar single laminates. This is the Kundler and Finkelmann geom-

etry, [32]. If you take such a sample already showing laminates and

stretch it in the third direction (i.e. perpendicular to the original di-

rector and the original stretch) it enters K2 and forms zero energy

double laminate textures. If instead of stretching a laminate sample
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you compress it in this third direction it will enter the I regime of

energy-costing single laminates. Finally if you take an aligned mon-

odomain and stretch it along its director you will enter S, the regime

of hard elasticity without texture or director rotation.

If the result for W qc is taken literally, the elastomer can be re-

garded as being liquid like when it is in Kqc since, at the set’s interior,

which is K2, all deformations in the vicinity of the current deforma-

tion are soft so the elastomer should be able to flow. In contrast in the

S regime the elastomer is definitely behaving as a conventional elastic

solid, with greater deformations costing more energy. In the I regime,

behavior is intermediate since the deformations do cost energy but

the energy only depends on the smallest principal value of the defor-

mation. In the plane perpendicular to this direction the elastomer is

still behaving like a fluid. However, these classifications neglect both

the semi-soft nature of real elastomers and the interfacial energies of

texture planes which, in particular, will mean the zero energy set of

deformations is not actually zero energy, so the elastomer will not

truly flow.

4.8 Length-scale of Textures

In all the above work, we have implicitly assumed that the laminate

textures are formed on an infinitely small length scale. In practice, in

the Kundler and Finkelmann experiment the laminates formed with

widths between one and 100 microns. This length scale can be un-

derstood as the result of a competition between the interfacial energy

of the laminate boundaries and the energy cost to the material of not

quite meeting the imposed deformation at the boundary. A full anal-

ysis of this competition can be found in [32], here we simply give an

overview of the source of the interfacial energy.
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To model the interfacial energy we need two new physical ideas.

The first is Frank-energy, familiar from conventional liquid crystals,

which is an energy penalty for gradients (curves) in the nematic di-

rector. Secondly, the energy function, eq. (4.2), was developed under

the assumption that the nematic director always aligns with axis of

most stretch from the isotropic state. This is certainly the conforma-

tion that minimizes the elastic energy, but in situations where there

are other processes that couple to the director (such as Frank-energy)

it is possible for the nematic director to rotate away from this direc-

tion. The full model, eq. 1.21, includes this possibility and predicts

a large elastic cost for this type of director rotation. At the bound-

ary between laminates these two ideas conflict because the nematic

director must bend sharply at the boundary. If the bend is very sharp

it carries a high Frank-energy, but if it is not sharp there is a large

region in the middle of the boundary where the nematic director is

rotated away from its preferred orientation. The competition between

these two effects determines both the width and the interfacial cost

of the boundary. A dimensional analysis suggests (correctly) that the

appropriate characteristic width is
√

K/µ ∼ 10−8m , where K is the

Frank coefficient (in the one constant approximation) and µ = kbTn,

where n is the number density of cross-links, is the shear modulus of

the nematic elastomer. This is much less than the characteristic stripe

width of ∼ 10−5m, so the picture of stripes of completely homogenous

deformations with very thin interfaces between them is accurate.

4.9 The effect of Non-Ideality

As discussed at length in the first two chapters, in reality nematic

elastomers are not ideal, rather the nematic director has a slight pref-

erence to align in a certain direction and deformations that cause the
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director to rotate away from this preferred direction are not truly soft

but rather cost a little energy, so we would like to discuss the relax-

ation of the generic compositional fluctuations energy, eq. (2.3). Un-

fortunately, the full relaxed form of this energy has not been found,

although it has been solved for thin films in extension, [25]. From

the perspective of texture, the addition of non-ideality has two conse-

quences. First, it breaks the large degeneracy of the ideal system — it

assigns slightly different energies to different textures that previously

produced the same macroscopic deformation at the same energy cost.

For example, all the textures that have been explicitly constructed

in the ideal nematic case are laminates involving equal volume frac-

tions of two different energy gradients, however once two deformation

gradients have been found to be rank-one compatible, and hence can

laminate, they can do so with any volume fraction, meaning that the

laminate textures in K1 can in fact be realized in many different ways.

The construction shows that all deformations in K1 can be achieved

by simple lamination of two soft deformation gradients, and that no

other deformation gradients can be made soft in this way, but it does

not help to determine which lamination will take place. Non-ideality

breaks this degeneracy and helps determine which textures will ac-

tually occur. In particular, one of the main results of [25] is that

laminations which have their layer normal along n0 (in the reference

configuration) are preferred, and often will not have equal volume

fractions.

The second important consequence of non-ideality is that deforma-

tions in the neighborhood of the relaxed (nematic and aligned) state

do not texture until they reach a (small) threshold magnitude. This

was observed in the original Kundler and Finkelmann experiment and

analysed in [32]. The nature of the onset of rotation was analyzed

in chapter 2. This second effect can be understood qualitatively as a
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consequence of the energy now having a unique global minimum at the

relaxed state of the elastomer. Around this minimum the form of the

energy is the same as that of a simple uniaxial solid, which is to say

it is locally convex enough to stop textures forming between different

deformations in the neighborhood, and there is no incentive to form

textures with deformations that lie outside the neighborhood because

they are far from the global minimum and hence higher in energy.

Textures only form for deformations that are far enough away from

the global minimum that there are other deformations even further

away that are lower in energy.

4.10 Smectic Elastomers

In addition to the nematic phase that has been the focus of the pre-

vious chapters, there are several lower symmetry liquid crystal phases

that supplement the nematic orientational order with varying amounts

of positional order. Two layered (smectic) phases are particularly

common — SmA phases in which as well as an average orientation

the rods are also confined to layers, and the average alignment is

along the layer normal, and SmC phases in which the average align-

ment makes an angle with layer normal. These two possibilities are

illustrated in Fig. 4.6. If the liquid crystal rods are chiral then they

can form the technologically important SmC* phase which exhibits an

electrical polarization along the direction n̂×k where n̂ is the smectic

director and k is the layer normal. This is because, although both

n̂ and k are quadrapolar vectors, the addition of a handedness into

the system allows us to form the vector (n̂ · k)(n̂× k) which is a true

single headed vector. Elastomers can be prepared in SmA, SmC and

SmC* phases. The effect of the cross-linking is to embed the smectic

layers into the elastomer matrix, so the layers deform affinely under
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Figure 4.6: The rods in SmA liquid crystals (left) are confined
to layers and have an average alignment along the layer normal.
Those in SmC elastomers (right) are aligned at an angle to the
layer normal.

subsequent deformations. However, the liquid crystal free energy is

still dominant over the elastic free energy, so we model smectic elas-

tomers by adding terms to the nematic energy that heavily penalize

deformations that change the interlayer spacing or cause the director

to rotate away from its preferred angle with the layer normal [5]. This

prevents SmA elastomers from having any soft elastic modes, since

any deformation can only be made soft by director rotation, but this

would require rotation away from the layer normal which costs energy.

SmC elastomers however do have a residual soft mode of deformation

associated with rotation of the director in a cone around the layer

normal.

4.10.1 SmA Elastomers

Despite not having any soft modes, SmA elastomers are still suscep-

tible to the formation of texture [4, 5, 51]. In this case the lack of

convexity underlying the texture formation is caused by the large dis-

crepancy between the high energetic cost of deformations that change
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the layer spacing and the much lower cost of those that do not. Fig.

4.7 shows an example in which an average deformation of stretch along

the layer normal is constructed out of two low energy in-plane shears.

This is completely analogous to the “Helfrich-Hurault” effect in liquid

SmA systems first described in [20].

Figure 4.7: Texture formation in a SmA elastomer. The smectic
layers are shown as dotted lines, and the director, which is always
perpendicular to the layers, is shown as a double headed arrow.
By splitting into two regions that first shear then body rotate the
average deformation is a simple stretch along the layer normal, but
the inter-layer spacing has not changed.

The full form of the relaxed energy for a simplified SmA type

energy function is presented in [4], the proof proceeds in an analogous

way to the analysis of the ideal nematic system and depends on the

construction of double laminate structures. Stretching experiments

have been conducted on SmA elastomers, including along their layer

normal [46,47]. In these experiment the elastomer deformed affinely at

small stretches but with a complex texture at large stretches, which is

the behavior predicted by the model in [4]. The instability to texture

formation in this geometry was first analyzed in [5].

4.10.2 SmC Elastomers

As discussed above, SmC elastomers retain a soft mode of deforma-

tion associated with rotation of the liquid crystal director in a cone

around the layer normal. These modes are soft because they do not

change the angle between the director and the normal or change the

spacing between the layers, both of which would be penalized by the
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liquid crystal energy, and are associated with deformations because

the director rotation changes the preferred polymer conformation dis-

tribution. We recall that we can write the soft modes of deformation

of a nematic elastomer as

λ = ℓ1/2 · R · ℓ0−1/2, (4.39)

where R is any rotation matrix. This form has a simple interpretation

— the deformation ℓ0
−1/2 compresses the nematic elastomer along its

director back into a state with an isotropic polymer conformation dis-

tribution, then the rotation matrix is rotating an isotropic state so it

does not change the energy of the system, then finally the deforma-

tion ℓ1/2 is a spontaneous stretch along a new nematic director, taking

the elastomer back to a low energy relaxed state. A similar argument

yields the set of soft deformations of SmC elastomers, but in this case

having compressed the polymers into an isotropic conformation dis-

tribution, the system is still layered, so the deformation will only be

soft if the rotation is around the layer normal and the director chosen

in ℓ makes the preferred angle with the layer normal. We write this

as

λ = ℓ1/2 ·Rb · ℓ0−1/2 (4.40)

where Rb is any rotation about the vector b, defined as the layer

normal in the state with isotropic polymer conformation distribution.

Evidently this is a subset of the soft modes in the nematic elastomer

case. The full set of deformations made relaxed by textures of these

soft deformations has been found [3] in a manner analogous to the ideal

nematic case reviewed previously, although in this case not only double

but triple laminates were required to complete the construction.

The description of simple laminates in SmC elastomers is more

subtle than in nematics because the layers also form part of the mor-
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phology. The following results relating to SmC laminate morphology

are original research which I published in [13]. However, since the

topic is somewhat tangential to the main body of this thesis, the re-

sults will simply be described and heuristically motivated2.

Since the relaxed states of SmC elastomers are simply a sub-set

of those of nematic elastomers the stripe domains all have the same

essential character as the nematic ones (discussed in section 4.5.1, and

also original research), namely that the laminate boundary normal bi-

sects the two directors. However, in addition to this basic property,

the types of laminates that can form fall into two categories, one in

which the smectic layers pass through the texture boundary appar-

ently undeformed [2,13] and one in which the smectic layers are bent

at the laminate boundary and the laminate boundary bisects the layer

planes on either side of it [13]. As in the nematic case the laminates

are all of a Mallard’s law type and the pair of morphologies arrises be-

cause each R that satisfies Mallard’s law (see eqn. 4.10) generates two

solutions to the twinning equation and hence to distinct laminates.

We can use the simple bisection rule to see that the two types of twin

have different morphologies in the SmC case. If we consider a relaxed

elastomer with the layer normal in the (0, 0, 1) direction and initial

relaxed director (sin θ, 0, cos θ) (so θ is the relaxed director tilt angle)

then, after some soft deformation causing the director to rotate by

±φ, the two rotated directors will be (sin θ cosφ,± sin θ sinφ, cos θ).

Using the rule that the laminate normals must bisect the directors,

this means the laminate normal must either be (sin θ cosφ, 0, cos θ) or

(0, 1, 0), the first of these evolves with φ while the second does not,

2Some of this work was also previously submitted as a part III undergraduate

research project. The project contained the essential result that there are two

types of domain with different morphologies and the general argument about po-

larization, however the geometric construction, the diagrams and the description

of the shear across the stripe boundaries are new
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Figure 4.8: A construction analogous to Fig. 4.3 but for SmC elas-
tomers. As in the nematic case, the boundary normal must bisect
the liquid crystal director for the deformations to be compatible.
The smectic layers are shown as dotted lines, importantly the smec-
tic layer normal may have a component out of the page although
the boundary normal does not. The liquid crystal directors must
also form equal angles with the dotted lines so that both the direc-
tors form the same angle with the smectic layer normal. For the
elastomer to be in a relaxed state this must be the preferred tilt an-
gle. These constraints permit two different morphologies, the first,
shown on top, in which the smectic layers are bent at the boundary,
and the second, shown below where they are not.

giving two different morphologies. A construction illustrating these

two basic types of interface is shown in Fig. 4.8.

A straightforward but lengthy calculation permits all the details

of the morphology of these two types of laminates to be worked out.

Since chiral SmC elastomers can also have an electrical polarization

along c = (n̂ · k)(n̂ × k), where k is the layer normal and n is the

director, a full description of the morphology should also include the

patterns formed by the c vector at the interface. In particular, since

both n̂ and k are discontinuous at the laminate boundaries, c will also

be discontinuous, which means it may have a finite divergence on the

boundary. Since c is an electrical polarization, this would correspond

to the laminate boundary being charged. I detailed these calculations
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Figure 4.9: Top: A small region of a SmC elastomer after the forma-
tion of the first category of stripe-domain. The region was cuboidal
before deformation and has undergone different soft-deformations
on either side of the orange boundary plane. The smectic layers,
which deform affinely, pass through the boundary without being
bent. This figure was drawn with the material parameters r = 25
and θ = 0.6. Bottom: A top-view of a square region of a smec-
tic layer that passes through the boundary, which is shown as an
orange dashed line. The ovals represent the projection of the liquid-
crystal rods in the plane and the arrows show the projection of the
liquid-crystal director in the plane. The component of the LC di-
rector in the smectic plane, which we call ĉ, is also shown in red on
the top figure.

in [13], but here I simply state the results. In the first category of

laminate, described in Fig. 4.9 the layers are not bent at the interface,

the boundary is charged and, using the angles described in the figure,

tan(χ) = tan(θ) sin(γ). (4.41)

In the second class of laminates, described in Fig. 4.10, the layers are

bent at the interface but the interface is not charged, and, once again

using the angles in the figure,

sin(γ) =
(r − 1) cos2(θ) + 1

(1 − r) sin(θ) cos(θ)
cot(χ). (4.42)
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Figure 4.10: Top: A small region of a sample of SmC elastomer
after the formation of the second type of stripe-domain. Before
deformation the sample was cuboidal. In this type of stripe-domain
the smectic layers are bent at the boundary. This figure was drawn
with the material parameters r = 25 and θ = 0.6. Bottom: The
two halves of the region on top each viewed down its smectic layer
normal. The red ovals are the components of the LC rods in the
LC layer plane and the black arrows are the components of the LC
director in the LC layer plane. The component of the LC director
in the smectic plane, which we call ĉ, is also shown in red on the
top figure.
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Figure 4.11: Shear angle ζ against γ for the Class I (blue) and
Class II (dashed, pink) stripe domains, plotted using r = 25 and
θ = 0.6. The maximum in both cases is at γ = π/2 and is given by

tan(ζ) = 2(r−1) cos(θ) sin(θ)
1+(r−1) cos2(θ) .

Another important aspect of the morphology of a stripe-domain

is the amount of shear across the twin boundary. As observed in eqn.

(4.8) the two deformations in a stripe domain can always be related by

a simple shear across the boundary. We characterize the magnitude

of this shear by introducing the angle ζ, defined as

tan(ζ) = |a||m′| = |a||λ−T
1

m| = |a||λ−T
2

m|. (4.43)

If a straight line is embedded in the sample in the reference state it

will kink at the boundary after deformation. Physically this shear

angle is the amount such a line kinks if after deformation it is normal

to the boundary on one side of the boundary [10]. This angle can

be calculated straightforwardly once the two deformations that are

making a stripe domain are fully described. A graph of shear angle

against γ is shown for both types of stripe domain in Fig. 4.11.

Although the full morphology calculations are not reproduced here,

one result relating to the charge structure of Mallard’s law type lami-
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nates which may be of more general applicability that SmC elastomers

is worth discussing. Consider two deformations Q1 · λ
1

and λ
2

that

act on two regions separated by a plane boundary with normal m in

the reference configuration. Let the boundary normal be m′ in the

final state. The continuity condition gives

Q1 · λ1
− λ

2
= a′ ⊗ m.

If the deformation λ
1

results in a polarisation p1 and the deformation

λ
2

results in a polarisation p2 (which subsequently transform as line

elements) then the condition that the texture boundary is not charged

is that the component of the polarisation normal to the boundary is

continuous across the boundary,

(Q1 · p1 − p2) ·m′ = 0.

If the stripe-domain obeys Mallard’s law then

λ
1

= Q2 · Λ2 ·R, (4.44)

and if

p1 = Q2 · p2 (4.45)

the first Mallard’s law solution will not be charged and the second will

be. The proof is simple. First we make the following rearrangement:

p1 = Q2 · p2

λ1
−1 · p1 = (Q2 · Λ2 ·R)−1 ·Q2 · p2

λ1
−1 · p1 = R · λ2

−1 · p2

(λ1
−1 · p1) ·m = (R · λ2

−1 · p2) ·m.
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Second, we use the fact that we know m for a general Mallard’s law

stripe-domain — for the first Mallard’s Law solution m is along the

axis of R so (R · λ2
−1 · p2) · m = (λ2

−1 · p2) · m. For the second

solution m is perpendicular to the axis of R so (R · λ2
−1 · p2) · m =

−(λ2
−1 · p2) · m. These results can be written as

(λ1
−1 · p1) ·m = ±(λ2

−1 · p2) · m,

which can be rewritten as

Q1 · p1 · (Q1 · λ1)
−T m = ±p2 · λ2

−Tm.

However, m transforms to m′ under both Q1 · λ1 and λ2 so

(Q1 · p1 ∓ p2) ·m′ = 0.

Therefore the first Mallard’s law solution is uncharged and the sec-

ond is charged. This result suggests that a structure of two classes of

stripe-domains, one of which is charged and one of which is neutral,

may be quite widespread in ferroelectric systems. We note that in

occasional degenerate cases (if Q1 · p1 and p2 are parallel) the above

condition is consistent with both classes being uncharged. The dis-

proportionation stripe domain discussed in [2] is such an example.
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Chapter 5

Elasticity of Polydomain Liquid

Crystal Elastomers

M onodomain elastomers are, as we have discussed in the pre-

ceding chapters, necessarily semi-soft. Fundamentally, this is

because to make a monodomain one must imprint on the elastomer

a single orientation for the liquid crystal rods to align in, removing

the isotropic reference state that generates the completely soft elastic

modes. Elastomers cross-linked without such an aligning field form as

polydomains which have local orientational order but in which the liq-

uid crystal director varies from point to point, making the elastomer

macroscopically isotropic. In this chapter we will address the elastic-

ity of these polydomain systems, focussing on whether it is hard, soft

or semi-soft. We will conclude that both hard and soft polydomain

elastomers can be synthesized, and that the key distinguishing point

is whether the cross-linking state is isotropic or nematic. We will

also analyze smectic polydomain elastomers and propose that poly-

domain SmC* elastomers cross-linked in the SmA monodomain state

are promising candidates for low field electrical actuation.

5.1 Models of Poly- and Monodomain Elastomers

A liquid crystal elastomer is a monodomain if the director is the same

at every point in the relaxed elastomer and a polydomain if it points in
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different directions at different points in the relaxed elastomer. Syn-

thesizing monodomains is difficult because, in order to make the elas-

tomer choose the same director at each point, this direction must

be imprinted on the elastomer at cross-linking, normally by cross-

linking under uniaxial stress [41]. If the elastomer is cross-linked

without any such imprinting, in either the isotropic or the nematic

state, then it forms a polydomain. Polydomains and monodomains

are easily distinguished because monodomains are highly transparent

and exhibit large spontaneous deformations at the isotropic-nematic

transition while polydomains have no macroscopic spontaneous defor-

mation, and are opaque in the nematic state (because the gradients in

the director scatter light) but become transparent if they are stretched

enough to align the director throughout the sample [22].

We extend the monodomain energies in the previous chapters to

polydomain energies by allowing n̂, n̂0 and γ to become spatially vary-

ing fields. We define γ(x) = ∇y to be the deformation gradient from

the cross-linking state 1. This means that, ignoring non-ideal terms,

the energy function for a polydomain cross-linked in the nematic state

will be

F = 1
2µTr

(

γ · ℓ0 · γT · ℓ−1
)

(5.1)

where ℓ0 is derived from n̂0(x) which is the nematic director at cross-

linking. In this case the form of this field will be the nematic discli-

nation pattern present in the nematic-melt before cross-linking. This

energy is very different to the monodomain energy from which it was

derived because it has a very significant x dependence in n̂0(x). How-

ever, the energy function for a polydomain cross-linked in the isotropic

1we use γ for deformations from the cross-linking state so we can reserve λ for

the deformations imposed from the relaxed state
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state is simply

F = 1
2µTr

(

γT · ℓ−1 · γ
)

(5.2)

which is exactly the same as the corresponding monodomain energy,

eqn. (1.23). There is no intrinsic spatial variation in this function,

which is not surprising since the cross-linking state is completely

isotropic and homogeneous. However, monodomains and polydomains

cross-linked in the isotropic state are manifestly different. We propose

that this is because of the form of the non ideal terms that must be

added to this energy. In the monodomain case the elastomer is cross-

linked in the presence of a uniaxial stress which imprints a constant

preferred direction n0 (in effect a field) on the elastomer so that when

it cools to the nematic state it adopts the same nematic director ev-

erywhere, leading us to a mono-domain energy

F = 1
2µTr

(

γ · γT · ℓ−1 + αr1/3γ ·
(

δ − n̂0n̂0

)

· γT · n̂n̂
)

. (5.3)

This is simply the standard semi-soft compositional-fluctuations free-

energy considered in the previous chapters (eqn (2.3)) but with the

substitution λ = γ · ℓ0−1/2/det
(

ℓ0
1/2
)

so that γ represents the de-

formations from the high temperature “isotropic” state, rather than

the relaxed extended state. The factor of r1/3 multiplying the semi-

soft term arises from this change of variables. It is important that

although the elastic reference state is the high temperature state, the

energy represents an elastomer in a low temperature nematic phase,

and is therefore is minimized by γ being a stretch of r1/3 along n̂0,

that is by γ ∝ ℓ0
1/2. This is by no means the unique non-ideal theory

one could consider — there could be terms which are not quadratic in

λ, biaxial semi-soft terms that introduce another reference state direc-
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tions perpendicular to n̂0 and terms of the form Tr
(

γ · n̂0n̂0 · γT
)

.2

However, all these forms will have the generic property of having a

large soft ideal term minimized by any stretch by r1/3 and a small

non-ideal term that locally causes the director to favor a single align-

ment but is macroscopically isotropic, and will therefore have very

similar macroscopic stress-strain behavior.

In the polydomain case there is no imprinting so there is very lit-

tle to break the isotropy of the cross-linking state and introduce any

non-ideal terms at all. However, weak mechanisms do exist such as

cross-linking molecules having a rod like character which impose an

additional direction locally on the network [59]. Consequently, in any

finite region the cross-linking rods develop a slight average orienta-

tion [23, 34]. These mechanisms permit the inclusion of a very small

non-ideal term with a spatially varying preferred direction n̂0(x). It is

this distinction between the large homogeneous non-ideal term in the

monodomain case and the small spatially varying term in the polydo-

main case that drives the distinction between the two systems.

5.1.1 Polydomains - Macroscopically Hard or Soft?

In this chapter we argue that whether polydomain elastomers are

macroscopically hard or soft depends on the relative symmetry of the

cross-linking state and the final polydomain state. In this section we

will give a qualitative overview of the cause of this behaviour, then in

subsequent sections we will work through three examples of possible

polydomain systems.

An ideal liquid crystal elastomer energy typically locally has a set

of deformations that minimize the free-energy. These are generated by

2The result derived in the second chapter that this form of the free energy is the

only admissible quadratic form does not apply here since the energy is not relaxed.
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a symmetry breaking phase transition from a high temperature par-

ent state that is accompanied by a deformation. Since the transition

breaks a symmetry there are many ground states, each with a differ-

ent deformation with respect to the parent state. We visualize this set

of energy minimizing deformations as a ring with the parent state at

the centre — Fig. 5.1. Such a system is vulnerable to the formation

of textured deformations since, if a deformation on the interior of the

ring is imposed this is not a low energy state, but it is possible that

the energy of the deformation can be reduced to zero by the elastomer

splitting into many small regions each of which undergoes one of the

low energy deformations in such a way that the macroscopic deforma-

tion is what was imposed. The ability of LCE’s to form such textured

deformations has been the subject of several studies — [3, 25, 27, 32].

We represent the set of all deformations that can minimize the energy

after the formation of the most advantageous textured deformations,

the quasi-convex hull (QCH) of the set of energy minimizing deforma-

tions, as the interior of the ring of energy minimizing deformations —

Fig. 5.1.

A polydomain sample cross-linked in the high symmetry (high

temperature) state is effectively cross-linked at the centre of the quasi-

convex hull and, on cooling to the aligned state, forms the same quasi-

convex hull at each point. Although at each point the elastomer has

undergone a deformation that takes it to the boundary of the set,

these deformations are put together in an elastically compatible way

so that the elastomer as a whole is in a textured state at the centre

of the set. Such an elastomer can be deformed macroscopically softly

simply by moving the constituent domains around the quasi-convex

hull, which will cause different soft textures to evolve as the elastomer

as a whole moves across the quasi-convex hull.

In contrast, if the elastomer is cross-linked in the low temper-
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Figure 5.1: Left - the ring of deformations leading to low energy
states for a liquid crystal elastomer. The dot in the center is the
high symmetry parent state from which the broken-symmetry, low
energy states on the ring are derived. Right - visualization of the
quasi-convex hull of the set of low energy deformations. These
deformations, inside the ring (shaded grey), can be imposed with
minimal energy because they can be constructed out of textures of
the soft deformations that each lie on different points of the ring.

ature, symmetry-broken state then, although each point still has a

quasi-convex hull of the same form each domain sits on the edge of its

quasi-convex hull and the deformation required to take each domain

back to the center of its hull is different. This corresponds to a picture

like fig. 5.2. Although each domain has a hull and soft modes, there

are no deformations that are soft for all domains so the elastomer is

macroscopically hard. As discussed in the previous section the distinc-

tion between a polydomain cross-linked in the high symmetry state

and a monodomain is driven by the addition of different non ideal

terms. This is easily visualized in terms of the above sets - the ideal

monodomain and high symmetry cross-linking polydomain have the

same quasi-convex hull at each point, but the addition of non-ideal

terms breaks the degeneracy of the states in the quasi-convex hull,

making one a unique global minimum. In the monodomain case this

is a point on the boundary of the set with a uniform director through-

out the sample. In the polydomain case, the non-ideal terms vary

spatially such that a different low energy state on the boundary of
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Figure 5.2: If the elastomer is cross-linked in the low symmetry
polydomain state then, although every domain still has a quasi-
convex hull of the same form, each domain is cross-linked at the
boundary of its quasi-convex hull and requires a different defor-
mation to get to the its centre. The quasi-convex hulls of a few
domains are illustrated in the diagram, and the cross represents
the cross-linking configuration. The cross is the only point in every
quasi-convex hull so if the elastomer deforms away from this point
some domains will leave their convex hull and the response will be
hard.
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the QCH is favoured for different points. The global minimum is the

point at the centre of the set, no deformation, and is achieved by a

complicated textured, low energy, deformation of the different regions

of the polydomain.

The above analysis of soft polydomains has a very simple physical

interpretation. If an elastomer is cross-linked in the high symmetry

state then cooled to the low symmetry state there is no energetic

penalty (except small deviations from ideality) to stop it breaking the

symmetry in the same way at every point in the elastomer. Therefore

the macroscopic deformations that take the polydomains into these

well-aligned states must be soft. This will not be true if the crosslink-

ing is in the low symmetry polydomain state. This looks remark-

ably like a simple restatement of the original result about symmetry

breaking soft elasticity by Golubovic and Lubensky [36], and the soft-

ness of high symmetry genesis polydomains could certainly be seen

as a straightforward consequence of their work. However, symmetry

breaking soft elasticity is fundamentally a way of understanding which

local deformations can be applied softly, and it is important to remem-

ber that both types of elastomer do have local soft modes caused by

a high-symmetery reference state in precisely the manner introduced

in [36]. This work studies the elastic compatibility of these soft modes,

to establish the softness of the macroscopic elastomer, showing that

in elastomers with high symmetry cross-linking states the local soft

modes can all cooperate in an elastically compatible manner to make

a set of macroscopic deformations soft that is far larger than the local

symmetery-broken soft modes. In contrast, in elastomers cross-linked

in the low symmetry state, the equivalently sized sets of local soft

modes cannot cooperate in an elastically compatible way to make any

macroscopic modes soft at all.

In the remainder of this chapter we will analyze nematic polydo-
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mains cross-linked in the isotropic state and the nematic state and

SmC polydomains cross-linked in the SmA monodomain state. The

first and last of these are examples of soft polydomains, while the

middle is a hard polydomain.

5.2 Nematic Polydomains

5.2.1 Formulating the elasticity problems

We expect a profound difference between nematic polydomains cross-

linked in the isotropic and nematic state, and we further distinguish

between ideal and non-ideal polydomains. Ideal systems have no lo-

cally preferred director orientation and therefore locally completely

soft modes. The addition of non-ideal terms slightly favours a partic-

ular local director orientation making the modes that were previously

completely soft now cost a small amount of energy. This leads us to

four types of nematic polydomain corresponding to four different free

energies,

F =



































1
2µTr

(

γ · γT · ℓ−1
)

iI

1
2µTr

(

γ · γT · ℓ−1 + αr1/3γ
(

δ − n̂0n̂0

)

γT n̂n̂
)

nI

1
2µTr

(

γ · ℓ
0
· γT · ℓ−1

)

iN

1
2µTr

(

γ · ℓ
0
· γT · ℓ−1 + αγ

(

δ − n̂0n̂0

)

γT n̂n̂
)

nN

(5.4)

where iI/nI denote ideal/non-ideal elastomers crosslinked in the isotropic

state, and iN/nN ideal/non-ideal elastomers crosslinked in the nematic

state. The bulk modulus of elastomers is several orders of magnitude

higher than the shear modulus, so all deformations are volume pre-

serving, that is Det
(

γ
)

= 1. The preferred direction n̂0 is discussed

below. These four energies are physically interpreted as follows: the iI

energy is minimized by a stretch of r1/3 because it is written with re-
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spect to the isotropic cross-linking state, but does not distinguish any

preferred direction for this stretch because it is ideal. The nI energy

is also minimized by a stretch of r1/3 because it is also written with

respect to the isotropic cross-linking state, but has a weak energetic

preference for this stretch to be along n̂0, a local preferred direction

caused by random fluctuations in the cross-linking state. The iI energy

is in a relaxed state because it is written with respect to an already

aligned nematic cross-linking state, but can locally accommodate de-

formations that rotate the nematic director completely softly because

it is an ideally soft energy. The nN energy is also already relaxed be-

cause it is written with reference to an aligned nematic cross-linking

state, but in this case the energy is non-ideal so even deformations

associated with “soft” rotations of the director cost some energy.

Having identified four types of polydomain, ideal and non-ideal,

with either a nematic or an isotropic crosslinking state (genesis), we

wish to study the energetic cost of imposing macroscopically homoge-

neous stretches on large blocks of these different types of polydomains.

By large, we mean large enough to contain very many domains and

be macroscopically isotropic. In each case we take the cross-linking

state of the elastomer as the reference configuration from which defor-

mations will be measured, and define the displacement field from this

state as y(x), so that the local deformation gradient is γ(x) = ∇y.

We then wish to study the energy of a large sample occupying a do-

main Ω (with boundary δΩ) in the reference configuration, that is

subject to a macroscopic deformation λ after it has adopted the most

favourable internal deformation and director pattern. We define this

relaxed energy function as

F r(λ, n̂0(x)) = min
y(x) s.t.
y=λ·x

on δΩ

min
n̂(x)

1

Vol Ω

∫

F (∇y,n(x),n0(x))dx, (5.5)
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and the four different types of polydomain correspond to four different

choices for F (∇y,n(x),n0(x)).

There is an important distinction between the two fields n̂0(x),

which defines the local preferred nematic alignment, and n̂(x) which

is the nematic field after deformation. The former is a fixed field for a

given polydomain that encodes all its spatial heterogeneity, while the

latter is a variable field which the elastomer will adjust to minimize its

free energy as it evolves under the macroscopic λ. Furthermore, in the

nematic genesis case we expect the form of n̂0(x) to be a disclination

texture, while in the isotropic genesis case it will be a random field

arising from the sources of disorder in the crosslinking state. In the

latter case n0 does not correspond to the equilibrium director pattern

at zero stress, but rather locally it is the director that a domain would

adopt if it were unconstrained by its neighbors (e.g. by cutting it out

of the sample). These locally optimal strain fields γ(x) associated

with this director pattern are extremely unlikely to be compatible

deformations (be the gradient of a continuous displacement field) and

thus would require the sample to fracture.

Our task is to find the lowest energy compatible strain fields – in

general a difficult task. It is not clear whether they are subtle fields

associated with a continuous director variation (but still compatible)

or are compatible combinations (textures and laminates) of strains

as are observed in the deformation of monodomains under boundary

constraints at variance with soft deformations as discussed in chapter

4. We shall proceed to find bounds on the elastic energy. In the ideal

case, we know that textures of deformations each on the boundary

of the QCH can give zero energy cost for macroscopic deformations

within the QCH and thus give an exact value for the energy (a con-

tinuous field could not do better than this choice of test field). In the

non-ideal case we will use these exact minimizers of the ideal part of
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the free energy and evaluate the extra, non-ideal cost associated with

them, thus forming an upper bound. In reality an elastomer could,

by adjusting the laminates, or by finding an unlikely continuous field,

lower the energy by correlating distortion fields with the random field.

We discuss that energy reduction strategy briefly later.

5.2.2 Ideal isotropic genesis polydomains

The only completely solvable system is that of ideal isotropic gene-

sis (iI). The energy function has no n̂0 dependence so it is not really

spatially heterogenous at all. This is unsurprising since the isotropic

cross-linking state appears to be completely homogeneous. It is the

same model as is used for ideal monodomain samples, so we can di-

rectly apply DeSimone and Dolzman’s results about its relaxation [27]

discussed in chapter 4, namely that, if the principal stretches of λ are

f1 ≤ f2 ≤ f3, the fully relaxed energy function is

2F r
iI(λ)

µ
=































3 if λ ∈ Kqc

r1/3(2/(r1/2f1) + f2
1 ) if λ ∈ I

r1/3(f2
1 + f2

2 + f2
3 /r) if λ ∈ S

∞ else

(5.6)

where

I = {λ ∈ M
3×3 :

f3

f2
<

√
r, f1 <

1

r1/6
,Det

(

λ
)

= 1}

S = {λ ∈ M
3×3 :

f3

f2
≥

√
r,Det

(

λ
)

= 1}

Kqc = {λ ∈ M
3×3 : r−1/6 ≤ f1 ≤ f3 ≤ r1/3,Det

(

λ
)

= 1}.
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The “else” case only contains deformations with Det
(

λ
)

6= 1 that do

not conserve volume. Textured deformations are required for macro-

scopic deformations in I and Kqc but not S. The set Kqc is an eight

dimensional set of zero energy deformations, so if an elastomer is at a

point in the interior of Kqc all small volume preserving deformations

of the elastomer are also in Kqc and do not cost energy to impose –

the energy is liquid-like. In S the energy depends on all three princi-

pal values of the deformation so the energy is solid-like while in I it

depends on only the smallest principal value so the energy is interme-

diate between that of a solid and that of a liquid. Physically, the set

S consists of stretches, f3, sufficient that the director has completely

aligned with this stretch direction, so the elastomer responds to fur-

ther stretching in the same way as a conventional rubber, while the

set Kqc consists of deformations that can be made soft by the forma-

tion of textured deformations of spontaneous deformations. The set I

contains compression in one direction making the sample thinner than

any spontaneous deformation would. The director lies perpendicular

to the compression axis but still forms textures in that plane allowing

any macroscopic in-plane shapes bounded by f3/f2 <
√
r. The energy

however only depends on the degree of compression.

In this work we are concerned with uniaxially stretching polydo-

mains to induce the polydomain-monodomain transition. This corre-

sponds to macroscopic deformations of the form λ = diag(λ, 1/
√
λ, 1/

√
λ)

for λ ≥ 1. Applying the above relaxation result, these deformations

will be achieved at the energies

FiI(λ) =







3µ
2 if 1 ≤ λ ≤ r1/3

µr1/3

2

(

2
λ + λ2

r

)

if λ ≥ r1/3.
(5.7)
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Differentiating this gives the engineering stress,

σiI(λ) =
dFiI

dλ
=







0 λ ≤ r1/3

µr1/3(λ/r − 1/λ2) λ ≥ r1/3.
(5.8)

This simply means that ideal isotropic genesis polydomains will de-

form at zero stress but with textured deformations until they have

been stretched by r1/3, at which point they are completely aligned

monodomains and respond to further deformation as a neo-Hookean

solid. This result is quantitatively wrong, real isotropic genesis poly-

domains do not deform at absolutely zero stress, and when stress is

removed they (macroscopically) return to their original configuration.

This motivates the consideration of non-ideal theories. However, since

the cross-linking state is almost isotropic, non-ideality must be very

small so we expect several key features of the ideal model to persist.

Extension will not occur at zero stress, but extensions up to λ ≤ r1/3

will occur at energies O(α) ≪ 1. Furthermore, the deformation pat-

terns and director patterns in the non-ideal case must still be very close

in energy to those in the ideal case, so the observed patterns will still

be characterized as textured deformations driven by elastic compati-

bility – not disclination textures. Indeed, nematic disclinations never

have zero-energy elastically compatible associated distortions [35], so

cannot be observed in isotropic genesis systems.

5.2.3 Non-Ideal isotropic genesis polydomains

Finding the full relaxation of the non-ideal polydomain energy is prob-

ably intractable. At the moment the relaxation is not known for the

easier monodomain case (except in a thin film limit [25]), and the poly-

domain result will depend to some extent on the exact form of n̂0(x).

However, we can put upper and lower bounds on the energy-strain
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curves. Developing an upper bound on the energy is straightforward.

We simply use a textured test strain field from the ideal case and

calculate its energy in the non ideal case. Since the relaxed energy

function is a minimum over all strain fields, evaluating the energy at

one example of a strain field is an upper bound on the energy. In a

sense this is a Taylor-like bound of uniform strain, but our uniform

macroscopic strain is in fact composed of textures that allow deforma-

tion anywhere in the QCH. We depart also from conventional Taylor

bounds in that our bound is valid for large strains, up to r1/3 which

can be 100s% for nematic elastomers.

If a point in the elastomer undergoes a uniaxial extension of mag-

nitude γ from the crosslinking state, at an angle θ to the preferred

direction n̂0, then the energy of the deformation is

F = min
n̂

µ

2
Tr
(

γ · γT · ℓ−1 + αr1/3γ
(

δ − n̂0n̂0

)

γT n̂n̂
)

= 1
2µr

1/3

(

2

γ
+

(

1

r
+ α

)

γ2 − αγ2 cos2 θ

)

, (5.9)

where the minimization over n̂ is achieved by taking n̂ along the axis

of γ. If the region of constant deformation is much larger than the

individual domain size (region of given n̂0) then averaging over n̂0

gives:

F = 1
2µr

1/3

(

2

γ
+

(

1

r
+ α

)

γ2 − αγ2

3

)

, (5.10)

which is minimized at γ3
m = r/(1 + 2αr/3) with a value

F =
3µ

2

(

1 +
2αr

3

)1/3

. (5.11)

This free energy density can be achieved if every point in the sam-
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ple undergoes a uniaxial elongation of magnitude γm in any direction.

This situation is completely analogous to the situation in ideal elas-

tomers in the isotropic configuration where the same (in this case

minimal) energy can be reached by applying an elongation of mag-

nitude r1/3 in any direction. The DeSimone and Dolzmann texture

result [27] shows that any uniaxial macroscopic deformation with mag-

nitude less than γm can be achieved by a texture of deformations in

which each deformation is a uniaxial deformation by γm. This allows

us to place an upper bound on the total energy of the sample after it

has undergone a macroscopic uniaxial elongation by λ,

2F r(λ)

µ
≤







3
(

1 + 2αr
3

)1/3
λ3 ≤ r/(1 + 2αr/3)

r1/3
(

2
λ +

(

1
r + 2α

3

)

λ2
)

λ3 ≥ r/(1 + 2αr/3).
(5.12)

Although this upper bound has been calculated by using textures

with regions of constant deformation that are very large compared

to the length scales n̂0 varies on, the same result can be achieved

with any size. This is because the averaging to 1/3 of the cos2 θ in eq.

(5.9) will still be true after averaging over many domains provided the

axes of the domains are not correlated with the n̂0 field. Introducing

such correlations would reduce the energy of the elastomer and would

also determine length scales involved in the actual deformation and

director fields. An Imry-Ma style attack on this problem, but not

involving textured test fields as here, is due to Terentjev and Fridrikh

[34]. Domain size would be selected to take advantage of fluctuations

in the random ordering field from crosslinking. We return to this

problem elsewhere.

The ideal system provides a very simple lower bound on the energy,

eq. (5.7), since the non-ideal term is never negative. We can improve

on this bound by using the Sachs limit of stress uniform through the
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sample. This provides a lower bound because it neglects the require-

ment of compatibility of deformations (γ = ∇y). We calculate this

bound numerically by minimizing FnI

(

γ, n̂, n̂0

)

− σγxx across all γ

and n̂ at fixed σ for a given domain (n̂0) to find the optimal deforma-

tion γ
m

and director orientation n̂m of the domain at the stress σ. The

energy and extension of the whole sample are then found by averaging

FnI

(

γ
m
, n̂m, n̂0

)

and
(

γ
m

)

xx
across all domain orientations.

Although we have calculated the full Sachs bound numerically, we

can understand its behavior at small extension analytically. At zero

stress every domain is free to undergo an energy minimizing sponta-

neous deformation - anything of the form γ = R · ℓ01/2, where R is a

rotation. The xx component of this is simply x ·R ·ℓ01/2 ·x, which is to

say it is the component of γ · x that is parallel to x. For each domain

a rotation R can be chosen such that λ
xx

lies anywhere between 0 and

|ℓ01/2 · x|. Since we are studying extension we are not concerned with

λxx ≤ 1, but this means that any λxx between 1 and
〈

|ℓ01/2 · x|
〉

can,

in the Sach’s limit, be achieved without stress. Therefore the Sach’s

limit on the energy is simply 3µ/2 for 1 ≤ λxx ≤
〈

|ℓ01/2 · x|
〉

. It is

straightforward to calculate this average giving

〈

|ℓ01/2 · x|
〉

=
r−1/6

2

(√
r +

sinh−1
√
r − 1√

r − 1

)

. (5.13)

This threshold tends to 1+O(ǫ2) for r = 1+ǫ, so for small anisotropies

it is insignificant, but for large r it tends to r1/3/2.

The energy plot, Fig. 5.3, shows that the bounds constrain the

energy very tightly: the bounds reproduce the exact ideal result if

α = 0, and α is expected to be very small for isotropic genesis. The

Sachs free energy is in effect plotted parametrically since one sets

the stress and obtains the free energy and strain by minimisation
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Figure 5.3: Bounds on the free energy density of an isotropic genesis
polydomain nematic elastomer as a function of strain, plotted in
units of µr1/3/2 with r = 8 and α = 0.005. Upper curve (dashed,
blue): upper bound from a test strain field. Middle curve (smooth,
red): Sachs lower bound. Lower curve (dashed, green): ideal result,
lowest bound.

and averaging. The bounds show that stretching the elastomer by

∼ r1/3 cannot require an increase in the energy density of more than

3µ/2((1 + 2αr/3)1/3 − 1) ≈ µαr/3. This means that although the

extensions up to r1/3 can take place at finite stress, the stress cannot

be higher than ∂F/∂λ ∼ µαr/[3(r1/3 − 1)], which will be a very small

number since α is small. As in the ideal case, extensions larger than

∼ r1/3 behave in a neo-Hookean manner.

We can calculate bounds on the stress-strain curve for these exten-

sions by using the requirement, which applies to all one dimensional

elastic energies, that the relaxed energy curve be convex, meaning

the stress curve is monotonic for λ ≥ 1. This means that at a given

extension λxx not only must the energy function lie between the two

bounds, but the gradient of the energy function must not be so great

that, if extrapolated forwards as a straight line, the energy curve in-

tersects the upper-bound (used above for estimating the approximate
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Figure 5.4: Upper and lower bounds on the stress-strain curve for
a non-ideal isotropic genesis polydomain. Material parameters are
r = 1.65 and α = 0.01 and µ = 33000. The middle curve is the
derivative of the Sachs lower bound on the energy, which provides
as estimate of the stress-strain curve, while the upper and lower
curves are the bounds derived by requiring the energy function be
convex. The circles are stress-strain data for a real sample. We
thank K. Urayama for permission to reproduce this data.

maximal stress), or so little that if extrapolated backwards it does the

same. This bounds the gradient of the energy and hence the stress at

each extension.

A plot of the two bounds on the stress strain curve is shown in Fig.

5.4, which shows that the very soft stress plateau for λ ≤ r1/3 does

indeed survive the introduction of semi-softness. The experimental

results of Urayama et al for isotropic genesis polydomain stress [56] are

also shown and display pronounced softness – clearly polydomains can

deform softly and the requirement of compatibility between domains

does not appreciably harden response.
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5.2.4 Nematic genesis polydomains

We expect the coefficient of non-ideality, α, to be much higher for

nematic genesis polydomains because the cross-linking state is not

isotropic and distinguishes the direction of the nematic director, n̂0.

It will probably have a similar magnitude to that observed in mon-

odomain elastomers where α ∼ 0.1. However, although non-ideality

will be larger, it is conceptually less important because already the

ideal part of the energy will contribute significantly to the stress. This

is because even an ideal nematic genesis polydomain is not expected

to have any soft modes. Soft modes are generated by symmetry break-

ing spontaneous distortions from an isotropic reference state. Locally

an individual domain does have an isotropic reference configuration,

which is reached by applying the inverse spontaneous deformation

γ = ℓ0
−1/2, but the spatially-dependent deformation γ(x) = ℓ0

−1/2(x)

will not be mechanically compatible, so it is impossible to apply a de-

formation that places the whole sample in the isotropic reference state

simultaneously. The reason for this large difference between nematic

and isotropic genesis polydomains is that there are very few defor-

mation patterns of the form λ(x) = ℓ0
−1/2(x) that are compatible

deformations, and no nematic disclination patterns are compatible de-

formations. An isotropic genesis polydomain is forced to undergo such

a deformation on cooling to the nematic after cross-linking, so it must

choose one of the deformation patterns that is mechanically compati-

ble and these, as we have seen in the previous section, allow for macro-

scopic movement across the QCH. In contrast the nematic-genesis

polydomain undergoes its “spontaneous-distortion” in the melt where

there are no conditions of compatibility because adjacent regions can

flow past each other, a deformation which would result in a fracture in

a solid network. One consequence of this is that when a nematic gen-

esis polydomain is heated to what would be its “isotropic” state, it is
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unable to undergo its energy minimizing contraction γ(x) = ℓ0
−1/2(x)

everywhere because this is not a compatible deformation. This will

result in the high temperature state being internally stressed, and may

lead to elevation of the transition temperature.

We can bound the ideal nematic genesis free energy in the same

way we bounded the isotropic genesis non-ideal free energy. An upper

bound is provided by a test strain field. The simplest test field would

be a constant strain throughout the sample, giving a Taylor bound.

However, we can find a tighter upper bound by applying the same

strain to each domain, but allowing each domain to form textured

deformations that average to the strain imposed on it; this is what we

termed in the previous section a “Taylor-like bound”. Consequently,

if the strain imposed macroscopically is λ, the free energy density of

each domain will be F r
Ii(λ · ℓ1/2), where F r

Ii(λ) is the relaxed energy

for an ideal monodomain in [27] given by eq. (5.6) and is attained by

texturing (by laminates). The factor of ℓ1/2 in the argument of F r
Ii

is appropriate because the function F r
Ii(λ) is written in terms of de-

formations from the isotropic reference state, whereas the domains in

the nematic genesis polydomain are already in the elongated nematic

state. The deformation ℓ1/2 is the deformation the isotropic state

would have to undergo to reach the nematic state that the domain

was cross-linked in, and the component λ, of the compound defor-

mation in the argument of F r
Ii, is the deformation from this nematic

state. A lower bound can be found using the Sachs constant stress

limit. However, since the elastomer is ideal, the individual domains

can deform softly. This means that, in the constant stress limit where

compatibility of the deformations between the different domains is not

required, the elastomer can deform completely softly. We can calcu-

late the end of the soft plateau in the Sachs bound analytically in the

same way we did for the isotropic-genesis case. Since one considers a
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spontaneous contraction ℓ0
−1/2 in going from the nematic state to an

isotropic reference state, followed by a spontaneous elongation r1/3 in

elongating to the nematic state along n̂, the end softness in the Sachs

bound will occur at
〈

|r1/3ℓ0
−1/2x|

〉

which evaluates to

〈

|r1/3ℓ0
−1/2x|

〉

=
1

2

(

1 +
r tan−1

√
r − 1√

r − 1

)

. (5.14)

This limits to 1 + ǫ/4 for small anisotropy r = 1 + ǫ, and to
√
rπ/4

for large r.

The two bounds on the energy (calculated numerically) are both

plotted in Fig. 5.6. These bounds on the energy are not very good —

there is a large gap between them. The Sach’s limit displays complete

ordering of the elastomer at zero stress while the test strain field shows

hard elasticity and finite modulus (∼ µ) at all extensions. This is be-

cause nematic genesis polydomains are strongly heterogeneous mate-

rials, and good methods for finding stress strain curves for such mate-

rials have yet to be developed at large deformations that are required

here. Taylor (affine) and Sach’s (constant stress) bounds on heteroge-

neous materials are independent of the domain structure of the mate-

rial, meaning the Taylor bound gives an upper bound on the energy of

the hardest possible domain structure, and Sach’s gives a lower bound

on the energy for the softest possible domain structure. Unfortunately

there exist vanishingly unlikely domain structures which are indeed

completely soft, namely the textured-deformation domain structures

realized by the isotropic genesis polydomains. There also exist domain

structures which certainly have no macroscopic soft modes - fig. 5.5.

Since the domain structures in nematic polydomains will certainly not

be of the compatible double laminate type — they will be disclination

textures which are not mechanically compatible — the lower bound is

of little physical significance. Therefore, we estimate the stress strain
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Figure 5.5: An example of a possible director pattern at cross-
linking in a nematic genesis polydomain that certainly doesn’t have
any macroscopic soft modes. This can be seen by considering a line
element along the boundary in the plane of the diagram - all soft
modes of the vertical stripes require this element to contract while
all soft modes of the horizontal stripes require it to extend or not
deform, so there are no macroscopic soft deformations.

relation for these polydomains by simply taking the derivative of the

upper bound on the energy. The resulting stress-strain curve, shown

in Fig. 5.7, matches the experimentally observed completely hard be-

havior.

The inclusion of non-ideality in the nematic genesis model will

elevate the Sach’s limit to a plateau of height ∝ α but will not alleviate

the fundamental difference between the soft elasticity seen in the Sachs

and the hard elasticity seen in the Taylor-like limit.

5.3 Smectic Polydomains

Smectic liquid crystal phases are phases in which the rods not only

have orientational order but are also layered. Liquid crystal elastomers

can exhibit smectic ordering [31], and monodomains with both SmA

ordering [33] (in which the liquid crystal director is parallel to the

layer normal) and SmC ordering [9] (in which the liquid crystal di-
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Figure 5.6: Bounds on the free energy density of an ideal nematic
genesis polydomain with r = 8. Upper curve (green) — upper
bound using a test strain field. Lower curve (blue) — lower bound
using a constant stress. There is a very large gap between the
two bounds. Note that the ideal system displays hard elastic re-
sponse for purely geometrical reasons stemming from compatibility
requirements.
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Figure 5.7: Estimate of stress vs strain for an ideal nematic genesis
polydomain elastomer with r = 1.65 and µ = 37000, obtained
by differentiating the upper bound on the energy. The circles are
stress-strain data for a real sample, the exact analogue of the sample
used in fig. 5.4 but cross-linked in the nematic polydomain state.
We thank K. Urayama for permission to reproduce this data. We
note that the fitting parameter r is the same but a slightly higher
value of µ is needed. This probably reflects the fact that in reality
nematic genesis polydomains have a significant non-ideal term (α ∼
0.1) which will slightly harden the system.
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rector makes a constant angle θ with the layer normal) have been

synthesized. SmC phases in which all the rods have the same chirality

(SmC* phases) are particularly interesting because they have electri-

cal polarizations along the cross product of the layer normal and the

director. The introduction of these phases significantly increases the

total number of polydomains that can be considered since there are

now four distinct states — isotropic, nematic, SmA and SmC — and

polydomains can be made that have been cross-linked in any one of

these states then cooled or heated to any other of the states.

In strongly coupled elastomers, smectic behavior is usually mod-

eled by assuming that the layers deform affinely under deformations

(so that a layer normal k becomes γ−T · k after a deformation γ has

been applied) and then adding terms to the underlying nematic free

energy that penalize changing the inter-layer spacing and rotating the

director away from its preferred angle with the layer normal. This

means that although SmA elastomers have the same cylindrical sym-

metry as nematics they do not have any soft elastic modes since the

layers deform affinely (they cannot translate or rotate relative to the

rubber matrix) and rotation of the director away from the layer nor-

mal costs energy. SmC elastomers could still exhibit soft modes since

their director can rotate in a cone around the layer normal without

changing the inter-layer spacing or deviating from the preferred tilt

angle.

(i) Isotropic Genesis: The modeling assumptions outlined above are

well established for monodomain smectic elastomers but they seem

rather strange for polydomain elastomers crosslinked in the isotropic

state. In particular, the assumption that the layers move affinely

seems appropriate if the layers have been embedded into the elastomer

at crosslinking. But if, for isotropic genesis, they have appeared after

crosslinking as the result of a symmetry-breaking isotropic-SmA tran-
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sition, then they could equally well have formed in any other direction

so one would expect them to be able to rotate through the sample.

Indeed, since the isotropic-SmA transition will be accompanied by a

spontaneous deformation that is a stretch along the director and hence

also the layer normal, a deformation that returns the elastomer to its

isotropic configuration and then stretches it by the same amount in

a different direction must, on symmetry grounds, be soft and must

cause the layers to rotate. With this view, the isotropic cross-linked

SmA polydomains are no different to the isotropic cross-linked nematic

polydomains since the spontaneous deformations at the transitions are

of exactly the same form and break the same symmetry. Accordingly

we expect exactly the same macroscopic soft elastic response. SmC

polydomains cross-linked in the isotropic state will also behave in the

same way. However, although this simple symmetry argument cannot

be circumvented in equilibrium, it is possible that non-equilibrium ki-

netic effects prevent the elastomer from realizing this soft elasticity

on experimentally accessible time scales and that the layers, though

really free to rotate through the sample, are effectively frozen in at

the transition to the layered state. This freezing would result in a

complete hardening of SmA elastomers since, while the layers are de-

forming affinely, there are no local soft modes. Equally, affine layer

deformations imposed by the freezing-in of layers would make the SmC

polydomain much like the nematic genesis nematic polydomain case

since it would possess local soft modes but there would be no compat-

ibility between the soft modes of adjacent domains so these cannot be

used to make macroscopic soft modes.

(ii) SmA or SmC Genesis: Most of the other routes to smectic polydo-

mains will result in macroscopically hard elasticity, for example cross-

linking directly in a SmA state will lead to a polydomain with no local

soft modes, cross-linking in a SmC polydomain state will result in a
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system analogous to the nematic cross linking nematic polydomain.

5.3.1 Soft polydomain smectic elasticity

To recover macroscopically soft elasticity, we need the elastomer to

break a symmetry at a transition after cross-linking in such a way

that if it had happened to break it in the same way in every domain

a monodomain would have formed. One interesting system that has

this property is a SmA monodomain that is cooled without any ex-

ternal influences into a SmC polydomain. Crosslinking in the SmA

monodomain state guarantees that the smectic layers are permanently

embedded in the elastomer and will subsequently deform affinely and

that, since the layers are embedded as a monodomain, after cooling

the system can access fully aligned SmC monodomain states without

having to rotate the layers through the elastomer. To discuss this case

will take the SmA cross-linking state as the reference state and use a

set of axes such that the SmA layer normal k = (0, 0, 1) while (0, 1, 0)

and (1, 0, 0) are perpendicular vectors in the SmA layer plane, see Fig.

5.8. The local spontaneous deformations at the SmA-SmC transition

g 1

2

3

Figure 5.8: A SmA elastomer (left) with director n aligned along
the layer normal k cools and undergoes a deformation γ0 to form a

SmC elastomer (right) in which the director forms an angle θ with
the layer normal. The deformation typically includes a contraction
along k since the rods have tilted which reduces the inter-layer
spacing.
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if the director tilts in the k − (1, 0, 0) plane will be

γ0 =







γ11 0 γ13

0 1/γ11γ33 0

0 0 γ33






(5.15)

where all the components of this deformation have fixed values deter-

mined by the microscopic details of the elastomer. This transition is

illustrated in Fig. 5.8. Elastomers have been synthesized with values

of γ13 as large as 0.4 [37].

In the SmA phase there is nothing to distinguish any direction in

the (0, 1, 0)− (1, 0, 0) plane, so the above deformation would also have

been soft if it had been applied at any other angle in the (0, 1, 0) −
(1, 0, 0) plane, so the full set of soft deformations, K0

SmC , is all defor-

mations that can be written in the form R·γ0·Rk
, whereR is a rotation

and R
k

is a rotation about k. The full set of deformations that can be

made soft by constructing textures out of such deformations is known

to be [3]

Kqc
SmC ={λ ∈ M

3×3 : Det
(

λ
)

= 1, |λ · k|2 ≤ γ2
13 + γ2

33,

|λ−T · k|2 ≤ 1/γ2
33, f1(λ · λi) ≥ 1}, (5.16)

where the function f1 returns the smallest principal value of its argu-

ment and the deformation λ
i
= diag(γ11γ33, γ11γ33, ρ) where

ρ =
1 − γ4

11γ
2
33

γ2
13 + γ2

33 − γ4
13γ

4
33

. (5.17)

The set Kqc
SmC is fairly complicated, but the four conditions in it each

have a simple interpretation. The determinant condition Det
(

λ
)

= 1

requires that the elastomer have the same volume after deformation as

it did in the SmA state. A line element in the k direction of the SmA
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is stretched by a factor of
√

γ2
13 + γ2

33 by any of the local spontaneous

deformations in K0
SmC , so the longest a line element in the k direction

can be after deformation is
√

γ2
13 + γ2

33 (which occurs when every local

spontaneous deformation is the same), imposing the first inequality.

The second inequality can be understood in an analogous way — a

vector area along k has its area increased by a factor of 1/γ33 by

any of the local spontaneous deformations but its direction may be

rotated. The average of all these vector areas, λ−T · k, cannot be

larger than the sum of the areas that make it up so |λ−T ·k|2 ≤ 1/γ2
33.

The final inequality is the analog of f1(λ) ≥ r−1/6 in the ideal nematic

case, requiring that the elastomer cannot be compressed so much in

any direction that it is thinner than the natural width of the thinnest

direction of the underlying chain distribution.

The set Kqc
SmC is much richer than its ideal nematic counterpart, in

particular uniaxial deformations of the form λ = diag(1/
√
λ, 1/

√
λ, λ),

which are stretches by λ along the original layer normal, are in Kqc
SmC

provided that γ2
33 ≤ λ2 ≤ γ2

33 + γ2
13. This means that there is a whole

set of textured SmC polydomain states whose deformation with re-

spect to the parent SmA state is a simple stretch along the SmA layer

normal. All of these SmC polydomain states have the same macro-

scopic cylindrical symmetry as the SmA state. When the SmA sample

is cooled to the SmC state it could form any of these states, so the rest-

ing configuration of a SmC polydomain may have a uniaxial stretch

relative to the SmA state. This was not the case in the isotropic gen-

esis nematic polydomains because there was only one textured state

with the full isotropic symmetry of the cross-linking state.

In the ideal SmC case our inability to uniquely identify one polydo-

main state with cylindrical symmetry makes no difference to the anal-

ysis at all since every state in Kqc
SmC is an energy minimizing state and

deformations that move the polydomain between them are perfectly
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soft. The addition of a non ideal term, which must be small since it

breaks both the homogeneity and symmetry of the cross-linking state

by energetically favoring a single director orientation, will have a very

similar effect to its addition in the nematic case. Non-ideality will

break the complete energy degeneracy of Kqc
SmC placing some states

(those near the boundary where these is less freedom to choose be-

tween different textures to minimize the non-ideal energy) slightly

higher in energy so that small but finite stresses are needed to allow

the elastomer to explore the complete set. The lack of a single unique

state with cylindrical symmetry means that we can not be sure what

the energy minimizing state is, indeed which state it is will depend on

the precise functional and spatial form of the non-ideal term included,

so it may depend on the chemical nature of the elastomer.

5.3.2 Electromechanical switching of soft polydomain SmC*

elastomers

Interest in SmC elastomers is mostly driven by their potential for

electrical actuation. Chiral SmC* liquids exhibit an (improper) ferro-

electric polarization along the cross product of their director and layer

normal [45]. Being chiral there is a twist of the tilt direction (and

hence of the polarization) about k on advancing along the layer nor-

mal direction. There is accordingly no macroscopic electrical polar-

isation unless the twist is undone by external fields or by boundary

effects [19]. On crosslinking in the SmA state and cooling to the SmC*

state with domains, this twist is largely suppressed. Twist of n̂ about

k means the γ13 spontaneous shear direction in eqn. (5.15) rotates

from layer to layer, giving rise to elastic incompatibility. The effect of

such incompatibility on texture formation has been discussed in de-

tail in connection with mechanical switching of SmC monodomains [2].
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Without twist, domains accordingly develop a net polarisation so that,

when an electric field is applied, energy is minimized by domain re-

orientation so that polarization is parallel to the applied field. Our

inability to specify which point deep in the interior of Kqc
SmC is the

lowest energy resting state of SmA monodomain genesis SmC* poly-

domains does not prevent us from analyzing their electrical actuation

since the most extreme actuation is achieved by making the elastomer

traverse the whole set Kqc
SmC (from boundary to boundary). If an

electrical field is applied in the (0, 1, 0) direction to such a SmC poly-

domain then this will cause it to form a state with its polarization

vector uniformly in the (0, 1, 0) direction which it can do by form-

ing a monodomain with its director and layer normal both in the

(1, 0, 0) − (0, 0, 1) plane. The deformation of this monodomain with

respect to the parent SmA state, γ
1
, is of the form of eqn (5.15). If

the electric field is then reversed the elastomer will flip into the op-

posite state which still has the director and layer normal both in the

(1, 0, 0) − (0, 0, 1) plane but with the director on the other side of the

layer normal so that their cross-product (and hence the polarization)

is reversed. This state has a deformation with respect to the SmA

γ
2

=







γ11 0 −γ13

0 1/γ11γ33 0

0 0 γ33






. (5.18)

The full deformation undergone be the elastomer when the electric

field is reversed is λ = γ
2
· γ−1

1
, giving

λ =







1 0 −2γ13/γ33

0 1 0

0 0 1






, (5.19)
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simply a reversal of the spontaneous shear. Since the discrepancy in

energy between different states in Kqc
SmC is driven entirely by the ad-

dition of non-ideality which expected to be small, the electric fields

required to perform this very large actuation will also be small —

smaller than the fields used to perform similar actuations on SmC*

monodomain samples which have large non-ideal fields cross-linked

into them to make them form monodomains. This suggests that SmA

monodomain genesis SmC* polydomains are probably better candi-

dates for electrical actuation than their monodomain counterparts.

5.4 Conclusions

There is a fundamental difference between those polydomain liquid

crystal elastomers cross-linked in a high symmetry state then cooled

to a low symmetry state and those crosslinked directly in the low sym-

metry state. The former will be extremely soft macroscopically while

the latter will be mechanically hard. We have analyzed two completely

soft examples, nematic polydomains cross-linked in the isotropic state

and SmC polydomains cross-linked in the SmA monodomain state

and one hard example - nematic polydomains cross-linked in the ne-

matic state. This distinction between soft and hard polydomains has

not previously been appreciated, but very recent experiments confirm

that it is correct [56]. The recognition of softness in some polydomain

systems makes the fabrication of useful LCE soft actuators more likely

since polydomains are much easier to synthesize and are not limited

to thin film geometries. Our results suggest that a SmC* polydomain

cross-linked in a SmA monodomain state would be a good choice for

low field electrical actuation.

LCE’s are very analogous to martensitic metals since both sys-

tems exhibit symmetry-breaking transitions coupled to deformations.

145



hard and soft LCEs

In the martensitic case the symmetries that are broken are discrete

whereas in LCE’s they are continuous. However, drawing analogies

between LCE polydomains and martensite polycrystals is quite sub-

tle. The soft polydomain LCE’s with homogeneous high tempera-

ture cross-linking states are analogous to single crystal martensite

systems. However, single martensite crystals are difficult to prepare

because, even if they are prepared in the high symmetry state, they

are not isotopic so the crystal can form with different orientations

at different points in space. This is in marked contrast to isotropic

genesis LCE polydomains where, because the cross-linking state is

completely isotropic, cross-linking in a spatially homogeneous state

is trivial. There is no satisfactory martensite analog of cross-linking

in the low symmetry polydomain state since martensite poly crystals

are formed in a poly crystalline high symmetry state, so they access

a stress-free high symmetry state, whereas the low symmetry cross-

linked elastomers cannot. There is one, albeit rather contrived, LCE

system, not analyzed here, that is directly analogous to a martensite

polycrystal — an elastomer cross-linked in the SmA polydomain state

then cooled to a SmC polydomain state. Such an elastomer would,

on heating, return to a stress-free SmA polydomain state, and has lo-

cal soft modes in the SmC state generated by the symmetry breaking

SmA-SmC transition.
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Chapter 6

Epilogue

I hope the work presented in this thesis stands on its own as an

advance, albeit an incremental one, in our collective understanding

of liquid crystal elastomers. That said, there can be no doubt that

there is much interesting work left to be done, and that this thesis

raises some interesting questions that it does not answer. In this final

section I will simply draw attention to those avenues which I think

may be particularly fruitful in the coming years.

6.1 Actuation of Polydomain Elastomers

Although actuation of polydomain elastomers seems at first sight com-

pletely hopeless because they do not change shape when they pass

through their phase transitions, in fact actuation of soft polydomains

is a very real possibility. This is quite simply because, since soft poly-

domains can access a large range of shapes at approximately the same

energy, it should be possible to move the elastomer between these

shapes using external stimuli such as electric fields, magnetic fields or

light. Even simpler, if a polydomain is subject to mechanical stress

that causes it to stretch to the limit of the set of soft deformations then

heated to the high symmetry state, it will be forced to retract back to

the center of the set, forming a simple temperature-driven actuator.
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Indeed, a polydomain under an external load is essentially completely

equivalent to a normal semi-soft monodomain elastomer, but without

the associated difficulties in the synthesis and the restriction to thin

films.

6.2 Length Scales in isotropic genesis polydomain ne-

matic elastomers

Our analysis of polydomain nematic elastomers did not explicitly re-

solve the length scale of the domains. As discussed in chapter 5, the

domains must form because some underlying random field, probably

originating in the cross-links of the network, cause the nematic di-

rector to locally prefer one direction, and it ought to be possible to

trade the gain of alignment with the random field against the costs

of gradients in the director to infer a characteristic domain size. Tra-

ditionally such trade-offs are made using the celebrated Imry-Ma [38]

analysis, which shows that even asymptotically week random fields

destroy long range order if the symmetry that has been broken by the

ordered phase is continuous. Nematic polydomains would certainly

appear to be in the Imry-Ma limit since the domains contain many

many sources of disorder (cross-links), but it is unclear how to com-

plete the analysis while retaining the condition of elastic compatibility.

Comparing the results for simple Imry-Ma calculations [34, 54] with

the experimental domain size of 1µm, it is clear that the condition

of elastic compatibility must considerably increase the domain size,

as would be qualitatively expected since it restricts the minimization

over director patterns to those director patterns consistent with elastic

compatibility.
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6.3 Extremely Soft Polydomain elastomers

Continuing with the above theme, it would also be interesting to study

the microscopic origin of the α term in isotropic polydomain elas-

tomers because it might allow the design of mechanisms to soften

their elasticity still further. The picture that α is caused by rod-

like cross-links that favor orientation of the nematic director with the

cross-link suggests that point like cross-links could have a dramatic

softening effect, while if we believe that the cross-linking state, al-

though macroscopically isotropic, has local and temporal correlations

that give rise to the random field in some other way, then cross-linking

slowly in a very hot state may have a softening effect.

6.4 Elastomers with imprinted director patterns

Historically it has not been possible to prepare elastomers that are

not in either fully aligned monodomains or completely uncontrolled

polydomains, but the rise of UV cross-linking techniques raises the

possibility of samples cross-linked in the nematic state in which a

high degree of control over the exact director pattern can be exercised.

Such elastomer could be designed to be either hard or soft, depending

on whether the pattern chosen corresponded to a mechanically com-

patible deformation, but perhaps more interestingly, they could also

be prepared to undergo unusual and complex shape changes at the

isotropic-nematic transition.

6.5 Imprinting of electric order

Nematic liquids never exhibit ferro-electric order, but the individual

rods can themselves have electrical and shape dipoles, so para-electric

order can be forced on an nematic liquid by the application of an
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external vector such as an electrical field. A nematic elastomer cross-

linked by polar rod-like cross-links might be able to retain a electric

order because the cross-links cannot rotate after cross-linking, leading

to the formation of a rubber with a permanent electric dipole but no

chiral components.
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