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1 COURSE DETAILS

1 Course Detalls

1.1 Synopsis

Simple harmonic motion (SHM): equation of undamped oscillation for a mass on a spring,
its solution, relative phases of displacement, velocityt Borce. Approximations of oscillating
systems to SHM: simple pendulum, torsional pendulum. Bner§HM: vibration of two masses
joined by a spring, quantum well.

Phasor diagrams: superposition of oscillations, beats, amplitude modafati

SHM using complex numbers: Curves of time-dependence for an oscillator, amplitude; fr
guency, angular frequency and phase.

Damped oscillations:amplitude, energy decay. quality factor.
Forced oscillations: qualitative frequency response and resonance.

Revision of electrical circuits: voltage, current and charge in circuits, electrical resise,
Kirchhoff's Laws, resistors in series and parallel. Industand capacitors. Circuits with ex-
ponential decays: charge and discharge of a capacitorghrauvesistor, decay of current through
an inductor.

Oscillations in electrical circuits and complex impedance Oscillation in an LC circuit, relative
phases of voltages, charge and currents, energy in an Ldtci@mplex current and voltage in
resistors, capacitors and inductors. Complex impedaneetri€al resonance in an LCR circuit,
simple filters, bandwidth, Q factor. Relationship of beloasiseen in electrical systems to those
of mechanical systems. Concept of mechanical impedance.

1.2 Resources

“Understanding Physics’Mansfield M & O’Sullivan,(2nd edition), (Wiley,)

“Physics for Scientists and EngineersTipler P A & Mosca G(6th Edition, Extended version),
(Freeman 2008)

“Fundamentals of Physics'Halliday D, Resnik R & Walker JExtended (8th) Edition), (Wiley)

“A Cavendish Quantum Mechanics PrimgeRNarner M, Cheung ACH, &Periphyseos Press)
Useful discussion of simple harmonic motion and relevartheraatics, including complex num-
bers, and accessible quantitative treatment of quantunmamézs using very similar equations.

Lots of extra questions and resourceéhat ps: / /1 saacphysi cs. or g, a Cambridge de-
signed website with maths content on vectors, trigopnometgnplex numbers and differential
equations, and physics content on simple harmonic motiotipmin a circle and (soon!) circuits.
Designed to help bridge the gap between school and uniyéesel physics and mathematics.

Vi


https://isaacphysics.org

1 COURSE DETAILS 1.3 Practicalities

1.3 Practicalities

There are twelve lectures in the course on Oscillating Systehich will take place during the
second half of the Michaelmas term. They will take placemyweeks 5-8 inclusive, on Fridays,
Mondays and Wednesdays, between 09:00 and 09:50.

There will an Example Sheet containing 23 problems issuedver this course.

The examples sheet and notes can be downloaded from the NBygics Teaching information
Service website at:

http://ww-teach. phy. cam ac. uk/

Hardcopies of the examples sheets and notes are also &vdilain the filing cabinets outside
the Pippard Lecture Theatre in the Cavendish.

For those who are interested, there are satrietly optional additional problems — less struc-
tured and usually of a slightly more mathematical nature ielwban also be downloaded from
the NSTIA Physics TiS website.

If you find any errors please contact the lecturer
Dr John Bigginsj(sb56@am ac. uk).

Vil
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2 OSCILLATIONS

2 Oscillations

2.1 Periodicity, Frequency and Angular Frequency

A system is said to be oscillating if it varies its state in patitive way. Examples abound, not
justin science, but in every walk of life: the UK could be stdscillate between day and night,
winter and summer or between cloud and sunshine. Many atagils are not just repetitive
but periodic, meaning that the repetitions happen with aleggime interval. The oscillations
between day and night, or between winter and summer aredieriepeating every 24 h and
every 1yr respectively. The weather is rather less predlietaViore formally, imagine a system
characterized by (t) which varies in time as plotted in fig] 1. The system is perdafjifor some
timeT, xz(t) = z(t + T') for all timest. Of course, if this is true fof” it is also true for2T", 3T,
4T and so on, so we usE to denote the shortest time-period for for whicft) = z(¢ + 7') and
call it the fundamental period.

x(1)

Position

or: Voltage \
or: Velocity \‘\

or: Pressure| |

Period T

Figure 1: Periodic motion with fundamental time pe-
riod T. Figure 2: The sin andtos functions.

Instead of period, we often think of an oscillation’s freqag, v = 1/7. If T is in seconds
thenv is in s7t, known as Hertz (Hz) but best though of as “per-second”. lbacillation has
a time periodl’ =0.1s, it has frequency = 1/0.1 = 10 Hz because it repeats ten times per-
second.

To think about oscillations we need periodic functions. Bueoh functionssin(#) andcos(6),
plotted in fig[2, are already familiar. Both repeat witeincreases b because the argument,
0, i1s an angle and adding a whole tugrf to an angle brings you back to where you started.
A particle whose position is given by = cos(wt) is oscillating in time between = +1.
The oscillation will repeat whenevert increases byn, so the time period i§" = 27/w and
the frequency i3y = w/(27). The quantityw is called the angular frequency and has units of
radians/second. It is closely linked to angular velocitycsi, if we interpretvt as an angley is
its velocity.

2.2 Why study oscillations?

We study oscillations in such detail because they are utaigsi Below is a list of oscillators from
many sectors of physics and engineering and with frequesgianning 37 orders of magnitude.

1



3 SIMPLE HARMONIC MOTION

Oscillator Frequency /Hz
Deformed nuclei 102!
Light emitting atom 10%°
Molecular vibrations 10

Mobile Phone transmissions 10°

TV transmitter 108
Radio (medium wave) 106
Musical instruments 1024
Heart Beat 10°
Old Faithful Geyser 104
Tides 107°
Solar Activity Cycle 1079
Axial precession of the Earth10~!2
Solar galactic rotation 10716
Cyclic Universe(1??7?7?) ?

Amazingly, much of this oscillatory behavior can be desadiby a handful of ideas encoded in
simple equations. Obviously such ideas are worth studyirgtail.

3 Simple Harmonic Motion

3.1 Mass on a spring

We start with a very simple oscillating system, a mass on
a horizontal spring, sketched in fig. 3. We assume th
the surface is frictionless and the motion horizontal, s
the only force on the mass we need consider is that fro
the spring. If we displace the mass byfrom its equi-
librium position the spring pulls it back and, the further
we pull it, the harder the spring pulls back. This spring
behavior is encoded in Hooke’s law, which states that
stretched spring exerts a restoring force proportional to
its extension:

spring constant k equilibrium

M position

x=0

F = —kx. (2)
_ ) Figure 3. A mass on a horizontal spring.
The constant of proportionalityk, depends on thergs. The mass in it's equilibrium posi-

spring. The minus sign encodes that the force acts;é@ with the spring unstretched. Bottom:

reducer, that is, the spring pulls the mass back towargife mass is displaced from equilibrium by

the equilibrium point. an amountz, leading the spring to exert
We now ask what happens if we draw the mass @uforce —kz pulling it back towards the

to a positionz = a, and release it. What happens negtjuilibrium point.

is determined by Newton’s second law,

F =ma, (2)

where F' is the force on an objecin is its mass and is its acceleration. Applying this law
qualitatively to the mass on a spring gives the sequenceafts\shown in figil4. Initially the
mass is at rest but the spring is pulling it back towards theliégium point, causing it to accel-
erate towards the equilibrium point. As the mass moves tsvélre equilibrium point the spring

2



3 SIMPLE HARMONIC MOTION 3.2 Solving the SHM equation

no velocity velocity increasing
i) m:» 3
Qy&gﬁgl o
maximum velocity velocity decreasing
v — OIS

‘ MWED

“ap o

no velocity velocity increasing

Figure 4: Snapshots of a mass oscillating on a spring. The mass is dragkntox = aq then released,
leading to oscillations. Double headed arrow indicatesdpsingle headed arrow indicates velocity. Fur-
ther description in the main text.

remains stretched, so it continues to pull towards the #xgjwim point, and the mass continues
to accelerate. When the spring reaches the equilibriunt poénspring is no longer stretched so
there is no force and the mass is moving at its maximum spedqehskes straight through the
equilibrium point putting the spring into compression. §hauses the spring to again push the
mass back towards the equilibrium point, but now, this fascepposite to velocity, so it slows
the mass down. Eventually the mass becomes stationarjéuntdss is now far from the equilib-
rium point and the spring is deep in compression, pushingigs back towards the equilibrium
point, and the whole process starts again. The mass ossithatthe spring.

The above discussion reveals the two key ingredients fotlateecy behavior: we need a
restoring force that pulls our system back towards its dguum point and inertia (i.e. resistance
to change in velocity) so that when the system reaches thékegum point, its motion ensures
that it passes through to the other side. In the above casepting provides the restoring force
and the mass provides the inertia.

Of courseF = ma allows us to go beyond this qualitative analysis and pretietprecise
motion of the mass. The force acting on the mass is just thagforce, ¥ = —kzx, and its
acceleration is simply = & (we use dots to denote derivatives with respect to time),sbave

— kxr =mz. 3)
This second order differential equations can be rearratmed

=g, (4)
m

which encodes that acceleration is proportional but opedsidisplacement, the essential ingre-
dient for simple-harmonic-motion.

3.2 Solving the SHM equation

Often the best way to solve differential equations is sintplguess the answer. Here we want
an oscillating function that takes a maximum valuengfatt = 0, so we tryx = ag cos(wt).

3



3.2 Solving the SHM equation 3 SIMPLE HARMONIC MOTION

Substituting this into the equation of motion (édn 4) we get

k
— way = ——aq (5)
m

which is true, provided
w = ] (6)

so the motion of our spring is given by

T = ag CoS (@t) . (7)

We have just shown that our mass on a spring does indeedatsciéind that it does so with
angular frequency = \/g The full motion is plotted in fig.15

x(1) »

+a0 +a, -
YO cosm? /\ acos o
0
0 ‘ : ’

Period T’

Period T _ _
Figure 6: Plot of the full solution to the SHM

Figure 5: A mass on a spring is drawn back tequation, allowing that the oscillation need not
x = ag and released from rest. This plot showstart with zero velocity and maximum displace-
the resultant position of the massy), oscillat- ment. The inset shows a more realistic trajec-
ing as a function of time. The angular frequenctory for at¢ = 0 since we cannot actually accel-

of the oscillation isv = \/k/m, so the time pe- erate a mass to finite velocity instantaneously,
riod isT = 2m\/m/k. but we will ignore this complication.

Many other systems produce equations of motion like[éqn #with different constants in
place ofk:/m. We can write any such equations as

i+wiz=0 (8)

where the value afy, depends on the specifics of the system, for the mass on a &pﬁriﬁg%.
This is the fundamental equation of SHM. We know it is solvgdcly) = ag cos(wot), however
this cannot be the complete solution as it has maximum dispi@nt at = 0, but if we had
started the oscillations by giving the mass a kick rathen thiaplacing it, we would instead need
a solution with zero displacementtat 0. With the right choice of displacement and velocity we
could start the oscillations at any point in the cycle, so wesider the same solution but offset
in time:

x(t) = ag cos(wot + ). 9)
Substituting this into the fundamental equation of SHM, Bagives

— wag cos(wot + @) + wiag cos(wot + @) = 0, (10)

4



3 SIMPLE HARMONIC MOTION 3.3  Whyharmonicmotion?

which is indeed true. Eqri] 9 is the most general solution ¢édfitindamental equation of SHM:
any system obeying edh 8 will undergo a motion of this fornthwj, and¢ determined by how
the oscillation is started. The displacementaries betweerta,, S0a, is the amplitude of the
oscillation. The constant is called the phase-constant, and determines which potheicycle
the oscillation starts at. Setting= —n /2 givesz = aq sin(wpt), which is appropriate when the
motion is started at = 0 by giving the mass a kick. A generic oscillation is plottediq[6.

Although eqn[DB is the full solution to the SHM equation, is@metimes convenient to write
it in a different form,

z(t) = Acos(wot) + Bsin(wot). (11)

This form also has two constant$,and B, which we can use to specify the motion of the system
att = 0. We can relate the two forms of the SHM solution by expandimefirst form using the
trig angle-addition formula to get

ag cos(wot + @) = ag cos(p) cos(wt) — ag sin(¢) sin(wt), (12)
which matches the second form of the solution provided
A =agcos(¢p) B = —agsin(¢). (13)

We may also wish to find the first form from the second, which wd¥ noting that

A% 4 B? = a} cos(6) + a3 sin®(9) = a3(cos?(¢) + sin’(9)) = a, (14)
and B ag sin()
A= "aco(d) — tan(¢). (15)
Therefore, if we knowA and B, we can calculate, and¢ as
ap=VA?+ B2, ¢ =arctan (—B/A). (16)

3.3  Why harmonic motion?

The frequency of simple harmonic oscillations is independ# their amplitude. For a mass
on a spring the angular frequencyus= +/k/m, irrespective ofay; however far we draw the
mass back, it oscillates at the same rate when we releass itheMoscillations die down, their
amplitude will diminish but their frequency will not. This why these oscillations are called
harmonic: they have a characteristic frequency. If thajdency lies in the audible range we will
be able to hear the oscillation, and it will always have theeaitch, whether it is loud or quiet.

Not all oscillations are harmonic. Consider a bouncing.bHll drop a ball from a height
z = h above the floor at = 0, it will then fall under gravity, feeling a downwards weidbotce
—mg. Applying Newton’s second law gives

mz = —mg. @an

This is a motion with constant acceleration, which you hawelisd previously. Solving gives
z=h— %th, so the ball reaches the floortat \/2h/g and, if the ball bounces elastically, it will
get back to its original height at= 2./2h/g. It is an oscillator with time period” = 2,/2h/g¢,
which is dependent oh: if | drop the ball from higher, the time between bounces isgler.
As a bouncing ball dissipates energy the frequency of its\besi increases. In general we have
no right to expect frequency and amplitude of oscillatiambé¢ independent. It is a remarkable
feature of SHM that in this case they are.



3.4 Position velocity and acceleration 3 SIMPLE HARMONIC MION

3.4 Position velocity and acceleration

We recall the displacement in SHM is given by
x(t) = ag cos(wot + ). (18)
We can take a time derivative of this to find the velocity:

%(t) = —woagp sin(wot + @) (19)
= Woag COS (wot + ¢+ g) . (20)

The velocity also oscillates with angular frequengy but it does so betweetiagw and ism/2
(quarter of a cycle) ahead of the displacement. This makeseséwe think about the mass on
a spring: the velocity is maximum when the displacement is.zQuarter of a cycle later, the
displacement is maximum, so it is quarter of a cycle behirdoit.

A time derivative of the velocity gives the mass’s accelerat

#(t) = —wiag cos(wot + @) (21)
= wiag cos (wot + ¢ + 7). (22)

Acceleration also oscillates with angular frequengybut betweentayw? and isw (half a cycle)
ahead (or behind, for half a cycle these are the same thirtgeafisplacement. The acceleration
behaves as the negative of displacement, exactly as the SHisktien requires. In terms of
the spring, acceleration is always opposite to displacémecause the spring always pulls the
mass back back towards the equilibrium point. An exampléhefdisplacement, velocity and
acceleration of a particle undergoing SHM is shown in(fig. 7.

w=2s! a= 1(p=F[/4

143|splécemen‘t

[ ‘\Tl\\ \lHH’T

o b b b b b b b Py

Velocity

mﬂ\‘\‘\“‘ \‘\\‘HH‘H

2
S S
X_2 : : : :
—4E M Ll e b b e L g
0 1‘ 2 3 4 5 6 7
: : t/'s

T=21/w |

Figure 7: Displacement, velocity and acceleration of a particle ugoiag SHM.

3.5 SHM Examples

We now look at some more examples of systems displaying sifmaimonic motion.

6



3 SIMPLE HARMONIC MOTION 3.5 SHM Examples

3.5.1 Mass on a spring with gravity

A massle@sspring stretches by 18 mm when a 2.8 kg mass is suspendeziirgifiom one end.

How much mass should be attached to the spring to make theeiney of oscillationn = 3Hz?
We first draw a diagram, seen in figl 8. In the first stage we

have force equilibrium between the gravity and the sprimgdo

mg = kx. (23) k k
Substituting inm = 2.8kg, = 18mm andg = 9.81, we get
k = 1526Nm ™. In the second stage we have a different mass but
the same spring. In equilibrium the spring extends:pguch that K
the spring and weight forces again balance: . i
—kxog +mg = 0. (24) Y
If the mass is displaced from equilibrium by an amount the
total displacement is, + x; SO Newton’s second gives
mg
—k(xo + x1) + mg = maj. (25) _
Figure 8: Left: A mass is held
However, since-kz, = mg, this reduces to at the end of a spring. Right:

When it is released, the spring

B =0, (26) stretches byt.
m

which is the fundamental equation of SHM, with angular freoey w? = % and frequency
v = wy/(2m). Gravity has not changed the frequency of oscillationstifyin our previously
calculated value fok, andv = 3Hz, we needn = 4.3kg.

3.5.2 Mass on two springs

2LLMMIMINY

=0 x=0.07m

Figure 9: A mass oscillating under the influence of two springs.

A 3.0kg block is attached between two horizontal springs@acded on a frictionless surface
as shown in fid.]9. Neither spring is strained when the bloglostioned at the equilibrium posi-
tion z = 0. The block is now displaced a distance of 0.07 m in a direaiong the longitudinal
axes of the springs and released from rest.

e Determine the angular frequency of the system.

e At what time does the mass first cross the poirt 0?

LAll springs in the course are massless.



3.5 SHM Examples 3 SIMPLE HARMONIC MOTION

e What is the speed of the block as it passes thraugh0?

If the mass is displaced to a positierboth springs are stretched byso the total restoring
force iskyz + kox = (k1 + ko)z. Newton’s second law gives

k k
SN Sl

z =0, (28)

the fundamental equation of SHM, with angular frequengy= ’“Lm’” Putting in our values for
m, ki1 andky giveswy = 19.15rad s7L. The general solution is

x = agcos(wot + @), T = —apwp sin(wot + ¢). (29)

Since the mass is released from rest with displacement QW@&meed:(0) = 0.07m andi(0) =
0, which requires) = 0 anday = 0.07m, so the displacement and velocity are

x = agcos(wot) & = —agwp sin(wyt). (30)
The displacement is first zero whent = 7/2, requiringt = 7/(2wy) = 0.082s. Since

sin(m/2) = 1, the velocity at this point is justagwy = —1.34ms™!.

3.5.3 The Hydrometer

A prismatic hydrometer of mass and cross-sectional ared floats in a fluid of density with
its axis in the vertical direction, as depicted in fig] 10.dthen displaced vertically and released.
Find the frequency of the resulting oscillations.

fluid of density p in a gravitational

field g. The pressures are higher at

the bottom of the object, leading to a
Figure 10: A floating hydrometer. net upwards buoyancy force.

p
. e
Equilibrium height [
of water by
7 g
p ]
i Figure 11: Pressure forces on an ob-
e ject with volumeV submerged in a

Before tackling the hydrometer we need to understand buyytorces. Imagine a light
hollow object of volumé’” submerged in a fluid of densityand in a gravitational field, sketched
in fig.[1d. The fluid’s pressur® pushes in on the object and, since the pressure is greafgerdee
in the fluid, this gives an upwards buoyancy force. To caleuits size we imagine the object
is filled with fluid. We then have a homogeneous fluid, whichestainly in equilibrium, so
the buoyancy force must equal the object’'s weight,. Any object with the same shape will

8



3 SIMPLE HARMONIC MOTION 3.6 Energy in Simple Harmonic Motio

experience the same pressure field, and the same buoyaney§or. If this is greater than the
objects weight it will float, otherwise it will sink. We havagt deduced Archimedes’ principle:
The buoyancy force on a patrtially or fully submerged bodyisad to the weight of the volume of
fluid it displaces.

Returning to our hydrometer, it first floats in equilibriuntlveen buoyancy and gravity,

mg = pgV, (31)

wherem is hydrometer’s mass arid is its submerged volume. If we displace the hydrometer by
y from this equilibrium we change the submerged volumellhyso Newton’s second law gives

pg(V — Ay) —mg = mjj. (32)

However, using eqm._31, this reduces to
A
i+ 25y =0, (33)
m
which is the fundamental equation of SHM, with angular fregyw? = %.

3.5.4 Simple Pendulum

A simple pendulum consists of a mas§iung from a fixed pivot by a light string of lengthThe
mass is drawn back to an angleand released. What is the frequency of oscillation?
We first draw a diagram, fig. 12, and consider the mass’s motlon

follows a circle so, when it is &, it has traversed an arc-length= 0. Its |

velocity is$ = 16 and its acceleration is= /4. Two forces act on the mass,
gravity and tensior?’. Velocity and acceleration are both perpendicula
to the string, so resolving forces perpendicular to thengtand applying Me
Newton'’s second law, we have

— mgsin(6) = mlé. (34)
For small anglesin(#) ~ 6, so this is approximately

— mgb = mib (35) .- ;”7
— 0+ %0 =0, 36) | I mg
Figure 12: A simple

which is the fundamental equation of SHM, with angular freogyw? = pendulum

g/l. This is why it is important for pendulum clocks to work at lampli-
tude: otherwise the frequency depends on amplitude anddbk will not
keep good time.

3.6 Energy in Simple Harmonic Motion

We now return to the oscillations of a horizontal mass on agprThis motion involves two
types of energy, the mass’s kinetic energy and the sprihg’potential energy. We already know

the kinetic energy is given by

1
KE = —mv? = —mi>.
2 2

(37)



3.6 Energy in Simple Harmonic Motion 3 SIMPLE HARMONIC MOTND

To calculate the potential energy we imagine stretchingsfireng very slowly. To stretch the
spring fromX to X +d X, we must apply a force X, so we do workdlW = kXdX. This energy
is stored in the spring, and can be recovered if we unstrétcho calculated the total energy
stored in a spring stretched tove must sum these contributions using an integral

@ 1
PE = / EXdX = §kx2. (38)
0

We recall that a mass on a spring executes simple harmoniomaith
x(t) = ag cos(wot + ¢)  &(t) = —wpag sin(woet + @), (39)
wherew? = k/m. In such a motion the kinetic and potential energy both teil

KE = Imajwg sin®(wot + ¢)
= Lkadsin®*(wot +¢)  using wg = k/m
PE = 1kag cos®(wot + o). (40)

The total energy of the system is the sum of these two cortiits,

E = imi® + 1ka® = 1kadsin®*(wot + ¢) + $kag cos®(wot + ¢)
= 1kaj (sin®(wot + @) + cos®(wot + ¢))
= Lkag, (41)

which is independent of time. Although the kinetic energgl Hre potential energy both oscillate,

the total energy is constant. We can see how this works btiqddhe kinetic energy and potential

energy as functions of displacement, as seen irf_fig. 13. Aiman displacement the mass is
not moving but the spring is very stretched and all the enesgpotential. As the mass moves
inwards the spring’s potential energy is released and th&smgains a corresponding amount
of kinetic energy. At zero displacement the spring is nogtstred but the mass is moving at
maximum velocity and all the energy is kinetic. Energy datgls between kinetic and potential,
but the sum is conserved.

It is also informative to ask how the potential and kinetiemgies vary in time, which we
plot in fig.[14. The kinetic energy is maximal when the displaent is zero, and the potential
energy when displacementdsz,. Both happen twice a cycle, so the energy oscillates between
potential and kinetic at twice the oscillation’s frequendMathematically this is because, though
the trigonometric functions in (eqn}40) still oscillate.at they are squared. The functisin® w,t
is maximum wheneveiin wyt = +1, so it oscillates twice as fast. We can verify this by usirgy th
identitiescos? ## = 3(1 + cos 26) andsin® § = (1 — cos 26). Applying these to eqii. 40 gives

KE = 1kadsin®(wot + ¢) = kagd (1 — cos(2wot + 2¢))

= 1kaj — kag cos(2wot + 2¢) (42)
PE = Lkaf cos®(wot + ¢) = Lkags (1 + cos(2wot + 2¢))
= ik:a% + ik:a% cos(2wot + 2¢), (43)
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3 SIMPLE HARMONIC MOTION 3.6 Energy in Simple Harmonic Motio

Total = }kag

E‘,

which clearly oscillate with angular frequengy,. We ‘
can also use these forms to deduce the time average of
potential and kinetic energy. The first term in each is _EE,“
constant ka2, while the second oscillates at, and
time averages to zero, so the time averaged energies are /

—a, 0 +a, X

KE) = (PE) = Lka? 44
( ) = (PE) ikay, (44) Figure 13: Kinetic and potential energy as

both half the total energyy = 1ka2. All energies are @ function of displacement for SHM.
quadratic in amplitude,. +ay Displacement

The above was a rath@d-hocway of deducing a /\ ‘ /\
time average. A more systematic way to do it is by inte- \ [ 1 /
gration. For example, we can find the average of the po- \ \ \ !
tential energy by integrating (summing) it over one time \\/

period then dividing by the time peridd = 27 /w. ~h

lkaz ,,,,,,,,,,,,,,,,,, e e A S
1 (71 1 2N N
(PE) = —/ —kaj cos*(wot + ¢)dt = ~kai. (45) /\ /\\ // \\ /\\ / o \
TJo 2 4 5ka;/\\/»\/\/\/’ \
[ /
However it is typically easiest just to recall that, aver- V \/ \ / \/ \/ \ /
aged over one cyclesin®¢) = 1 and(cos?6) = 1, '
so we can find the average energies just by replacing r'—;kb%re 14: Displacement (top) and kinetic
squared trigonometric functions in egnl 40, by their time | potential energy (bottom) in an oscil-
averages of 1/2. lation as a function of time. The energy
oscillates between PE and KE at twice the
3.6.1 The ubiquity of SHM: Harmonic motion in a underlying frequency.
general potential well

We can also work the other way. If total energy is conserusdjme derivative is zero. For our
mass on a spring this means

+ —k—a? = 0. (46)

We can conduct both derivatives using the chain rule,

d 2 d 2 dx . d .9 d .9 d$
—at = —a2?) = =2 —i? = —4? ) = = 27 47
at” (dxx ) a - @t <dx‘x a 7
Putting these into the energy derivative gives
: k
B =mii+kei =0 = i+ _—z=0, (48)

which is the SHM equation for a mass on a spring, but this tiervdd from conservation of
energy. We have just learnt something remarkable. Kinetécgy is alwaysmi? so, whenever
a particle moves in a quadratis (z2) potential energy, the total energy will be like that in egn.
[48 and the particle will undergo SHM.

A more complicated potential a particle might move in is temhard-Jones potential,

o= ()" -2(2)). z

11



3.6 Energy in Simple Harmonic Motion 3 SIMPLE HARMONIC MOTND

which is used to describe the potential energy of a pairy)
of neutral atoms a distanceapart. It is plotted in fig.
15, which shows the potential has a minimum:at a.
This arrises as a trade off between the first term, which parabola
is strongly repulsive for smalt, reflecting the fact that o
if the atoms are too close together their electron orbitald
overlap and nuclear-nuclear electrostatic repulsionstake
place, and the second term, which is attractive and dom-
inates at large;, reflecting the long range van-der-WaaIs,,O i
attraction between neutral atoms. i
The Lennard-Jones potential is not quadratic, so we a
do not expect a particle moving in it to undergo SHMtgyre 15: The Lennard-Jones potential
However, in the region of the minimum at= a, we ex- for the interaction of neutral atoms.
pect the potential to be well approximated by its Taylor
series about = a. Conducting this Taylor series gives

dv 1/ d2V , 1 /dV ;
V(a + U) = V((l) + u (a)xau + 5 <@)xau + 6 (@)xau + (50)

However, sincd’ has a minimum at, we know(9%) _ = 0. For sufficiently smalk. the cubic
term is negligible compared to the quadratic term, so we panoximate the potential by

» X

1 /d*V 9
V(ia+u) =V(a) + 5 <dx2 )x:au : (51)
which is a quadratic potential! Indeed, almost all potdat@an be approximated by quadratic
potentials for sufficiently small perturbations arounditimeinima. This is why SHM is ubiqui-
tous. If a particle moves in a general potential, it will eitglly settle down in a minima. If we
then perturb it a little, it will be moving in what is effectély a quadratic potential and undergo
SHM around the minima. We expect that any system in a stahlgilgum (i.e. at a potential
energy minima) will undergo SHM if we give it a small pertutioa.

3.6.2 Energy method for findingwg

For any system in equilibrium in a potential energy mininieg total energy, at least for small
disturbances from the minima, is of the form

1 1
E=KE + PE = 5@332 + 55952. (52)
Conservation of energy then gives
E=aii+fri=0 — i+£x:0, (53)
(@

so the system performs SHM witlf = g. It is often much simpler to find the frequency of SHM
this way than by direct consideration of forces.
3.6.3 Simple pendulum via conservation of energy

The potential energy in a pendulum is gravitational potdm@inergy,P £ = mgh. Inspecting fig.
(16, we see that when the mass i¢ #thas risen a height— g cos(#), so its potential energy is

PE = mgl(1 — cos(#)). (54)

12



3 SIMPLE HARMONIC MOTION 3.6 Energy in Simple Harmonic Motio

This is not a quadratic potential, but it does have a mininta=at). For smallf we can approxi-
matecos(f) by its Taylor series about zerays(0) = 1 — %02, S0 our potential is approximately

1
PE = §mg192, (55)

which is quadratic. Adding in the kinetic energy,E = %va, the total
energy is t

E:%mﬂ¥+%mﬂw. (56)
Comparing these with edn52, we hawe= mi?> and 3 = mgl so, as
expected, the pendulum will undergo SHM with = 3/a = g/I. We now
understand that the behavior of the pendulum — SHM for snmagilaude,
more complicated for large amplitude — is not a quirk of pdachs but the
generic behavior for energy conserving oscillating systefthe mass on a
spring and the hydrometer are unusual cases where the jpbtamargy is Figure 16: Potential
quadratic not just near the minima but everywhere, so theesysexhibit gnergy for a simple
large amplitude SHM. pendulum.

3.6.4 Water in a U-tube via conservation of energy

A U shaped tube with cross-sectional ardais filled with
water as sketched in fig. 117. If the water is pushed down on
one side then released, what is the frequency of the regultin
oscillations?

Again here the potential energy is gravitational. Since the
volume of water is constant, if, as sketched, the level in the
LHS is a distance; below the equilibrium level, the RHS
. ) . must rise byy above. In potential energy terms, this is like
Figure 17: Waterin a U shaped tUbe'moving volume of fluidAy from the left to the right, requir-

ing us to elevate its center of mass by a heighto the po-

tential energy is
PE = pAygy = pAgy”, (57)

which is quadratic. If the level is changing at a rgtéhen all the fluid is moving at velocity.
The total volume of fluid in the tube id/, so the kinetic energy is

1
KE = - pAli?. (58)

Comparing these with eqfis]52, we have- pAl and = 2pAg so the level water will undergo
SHM with w? = g = 279 This is much simpler than finding the equations of motioectisy.

3.6.5 Torsional Pendulum via conservation of energy

A uniform disk of mass: and radiusR is suspended from a wire (a torsional fibre or spring), as
sketched in fig.18. When the wire is twisted through an af\glee fibre stores a potential energy

PE:1ﬁ2 (59)
2

wherer is called the torsional stiffness and has units N mradrhe disk is twisted and released.
What is the frequency of the resulting oscillations?

13



3.6 Energy in Simple Harmonic Motion 3 SIMPLE HARMONIC MOTND

% We already know the potential energy, but we need to find thetia
energy. This is slightly tricky as the mass at the center efdisk is not
T moving at all, whereas the mass at the edge moves quicklyeiemif the
disk is rotating at then the thin ring of mass of widt- and at a distance
r from the center of the disk, shown in fi§.]19, is all moving a game
< 0 speedy = rf. The mass-per-unit-area of the disksig (7 R?), so the ring
has masgm = (m/(wR?)) x 2zrdr and kinetic energy

)i E a d(KE) = %(dm)v2 = mR—ejr?’dfr. (60)

Figure 18: A tor- To find the total kinetic energy of the disk we must add up altredfse
sional pendulum. ~ contributions using an integral

d d T e~ L. (6
KE:Z (KE) — | d(KE) = - r T:ZmR . (61)
dr
Comparing with eqfi 32, we have= %mR2 andj = 7, so the disk oscil-
lates with angular frequeney? = g = szT#- In Lent term you will study
rotational motion, and learn to do this calculation in a &hi&e way. You
o will also learn that the kinetic energy of any spinning body de written
Figure 19: A disk as%]@?, where] is called the body’s moment of inertia. For the di_sk we
can be broken into a€ffectively just calculated = 1mR* The general result for a torsional

T

: ) o2
series of small rings. Pendulum isvy = 7.

3.6.6 Diatomic molecule via conservation of energy

We model a diatomic molecule, such as HCI, as two dif-

ferent massesn; andms,, connected by a spring of con- my! my 53;22’:”"1

stantk, as sketched in fig. 20. What is the vibrational |

frequency of the molecule. Hi
If m, is displaced outwards hy, andm, outwards |

by =5 the the spring is extended by + z,. There is ;

no external force on the molecule so its center of mass |

=l

f—»xl

cannot move, meaning,x; = mox,. We can thereforexzz%lx1 Centre
write the potential and kinetic energy entirely in terms
of z; as Figure 20: Model of a diatomic molecule.
1 1 my
PE = Sh(ay +2,)° = Sk <1 * E) 7, (62)
and
1 . 1 . 1 mq
KE = §m1x§ + §m2:c§ = 5m (1 + m—z) 7. (63)

wgzg—w:k(l+l). (64)



3 SIMPLE HARMONIC MOTION 3.7 SHM and Circles

The system behaves as a single mass on a spring with costaut with an effective mass:
known as the reduced mass given by

1 1 1

—=—+—. (65)

m ma Mo
This simple calculation allows us to estimate the “springstant” of an atomic bond. HCI
strongly absorbs radiation of around~ 10'*Hz because such radiation excites the vibrations.
The masses of chlorine and hydrogen are 1 a.m.u and 35 asspeatively (where 1 a.m.

1.67 x 107%7kg). Putting in these numbers gives
1 Y
9 1 1 . S |
kE=mwj=|—+ — 27y ~ 640Nm™~", (66) Y YR
mq meo e
which is a typical every-day value: such a spring would sin(6)
extend 1.5cm under a 1kg load. ;
. '\1 cos(93 '31 x
3.7 SHM and Circles \
Imagine a rod of unit length which protrudes from the
origin making an angl@ with the = axis, as sketched N
in fig.[2Z1. The projection of the rod onto theaxis — s

that is, its shadow on the axis if it is illuminated with

rays parallel to they axis — has lengthos(6). As § Figure 21: A unit length rod making an
increases, the end of the rod moves around the unit cir@ngled with thez axis.

and it’s projection onto the axis changes betweenl. y
In this geometry, it is obvious that the cosine of a quarter N
turn is zero, the cosine of a half turn is -1, the cosine of )
a three-quarter turn is again zero, and the cosine of a fuffo
turnis 1. The rod’s projection onto theaxis has length '
sin(6), which also varies betweenl and, similarly, it is i
obvious that the sine of zero is zero, the sine of a quarterd ()=
turnis 1, and so on. | agcos(wylt)

If we now imagine the rod is spinning at constant
angular velocityw, then, at timet, it makes an angle
wot with the z axis and its projection onto theaxis is
cos(wopt). The rod moves in circles, but its projection
onto thex axis (or indeed any other diameter of the ci
cle) does simple harmonic motion.

We now replace the rod by a vector of lengththat
att = 0 makes an angle with thez axis, but which still
spins at angular velocity,. At a timet it makes an angle + wyt (see fig[2R) so its projection
onto ther axis has length

\
|
|
6,10 X
|
i
1

<_,__a(3"’//

Eigure 22: A vector of lengtha rotates
around the origin. Its projection onto the
x axis undergoes SHM.

xr = ag cos(wol + ¢). (67)

The projection undergoes the general form of SHM. This regme&ation of SHM gives a geomet-
ric meaning to the previously abstract angle+ ¢, called the oscillation’s phase, and clarifies
the link between angular frequency and angular velocity.
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3.8 Superposition of simple harmonic motions 3 SIMPLE HARNIC MOTION

3.7.1 Phasor diagrams

The velocity and acceleration can be represented
the same way. The velocity is given by

displacement

Z(t) = —woap sin(wot+¢@) = woag cos (wot +o+ g) ;
X (68)

so it can also be represented by a vector spinning at

wp but with a length ofvya, and that isr /2 (quarter

of a turn) ahead of the displacement’s vector. Sim-

ilarly, the acceleration is

acceleration

Figure 23: Displacement velocity and acceleric(t) = —wao cos(wol+¢) = wyao cos (wol + ¢ +7),
ation of SHM represented by three co-rotating (69)
vectors with different lengths. Their projection§O it can also be represented by a vector spinning at
onto thex axis give the instantaneous value ofo but with length ofvga, and that ist (half a turn)
their respective variables. ahead of the displacement’s vector. This leads us to
fig. 23, a diagram with all three vectors. They all
rotate at the same speed, maintaining their relative
angles, and the values of the displacement, velocity aneleration at a given moment in time
are given by their projections onto theaxis. Such diagrams are called phasor diagrams. They
allow us to visualize the phase difference between diffegeantities in SHM.

3.8 Superposition of simple harmonic motions

Suppose we have two solutions to the same fundamental SHitieqyi; = —wiz; andi, =
—wiz,. The SHM equation (edd 8) is linear, so the sum of these; z; + z-, is also a solution:

Ty = X7 + 2y = —w%xl — wga:Q = —wg(xl + x9) = —ngg. (70)

N.B. This only works because the restoring force is linear, it ldawt work if, for example, we
had F' o< 2™ andn # 1. Sincez, z; andx, are all SHM solutions, we must be able to write them
all in the form of the general solution:

x1 = ay cos(wot + ¢) To = ag cos(wot + ¢o)
x3 = aj cos(wot + ¢1) + ag cos(wot + ¢2) = a cos(wot + ¢). (71)

We can understand how this works by representingndz, as vectors of different lengths and
phases (but both spinning @) on the same phasor diagram, as shown in(fig. 24. The vector
sum of thex; andxz, phasors gives a third one representing also spinning at,. From the
diagram we can visualize how the phase and amplitudeds#pend on the phase and amplitude
of z; andz,. With some geometry we can actually fiménde¢. First, applying the cosine rule to
the vector-sum triangle we have

a® = ai + a; — 2a,ay cos(a), (72)
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3 SIMPLE HARMONIC MOTION 3.8 Superposition of simple harmiomotions
y

\(D
(t=0) 7
but from the diagram we know = m — (¢, — ¢1), SO
cos(a) = — cos(p2 — ¢1), giving the resultant ampli-
tudea as
a ) ;
t/}c//jf'"“r\ﬁ’rzfq’l a® = a? + a2 + 2a,a5 cos(dy — ¢1). (73)
N\ a - : . .
e ¢ 70, 5 - Secondly, looking at the right-angle triangle formed
X — % .x Dbythex; phasor and the axis, we have
Xi
xX=xtx,
Figure 24: Two phasors representing SHM 6 = tan~! <a1 sin @1 + as sin ¢, ) @4
with the same frequency but different ampli- a1 COS @1 + az COS 2

tude and phase. The sum of the two motions . .
is also SHM, represented by a phasor that {¥e could prove these results by manipulating legn 71,

the vector sum of the first two. but using phasors builds geometric intuition.

cos(ot) cos(w(t-r/c)) 3.8.1 Interference via superposition of matching
7 frequencies
4"\/\/\\/ Let us imagine an emitter of waves that is oscillating@ss(wt).
<, These oscillations travel away from the emitter at the wpeed

*/\/\/\/ ¢, as sketched in fig. 25, so if we measure a distanfrem the

emitter we see what the emitter was doing a tirie ago, that

4/\/\/,\ i, we measure, cos(w(t — r/c)) = agcos(wt — wr/c). This is
l exactly the same form as the SHM solution (With= —wr/c) so
4\/\/\/\

we can analyze it using phasors.

We first imagine that we have two identical sources a distance
R apart, and we stand between them, a distanftem the first
Figure 25: A sequence of snap-thus a distancé? — r from the second, as shown in flg.]26. We
shots of the sound wave propaexperience the sum of two signalg,cos(wt —wr/c) from the first
gating out of a speaker. An ob-emitter andag cos(wt — w(R — r)/c) from the second. We can
server next the the speaker olrepresent this sum as the sum of two phasors of equal amglitud
servescos(wt), whereas an ob-but with phase constanty = —wr/c and¢, = w(r — R)/c
server a distance away sees respectively. If we stand half way between the emittersserae

cos(w(t —r/c)).
® (© ’/
-wR/(2¢c) + 7/2
-wR/(2¢c)-n/2
,

r=R/2-cr/(2w)
/ =R/2 =R/2-)/4
w

Figure 26: Left: Two emitter, a distanc&® apart, oscillate together ass(wt), and an observer stands
between them. (a) The wave observed from each source capreseated by a phasor, and the total wave
observed as their sum. The two phasors have the same aredittidifferent phases. (b) If the observer is
half way between the sources the phasors have equal phasédidnstructively. (c) But as the observer
moves away fronfz /2 the two phases change in opposite directions and eventliffly by , leading to
destructive interference and no resultant wave.
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3.8 Superposition of simple harmonic motions 3 SIMPLE HARNIC MOTION

both¢ = —R/(2¢) and the phasors are aligned and add constructively, givirgsalt with
amplitude2a,. However, as we move towards the first emittgrjncreases and, decreases so
the amplitude of the result falls. When we reack- R/2 — ¢r/(2w) the phasors are opposite
to each other and the resultant amplitude is zero. Rremv\, we know thater/(2w) = A/4,

is quarter of the waves’s wavelength. As we move betweenvibesburces, we move between
regions of high amplitude2g,) oscillations (anti-nodes) and regions of zero amplitudlés),
separated in space by4. This is called a standing wave.

The same thing happens if we imagine illuminating two slits
| | ~and collecting the resultant intensity pattern on a scres,
~ sketched in figl.27. The two slits act as synchronous sources o
waves and at each point on the screen we collect the sum of the
~ two waves, which we can represent as the sum of two phasors.
|2 Exactly between the two slits (at A) both waves have traviied
- same distance, so the phasors have the same phase and add con-

Figure 27: Two slits are illumi- structively. Moving to the side (towards P) the distancegédwo
nated from behind, and the regi|its start to differ and the phasors move out of phase, eadgt
sultant intensity pattern is col-canceling. This leads to a pattern of “fringes” (stripes ighhrand
lected on a screen on the right. 4,y jntensity) on the screen and, historically, was considehe

definitive proof that first light then, later, electrons, bavwave

character.

3.8.2 Beats via superposition of different frequencies

We can also imagine two wave sources with %
different frequencies so that, at a given poini.},
in space, the two waves produce oscillations 0 /\ A /\ [\ m /\ m A /\ [\ A A /\

TNV

x1 = agcos(wit)  my = agcos(wat), (75) Zi(fé
and our observer measures the sum: \/ \/ \/ \/ o A\/\/\/\/\/\/\/\\/ M;' >

2n/[(w2+co1)/2] T[(@—,)2]

r = x1 + Ty = ag (cos(wit) + cos(wat)) .
(76) Figure 28: Top: Two oscillations with slightly dif-

We can easily see what happens by drawifﬁjent frequencies plotted as a function of time. They
a graph of the two oscillations assuming theffart in phase and add constructively but, as time goes
frequencies are close, as shown inffig. 28. TR they become out of phase and add destructively.
oscillations start in phase but and add COﬁottom Sum of the two oscillations, showing a low
structively. However, since they have slightl requency oscillation between constructive and de-

. . tructive interference, known as beats.
different frequencies, over many cycles they
drift out of phase. Eventually the two are completely out bage and cancel out. They then
drift back into phase, and add constructively. This leads lkmw frequency alternation between
constructive and destructive interference known as béais.can analyze this more formally
using the trig angle addition formula:
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3 SIMPLE HARMONIC MOTION 3.9 Complex representation of SHM

x = ag (cos(wit) + cos(wat)) (77)
\w1+ ®,)/2
wo + wi Wy — Wy
= ay (COS ( 5 t— 5 t)

~+ cos (W2-£w1t+ w2 ;wlt))

0,—0
wWo + w1 Wo — W1 A )
= 2a cos t | cos t].
2 2 > X

X
We see thatr varies betweent2a, and is the prod-))g2
uct of a rapid oscillation, which oscillates at the aver- _
age ofw, andw,, and a slow oscillation with frequency'9ure 29: Analyses of beats via phasors.
(we—wq)/2, 1.e. proportional to the difference in the two
frequencies. This is exactly what f[g.]28 looks like. The beae caused by the slow “envelope”
oscillation, which gets slower as the frequencies get clo&ri hear a beat (maximum) whenever
cos((wy — w1 )t/2) = +£1, so the actual angular frequency of the beats is sirfiply— w, ).

Finally, we can also analyze beats with phasors. Our sumwistine sum of two phasors that
spin at slightly different frequencies, as shown in[fig. 28e¥ start aligned but one slowly gets
ahead of the other reducing the amplitude of their sum. Hewehe resultant always bisects the
original two phasors, so it makes an angléwft + w-t)/2, i.e. it spins at the average frequency.
The phase difference between the twdus — w;)t, and when this is half a turnr( 3, 57...)
the two are out of phase and the resultant amplitude is zdrenwt is a full turn (0,27, 47...)
they are in phase and the amplitude is maximum. As promikedye¢ats thus come with angular
frequencyw, — wy, or real frequency = (wy — wy)/(27).

3.9 Complex representation of SHM

Im(z . . .
(Z Phasor diagrams have a natural representation in termsnoples
”””””” 3 numbers. A complex number is the sum of a real and an imaginary
z/ number such as

z =a+ib, a,b € R. (78)

a Rez) ~ Wecan plotz on an Argand diagram, a representation of the complex
plane in which ther axis represents the real part ofind they axis

Figure 30: Argand dia- the imaginary part, seen in fig.130. By Pythagoras the “vé&ctdnas

gram showing the com- lengthA = +/a® + %, and, by trigonometry, it makes an angle=

plex number: = ¢ +ib  arctan (b/a) with the real axis. We can thus write our complex number

in the complex plane.  as

z = A(cos(¢) +isin(¢)). (79)

The power of complex numbers comes from the fact we can alise wais a complex exponential:
cos(¢) + isin(¢) = e — z = Ae. (80)

The complex numbet = qel“0**+%) thus has constant lengtly but spins around the Argand

diagram with initial phase, as sketched in fig.31. This is just like a phasor, and indeed t
projection ofz onto the real-axis (i.e. its real part) undergoes generdl SH
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3.9 Complex representation of SHM 3 SIMPLE HARMONIC MOTION

Im
/,(.Z{Qo\\
z = Re{age' @)} \>\{4:a0ei¢
. N
= Re{ao(cos(wot + ¢) + isin(wot + ¢))} 0
= ag cos(wot + ¢). (81) b ot ) ﬂl 0 \
Complex numbers allow us to turn rotation into mul- ~%~ )= ?ZORe(z)
tiplication. If | have a complex number that makes ' a,cos(wyt+¢)
an angleg, with the real axis; = aye'?, and | ) ’
then rotate it a further angle,, my new complex
number.z, is .
3 . o . Trag
3 = qge!(P1792) = gpelf1el?z = 2692, (82)

This makes complex numbers a powerful way 5 ure 31: Argand d'a(gr?ﬁ)sm.w'ng th.e com
. . . dpex numberz = age!'“° spinning in the
dealing with phases. For example, we can write aur .
. complex plane like a phasor.
SHM solution as
P aoei(wotJr(b) _ aoei¢eiwot _ Aeiwot

(83)

where the complex numbet = aye'® encodes the amplitude and the phase constant(lig. 31).
Im

We can also differentiate our complex solution
2 to find the velocity:

f= o (A) = iwpAc = iwpz. (84)
wt+@

| The multiplication byi = €/? rotatesz by a
X ! Re duarter-turn £/2) on the Argand diagram, ensur-
| ! ing that Z spins a quarter turn ahead of just as
i with the phasors. As with displacement, the physi-
cal velocity is given by the real part:

: 3z Re{s} = Re{iwp A} = Re{iwgage®e“ot}

= Re{iwgag (cos(wot + i¢) + isin(wot +1i¢))}
Figure 32: Argand diagram showing: =
apel@ot+®) and its first and second time deriva-

= —wpag sin (iwgt + 1¢)
tives,?Z = iwgz andz = —wgz. = . (85)
Similarly the complex acceleration is
Z = 4 (2) = 4 (iwp Ae™") = PPwg A" = —wp 2. (86)
dt dt

The multiplication by—1 = '™ rotatesz by half a turn ), so, just like phasors, the complex
acceleration isr ahead of the complex displacement. Fig. 32 is an Argand aia@f z, z andz,
which reproduces the phasor diagram (fig. 23). AgBix,z} gives the physical acceleration:

Re{#} = Re{—wiz} = Re{—wiape®e“*"} = —wlag cos (wot + ¢) = i.

Although the physical solution is the real part of the compdee, we note from eqn_86 that,
Z 4+ wiz = 0, that is, the whole complex solution satisfies the fundaalesdquation of SHM.
This is because, in addition to the real partaindergoing SHM, the imaginary pdin{z} =

ap sin(wpt + ¢) also undergoes SHM with the same amplitudesh(® behind the real part.
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3 SIMPLE HARMONIC MOTION 3.9 Complex representation of SHM

3.9.1 Energy in the complex representation

When calculating energies in the complex representatienmust be careful to take real parts
before squaring. For example, with a mass on a spring, ttenpat energy is

1 1 1
PE = gha® = ok (Re{z})” = 545 cos® (wit + 9). (87)

We mustnot work OUtRe{%k}ZQ}, the real part of the “complex-potential energy”: in getera
Re{z}? # Re{2?}, easily verified by trying: = i. We must be similarly careful with th& £,

1 1
KE = §mj:2 —mRe{z}2 mRe{lwoz} (88)

Here it is useful to note thate{iz} = —Im{z} (easy to check if you set= a + ib), so

1 1
KE = §mw01m{z}2 —mwoao sin®(wot + ¢).

(89)

Recallingw? = k/m, we see the total energy does have a nice complex representat
1 2 1 2 1 2 2 1 2
E=KE+ PE = §k31m{z} + §kRe{z} = §k(1m{z} + Re{z}?) = §kr|z| : (90)

where the modulus of a complex numbet a + ib is |z| = va? + b2, which, geometrically, is
its distance from the origin on the Argand diagram. The pgedgconserving energy because the
length of > is constant as it spins. We can verify that this form fbagrees with eqn 41:

1 1 : 1 1 : 1
E = Sklz? = 2k |Ae“! [ = KA = ZK|age'|? = Ska?. (91)
2 2 2 2 2

3.9.2 Comparison of the complex and standard methods

A mass on a spring oscillates withy = 3rad s~ '. It is released with dis-

placement -3 cm and velocity 6 cmdsas shown in fig._33. Find the ampli-

tude of the oscillations and the times when the mass is at rest
Solution 1: Usingsin and cos. The initial conditions are easiest to im-
pose if we use the general form of the soluton o= --- [ :
3cm

x = Acos(3t)+ Bsin(3t) = i = —3Asin(3t)+ 3B cos(3t). (92)

6cm/s
Working in cm, our initial conditions are(0) = —3, requiringA = —3 and ‘

'(0) = G requiring B = 2. The amplitude isiy = v/ A” + B (eqn16), SO Figyre 33: Initial

= +/13cm. The mass is at rest whenevier= 0, that is when, conditions for a
B mass oscillating on a
3Asin(3t) = 3Bcos(3t) = tan3t spring.
—t = % (arctan (i) + mr) (93)
1 -2
= 3 (arctan ( ) + mr) =0.85,1.90,2.95, ...s.
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3.10 Summary of SHM 3 SIMPLE HARMONIC MOTION

Solution 2: Using complex numbefBhe complex solution is
z= A" —  i=3iAe™. (94)

Our initial conditions ardRe{z} = —3, giving Re{A} = —3, andRe{i3A} = —3Im{A} = 6,
giving Im{A} = —2. The full solution is thus

z = (3 —2i)e™. (95)
The amplitude isiy = |A| = v/13cm and the complex velocity i58 = (—9i + 6)e'* = (—9i +
6)(cos(3t) + isin(3t)). The physical velocity is zero whenevee{z} = 0, i.e. whenever

2
Re{z} =6cos(3t) +9sin(3t) =0 = tan3t = -3 (96)

1 -2
== {= 3 <arctan (?) + mr) = 0.85,1.90,2.95, ...s.

3.9.3 Why use the complex representation

For pure SHM the advantages of the complex representatomarginal. However, the complex
representation has several advantages for more complipetlems. Firstly, complex numbers
turn rotations into multiplications. This makes life muaseer if you have several phase shifts to
keep track of. Secondly, the exponential function is theesapossible function to differentiate.
Indeed, sincedd—tei“t = iwe!, exponential functions also turn differentiation into miplication.
Finally, the complex exponential makes a link between erptial decay and the oscillating
functionssin andcos, which is very useful when we analyze damped and drivenlaesmis.

3.10 Summary of SHM

e The fundamental equation of SHM+ wiz = 0, arrises whenever we have an equilibrium
with a restoring force proportional to displacement, suseh'a= —kx for the spring.

e The solution to the SHM equation can be written in two différeays
x = agcos(wot + @) or x = Acos(wgt) + Bsin(wyt), (97)

where the constanta{ and¢ or A and B) are fixed by the initial conditions of the oscilla-
tion butw, only depends on the oscillator.

e The amplitude of the oscillationy, does not depend on the frequency: wy/(27).
e The SHM equation is linear, so we can add (superpose) softmform new solutions.

e SHM conserves total energy. On average it is shared equetlygen two forms (KE and
PE), but it oscillates between the two2at,.

e We can derive SHM from conservation of energy, provided ateptial energy is quadratic.
All potentials are approximately quadratic near their miaiso SHM is ubiquitous.

e SHM is the projection of motion in a circle onto a diameter loé¢ tircle. This gives a
geometric meaning to the phase of an oscillating variable.

¢ Circular motion can be neatly described by a rotating complanber: = Aei“o!. The real
part of this is a third general way of writing the SHM solution= Re{z} = Re{Ae™“0'}.
Both amplitude and initial phase are encoded by the complexoerA = ayc'?. However,
z also satisfies the SHM equation in its own right- w3z = 0.
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4 DAMPED HARMONIC MOTION

4 Damped Harmonic Motion

4.1 Equation of damped harmonic motion

SHM conserves energy perfectly; after we set our sé‘;
tem oscillating the amplitude of the oscillations remains  spring constant & R
constant. No oscillators actually behave like this, mﬁteéé

they slowly dissipate energy through friction-like pr R
cesses, and the amplitude of the oscillations dies down |
over time. Consider a horizontal mass on a spring, as K
sketched in figl_42, that, in addition to the spring for W NN

F, = —kx is also subject to africti@forceFf = —b1. f
This is a force that always points opposite to the veloc
of the mass, acting to slow it down. Applying Newton’s

second law, the equation of motion of the mass is now_ _ _
Figure 34: Mass on a spring with damp-

ing. Top: Mass at rest in its equilibrium
F=F,+Fy=mi position. Bottom: When the mass is:at
and has velocityi it feels both a spring
force —kx and a friction force-bz.

o

x=0

= —kx — b =mi

b,k
— G+ —dt—a =0 (98)
m m

This is an example of the general form of the equation of dah§iéM,
¥+ 2yt 4+ wiz = 0, (99)

with v = b/(2m) andw? = k/m. Many other systems produce this equation of motion. Before
solving it properly, it is worth asking what we expect to happlf v = 0 there is no friction and
we have SHM: the system will oscillate @ in perpetuity. Ifw, = 0 there is no spring force
and we just have a mass moving against friction. We now dopeet oscillations, rather we
expect that, if we give the mass a velocity, it will just beveéal down by friction. The equation
of motion in this casej = —2~v1, is an exponential decay equation fosolved by

i = 2(0)e >, (100)

i.e. the mass slows down, with its velocity decaying by adaof e in the timer = 1/(2).

The constantsy and w, both have units ofl /time but with very different interpretations:
T = 27 /wy is the period of an oscillation while = 1/(2+) is a decay time. This leads us to
expect two different regimes. < 7 then the system will oscillate many times before it decays,
leading to many oscillations with slowly falling amplitudé/e call this light damping. IT" > 7
then any velocity we give the mass will decay in much less trenoscillation, and the mass will
then just move slowly back to the equilibrium point. We chlstheavy damping.

4.2 Solving the equation of damped harmonic motion

If there is heavy damping we expect our system to simply dedthout oscillation, so we try the
x = Ae™Pt, Substituting this into eqn_ 98 turns the differential edpratnto a quadratic one:

i+ 2yi+wir =0 = p*(Ae ) — 2yp(Ae ") + wi(Ae ") = 0. (101)

2Full disclosure: this isn't actually a good model for frami. Sliding friction always points against velocity, as
this force does, but it is independent of speed. This isyealliscous drag force.
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4.2 Solving the equation of damped harmonic motion 4 DAMPEARNONIC MOTION

Assumingz # 0 (i.e. we have some displacement) we can careel from this to get

p2—27p+w§:0 — p=7+4/7? — i (102)

We have found not one but two solutions! The most generatisolto eqri 98 is the their sum:

r=Ae Gﬁmﬁ + Be Gﬁm)t. (103)

We should not be surprised to have found two solutions, asgilies us a general solution with
two undetermined constantg, and B, which we can use to fix the initial displacement and
velocity of the oscillation. The SHM solution also has twalatermined constants,and, for
this reason as, in general, will the solution to any secodeéroordinary differential equation —
i.e. one containing second derivatives.

4.2.1 Heavy damping;y > wy 1.0

If v > wy then the square rootin egn 102 is of a pos- _|
" ) : _-08f
itive number ang is real. Our solution, edn ID3,is = |
thus the sum of two exponentially decaying term®.6!
with different decay rates. The decay rates are et |
by the system, while the unknown constantsnd 04¢
B, allow us to chose the initial displacement andy,|
velocity. The system is non-oscillatory. Some typi-
cal solutions for an oscillator witly, = 1 but with 00"
different levels of heavy damping are shown in fig. t

[35. All the solutions start with a pure dlsplacemergi,gure 35: Heavily damped oscillators with dif-

2(0) = 1, #(0) = 0. The higher the damping, thgerent damping coefficients. Higher damping
longer the system takes to get back to equilibriungags to slower relaxation to equilibrium.

20 25 30

o
U1
=l
o
=
(%}

Example: Heavily damped pendulum

A simple pendulum, sketched in fig] 36, lhas 1m, m = 1lkg
and swings in treacle which exerts a viscous drag force omihss
F = —bv, withb = 100Nsm . If | start the pendulum af = 0.2rad
and with an inward velocity of 3m/s, what is the mass’s sulxset
motion?

As previously, the mass’s velocity i§ and its acceleration i&.
‘ m% Applying Newton'’s second law perpendicular to the pendugjives

mlf = —mgsin(6) — blo. (104)

Figure 36: A simple pen- _
dulum moves in treacle. For small anglesin(6) ~ 6, so we can rearrange this to get

i 24990, (105)
m )

which is eqri9P withy = b/(2m) = 50s~! andw? = g/l =~ 10s72. Therefore the solution is:

0= Ae (/A7) + Be~ (—vA2=d)e ~ Ae " L Be ! — 0~ —994e % — Be .
(106)
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4 DAMPED HARMONIC MOTION 4.2 Solving the equation of dampeakrmonic motion

(1)

0.5
0.00 L .

0.0 0.5 1.0 1.5 t/s 2.0 2.5 3.0 0.0 0.5 1.0 1.5 1/ 2.0 2.5 3.0
s

Figure 37: Decay of angle (left) and velocity (right) for the heavilymiped pendulum. The initial velocity
decays very rapidly whereas the angle decays very slowly.

Att=0weneed = A+ B =0.2andlf = [(—99A — B) = —3m/s, requiringB ~ 0.17 and
A =~ 0.03, so the motion is
0 =0.03¢ " +0.17e"". (107)

It is notable that the two terms in this solution decay at ve@ifferent rates. Looking at the
general solution, eqnID3, we see this is generic for extsehigh damping. Ify > wy then
V/7? — wi ~ v so one of the decay rates tendtowhile the other tends to zero, exactly as we
see here. The meaning of these two different decay ratesrsscolear if we plot the angle and
velocity of our damped pendulum, shown in figl 37. The prostads with a very high velocity,
generating lots of drag, which slows the pendulum down vapjdly. This decay gets faster if
there is more drag, and accounts for our rapid decay rate.ekenvalthough the pendulum is
brought close to rest very rapidly, it is still far from itswgbprium point. It then falls back to

6 = 0 very slowly as gravity works against drag. This process gletwer as drag gets higher,
and accounts for our slow decay rate. We have two very diftetecay rates because velocities
decay very rapidly but displacements decay very slowly.

4.2.2 Light damping,~ < wy

In the case of light damping we expect our system to osciffetry times with slowly decreasing
amplitude. At first sight this doesn’t seem connected to ouroscillatory solution in the heavily
damped case, but actually complex numbers allow us to usglgxae same solution. H < wy
the square root in edn 102 is of a negative number (i.e. inaag)rsop is complex:

p=7ti\/wi—72 ==+ iwg, (108)

wherew; = /w? —~2. Our solution is now a complex numbde 7" = Ae e, The first
exponential in this expression is a regular real exponlkedéieay, while the second is a complex
exponential representing oscillationat as we saw in SHM. Allowingd = ae'® also to be

Figure 38: Motion of a lightly damped oscillator with different dampijroefficients. Dotted lines show
the decay of the oscillations as*. N.B. the right-hand figure decays slowly and has a differiem:taxis.
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4.2 Solving the equation of damped harmonic motion 4 DAMPEARNONIC MOTION

complex, the real (physical) part of the solution is
r = Re{Ae "™} = gge " cos(wqt + ), (109)

which is oscillations at the damped angular frequengy= /w2 — 72, (which for light damping

is less than but close ta,) but with decaying amplitude,e~*. Interestingly the oscillations are
still harmonic: the frequency of the oscillations does rnwdrge as their amplitude diminishes.
The decay rater and the angular frequency are fixed for a given system, whilg and¢ are
set by the initial conditions. We might worry what happenedhte second solutiome " =
Ae et put in fact it has the same real part, and generates the daysizal solution.

Some examples of lightly damped solutions (egnl 109) arequion fig.[38. As in the heavy
damping case, these are all for systems with= 1 and started with pure displacement)) = 1,
%(0) = 0, but with a range of levels of damping. We see that even foraraidly heavy damping,
the period of the oscillatiorr /w, scarcely differs fron2r /wy, and that the lighter the damping,
the more oscillations take place before the amplitude decay

Example: Lightly damped pendulum

The pendulum of fig._B6 is now in a much less viscous fluid (ain@)hence is lightly damped
with b = 0.01Nsm™*. Att = 0 | do not displace the pendulum, but | give it an angular veioci
of 0.2rads™*. How large is the initial amplitude. How long does the ampli¢ take to fall by a
factor ofe?

The equation for the pendulum is again

2990, (110)
m [

which is eqn(9B withy = b/(2m) = 0.005s7! andw? = g/l ~ 10s72 > 42, so the pen-

dulum is indeed lightly damped. It therefore follows a matiof the form of eqri_109 with

wg = Jwi — 72 =~ w3 =~ 10. Since the displacement is zerotat 0 we know¢ = 7/2, so the

solution is actually of the form

0 = age "% sin(10t) = 6 = age™ %% (—0.005sin(10t) + 10 cos(10t)). (111)

The initial angular velocity is theﬁ(o) = 10ay = 0.2, requiring the initial amplitude to be
aop = 0.02. The full motion is
0 = 0.02e” %% sin(10¢). (112)

The amplitude decays tq)/e (i.e. to about 37% ofiy) when0.005¢ = 1, requiringt = 200s.
The time period ig" = 27 /w =~ 0.63s, so this decay takex)0/0.63 ~ 320 cycles.

4.2.3 Critical damping

If v = wy then the square-root in efn 102 is zero, and we
only have one solutiom, = ~. As in the heavy damping osl
case, this is real so the solution is pure exponential decay
x = Ae "', This cannot be the whole story as there %6
only one constant, but we need two since we can specifyt
the mass’s initial velocity and displacement. In fact, just
. . . . . . 02r
in this case, there is an entirely different second solytion

a)0=] y=1

o o 5 0 15 . 20 25 30
x = Ae " 4+ Bte ", (113)
Figure 39: Critically damped oscillator.
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4 DAMPED HARMONIC MOTION 4.3 Energy and amplitude decay

You can verify this by substituting it into en199.

We again plot an example of this solution for a system with= 1 and started with pure
displacement#£(0) = 1, &(0) = 0) in fig. [39. We see critically damped systems are the fastest
decaying systems: they strike a balance between beingawged, where friction prevents the
mass from getting back to equilibrium, and underdamped avtiexr mass oscillates for many cy-
cles before the amplitude decays. Many damped systems gireeened to be critically damped
so that they settle to their equilibrium point as quickly asgible: examples include car suspen-
sion, measuring instruments, weighing scales, closingdmad, latterly, the Millennium Bridge.

Example: Spring balance.
| am designing a spring balance to weigh babies, seen ifLfig\Milen
| put a typical 4kg baby on the spring it extends by 0.25m. Whatping
coefficientp, do | need to critically damp my system? How long will it take
the reading on the scale to settle down in this case?
This is just a mass on a spring, with = 4kg. When the baby hangs in
equilibrium there is a balance between gravity and the gpgoncemg =
kx = 0.25k, sok = 160Nm~'. The equation of motion is then just egn
@8, so we havey = ;2 andw? = k/m = 40s~2. For critical damping
we needy = w, = /40, requiringb ~ 50Nsm™~'. The system will then \
decay as " = e~ V4%, 50 the reading on the balance will settle down when Y ]V
V40t > 1, orin timet > 0.16s. If we damp less than this the baby will B
bounce for an extended period. If we damp more than this thegwill Figure 40: Baby be-

extend slowly and we will be waiting a long time for the reaglin ing weighed on a
spring balance.

4.3 Energy and amplitude decay
4.3.1 Energy dissipation

For a mass on a spring, the total energy, as before, is

1 1
E=KE+PE = ;mi® + Ska’. (114)

However, unlike in SHM, with damping the total energy is nohserved. Its rate of change is:

E
i—t = mii + kxd = (mi + kx). (115)

Recalling that the equation of motion for a damped mass omiaggs mi + b + kx = 0, we
see that the rate of loss of energy is

dE

- = (=bi) = —bi®. (116)

This is exactly the work done by the frictional force: thecfion force has magnitudeb: and
the power is force times velocity” is always negative as friction only removes energy.

4.3.2 Amplitude and energy dissipation for light damping

For light damping our mass and spring still performs manyllasions with displacement

x = apge " cos(wat + ¢). (117)
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4.4 Comparing oscillators 4 DAMPED HARMONIC MOTION

An example of this motion is plotted in fig.41. The mass’s maxin displacement in each cycle
occurs whenwt + ¢ = 0, which occurs periodically with time periofl = 27/w. If the nth
maxima occurs at timg,, its displacement, which we call the amplitude of the oatlt att,,, is

an = age . (118)

At this point the mass is stationary, so all the energy isq@kenergy, and the total energy is

1 1 x(t)
By = Ska® = Skaje™". (119) 4o

The amplitude decays in time as?*, while the en-
ergy decays at twice the rate, @s"".

N.B. We have only calculated the energy at the
maximum of each cycle. We could however worR
out the the energy at any time by substituting egn
117 into eqi 114.

_a‘//

4.4 Comparing oscillators

We are often interested to know how good an oscfldure 41: Successive maximum displace-
lator is, by which we mean how many oscillatio§€ts in @ lightly damped oscillator.

it performs before its amplitude decays. We saw

earlier that the general damped harmonic equation[(ehn@83ains two characteristic times, a
decay timer = 1/(2v) and an oscillation period = 27 /wy. The ratio of these two; /7, is an
estimate of the number of oscillations performed in one yéoae. If this ratio is large damping
is very light and the oscillator is very good, performing marscillations before the amplitude
decays. However, convention dictates that we in fact meabarquality of oscillators using two
slightly different measures, the logarithmic decremert e quality factor.

4.4.1 The logarithmic decrement

The logarithmic decrement measures how much the ampliti@éghtly damped oscillator falls
by in one cycle. From edn 1118, the ratio of the amplitude otessive oscillations is

an+1 _ eiﬁftn‘l’l

Qp, e_'ytn ’

(120)

However, the time period for oscillationsTs= 27 /w, so we know,,,; = t,, + 27 /w, giving

—y(tn+T)
Uy e 0 B _2my
n e . = e T = “d . (121)
Ay, e in

The logarithm of this is called the logarithmic decrement

_2my 2
: > _ e (122)

A = log (e wd .
Wd

The amplitude of successive oscillations decays by a fadter®, and the energy of successive
oscillations decays by a factor ef 2. A good oscillator has a smah.

The logarithmic decrement is often relatively easy to meaas it just requires us to measure
the ratio of successive amplitudes.
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4 DAMPED HARMONIC MOTION 4.4 Comparing oscillators

4.4.2 The Quality factor
The quality factor of an oscillator is defined as

wo

Q=—. (123)

27y
For a good oscillatoww, > ~ so @ is very large. We initially estimated that the number of
oscillations an oscillator would perform before signifitgrdecaying ist /T = wy/(477y). The
quality factor is simply larger than this by a factor®f, so it estimates the numbers of radians
of oscillation rather than the number of cycles.

For high quality oscillators we have; = /w3 — 72 = wy, i.e. they oscillate at close to their
undamped frequency. This allows us to relate the qualitypfeand the logarithmic decrement,

2 2
A0 T (124)
Wy wo Q

This is useful becausg: is easy to measure, but most people prefer to think in terms of
The energy decays hy 22 each cycle, so, if we start with,, aftern cycles we have left

E = Ey (e7%)" = Epe . (125)
The number of cycles required for the energy to fall by a faofe (i.e. tol/e or 37%) is

1 Q
= =2 = 27N. 12
N (126)
We see thaf) is the number of radians of oscillation required for the ggéeo fall by a factor of
e. It takes half as many radians for the amplitude to fall byshme factor.

4.4.3 Quality factor of Big-Ben

Big Ben is a bell that, when struck, rings at around 100Hz faouad 3s. Estimate Big Ben’s
quality factor.

The bell rings at 100Hz, so in 3s it performdsx 100 = 300 cycles, i.e. the oscillation
takes 300 cycles to die down. Howevérjs the number of radians not the number of cycles, so
Q = 27 x 300 ~ 1800.

4.4.4 Quality factor of a radiating atom

Atoms emit light via quantum transitions. We can model thisha atom oscillating at the fre-
guency of the emitted light, just as Big-Ben oscillates atftaquency of the emitted sound. The
oscillation is damped because the light carries away endfggturing a transition, an atom emits
a 3m long wave-train of visible light with wavelength= 500nm, what is its quality factor.

The 3m long wave train contaiy (5 x 10~7) = 6 x 10° wavelengths, so the atom undergoes
6 x 10° cycles before its amplitude significantly decays. Againdbality factor is the number
of radians, not the number of cycles,@o= 2 x 6 x 10° ~ 4 x 107. The atom is a much better
oscillator than Big Ben.
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5 FORCED OSCILLATIONS

5 Forced Oscillations

Many interesting oscillating systems are driven by extefioraes. The classic example is a child
on a swing. The swing is effectively a pendulum, and will,hiétparent gives it a single push,
perform damped oscillations. However, the child has moreifahe parent pushes the swing
periodically, so that it keeps swinging with high amplituide an extended period. This is an
example of a forced or driven oscillator: if we apply a pertoidrce to a damped oscillator we
can keep it oscillating indefinitely. Forced oscillatiome averywhere, for example the pendula
in clocks are driven by wound springs, the water moleculdsaa undergo forced oscillations
when microwaved, and the air in a trumpet undergoes forceitlaigns when it is blown.
However, as always, we start our analysis with a hor-
izontal mass on a spring (fig.}42). We add an oscillat
driving force applied to the mass;, = Fj cos(wt), SO
Newton’s second law becomes

equilibrium

spring constant k
AN A position

F+Fi+F;=mi = —kx—bi+F,cos(wt) =mi. 7
(127)

7

kx
. ) £ cos(wi)
We can rearrange this to get / W / .
H A — X
b L £ N
¥4+ —i+ —x = — cos(wt), (128) L x
m m m —r

x=0

which is in the form of the general equation for theigure 42: Damped driven mass on a

damped driven harmonic oscillator spring. Top: Mass at rest in equilibrium.
Bottom: Mass at: and with velocityz. It
&+ 2yi + wir = f cos(wt), (129) feels a spring force-kz a friction force

—bd and a driving force cos(wt).
with v = b/(2m), w2 = k/m and f = Fy/m. Again,
before solving formally, it is worth asking what we ex-
pect to happen. If we start from rest, at first the the ampéditoicthe oscillations will build up, but
this growth should not continue indefinitely: eventualhg tmass will settle down into a steady
oscillation at the driving frequency. We also know from oxperience with swings that the am-
plitude of the swing’s oscillations are greatest if we matah frequency of our pushes with the
natural frequency of the swing, so in general we expect thaliarde of the steady oscillations
to depend not only on the strength of our driving, but alsatefrequency. Returning to egn 129,
in the long run we are expecting the mass to oscillate stgatlthe driving frequency, so we try
a solution of the form

x = ag cos(wt + ¢). (130)

Substituting this proposed solution into €gn1129 gives

ap ((wg — w?) cos(wt + @) — 2qywsin(wt + ¢)) = f cos(wt). (131)

5.1 Low frequency response

If we apply a constant forcé’ to a mass on a spring, we know that, eventually, the sprinlg wil
settle down with constant extensian= F'/k as given by Hooke’s law. If we then change the
force a little and wait, the spring will settle down with agitly different extension. Extending
this idea to an oscillating forcé' = F; cos(wt), if the force varies sufficiently slowly the mass
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5 FORCED OSCILLATIONS 5.2 High frequency response

will always be essentially stationary, in equilibrium been the applied force and the spring
force,—kx = Fy cos(wt), so the extension will be
F
L o cos(wt)’ (132)
k
i.e. the displacement of the mass has amplitkige: and is in-phase with the driving force. Math-
ematically, we can see this regime emerge fromlegh 131 biyirggthat at, very low frequencies,
we can neglect the terms proportionalki@ndw?, leaving

agwg cos(wt + @) = f cos(wt), (133)
which is clearly solved by = 0 anda, = f/w?, giving the solution

Fy cos(wt)
2

134
" =, (134)

r = — cos(wt) =
where the latter equality is for the mass-on-a-spring cadee key idea is that, if the driving
force is very slow, the mass’s velocity and accelerationnagligible, so Newton’s second law
turns into a force balance between the applied force andriiegiforce. At low frequencies, the
resistance to the driving force is entirely provided by tharg.

5.2 High frequency response

We next imagine driving the mass at very high frequency. dfsketched in fig. 43, we apply a
rapidly oscillating forceF; cos(wt) to an isolated mass Newton’s second law givsgsC os(er)
0

mi = Fycos(wt), (135) ’
which, integrating twice with respect to time, is solved by
Fy cos(wt) Figure 43: Isolated
T=—— (136) mass driven by a

force Fy cos(wt).

We see the mass’s displacement is always opposite to thaglfowce and, as the frequency gets
high, the amplitude of the oscillations vanishes. Takingavative reveals the mass’s velocity
also vanishes. If the mass is on a spring, driving the masighatffequency results in negligible
displacements and velocities, so neither the spring foocehe damping force are relevant, and
the displacement is just given by €gn 136. We can also seertesge from eqn 131 since cif

is very large, the left side is dominated by the term propodl tow?, so it reduces to

— apw? cos(wt + @) = f cos(wt). (137)

This is solved by) = —7 anday = f/w?, (we could also choosg¢ = 0 anday = — f /w, but we
prefer to keep positive), so the displacement is

. f cos(wt — ) .k (:os(cut)7 (138)

w? mw?

where the latter equality is again for the mass-on-a-spasg. The key is that at high frequency
the mass’s velocity and displacement are negligible, sg dral spring force are negligible and
Newton’s second law reduces to a balance between the appiesdand the acceleratioAt high
frequencies the resistance to the driving force is proviogthe mass’s inertia
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5.3 Resonant response

If we imagine driving a mass on a spring at exacily- wy = /k/m something interesting hap-
pens. The system oscillatesuat, but at this frequency of oscillation, independent of amaple,
there is always a perfect balance between the spring fordetenacceleration; + wizr = 0,

so neither the spring force nor the acceleration can cotnati@nce the driving force in Newton'’s
second law. If the system were undamped, the amplitude afdti#ations would simply diverge.
However, real systems are damped, albeit often lightly, senathe oscillation gets big enough
the damping force can counterbalance the driving force,thadgsystem reaches a steady high
amplitude state. This is called resonance. We can see itycleaqn[131: if we drive the system
at exactlyw = w, then the acceleration and spring terms exactly cancel aratevieft with

— 2apywp sin(wot + ¢) = f cos(wot), (139)

solved byay = f/(2ywo) and¢p = —7/2 (again we want, to be positive), so the displacement

° f cos(wot — w/2)
T = ST .

The displacement is quarter of a cycle behind the drivinggpand the amplitude of the response

is only limited by the damping, so a good oscillator will pung a very high amplitude response.

This effect is called resonancat resonance the resistance to the driving force is provetddely

by the damping

Ther/2 phase shift between displacement and driving force meatgtib driving force is
in-phase with velocity, and thus does work each cycle, agdirergy to the system. In the steady
state, this addition is exactly balanced by the energypi$ésd by the damping.

(140)

5.4 Steady state solution at any frequency

We have just seen that the phase of the displacement shifighe driving frequency. This is
exactly the sort of problem where complex numbers are paatily useful. The physical solution

is the real part of = Ael“! (WhereA = age'? encodes both the amplitude and the phase of the
displacement), and the force is the real parfef’. This leads us to write eqn 129 as

Z4 2y +wiz = fe“. (141)

If we can solve this equation, the real part of the solutiolhlvé the physical solution to edn 1129.
Substituting in our proposed solution= ¢, reduces this equation to an algebraic one

— w?Ae! 4 2iywAe™ + wlAe™t = fet (142)
from which we can cancel a factor &f* to get

f
2

A(—w? + 2i 5) = — A= :
(—w* + 2w +wy) = f o 9w

(143)

To recover the physical solution, we need to cast this is dhe fie'?. We first check we can
recover our three previous special casesw I very small we haved ~ f/w?2. This is real
and positive, so to write it in the formye'® we simply neediy = f/w2 and¢ = 0. At very
high frequencies we havé ~ —f/w?. This is real and negative, so we need= f/w? and
¢ = —m. Whenw = wy we haveA = f/(2iywy) = —if/(2ywo). This is negative imaginary,
so it needsp = —7/2 (sincee /2 = —i)anda, = f/(2yw). We thus recover all three of
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20y

Figure 44: Amplitude (left) and phase (right) of a damped harmonic lzor as a function of driving
frequency. At low driving frequency the amplitude is low finite, and the system oscillates in phase with
the driving force. When driven ai, the system resonates, responding with high amplitude aadefwof

a cycle behind the force. At high driving frequency the amolé decays to nothing and the displacement
is half a cycle out of phase with the driving force. Systemthwewer damping have higher resonances
and the phase shifts from 0 tor more sharply.

our special cases correctly. More generally, the complewbrar in A’'s denominator has length
w2 — w? + 2iyw| = /(w2 — w?)? + 47%w2, and makes an angten(3) = 2yw/(wd — w?) with
the real axis. Thereford has length and phase given by:

2w

s
Voo MO g -

ag = ‘A| =

N.B. We must be careful inverting this foras it varies between 0 andrm, but most arctan
functions only return values betweenr/2 and /2.

In fig. [44 we plot the amplitude and phase for driven oscilgteith a range of damping
coefficients, as a function of driving frequency. We see tighdamplitude resonance emerge in
each case as a peak around- w, with impressively high amplitude when the damping is low.
During resonance the phase shifts frono —=. The shift is sharper with lighter damping.

5.4.1 Power and Resonance

In a driven oscillating system the driving force puts enargy the oscillation while the damping
removes it. In the steady state the amount of energy in themsys constant, so these two
processes must balance: all the energy added by the drietog fs dissipated by the damping.
To calculate how much energy is being dissipated, we firskwat the velocity:

—fwsin(wt +¢) — [ sin(wt + ¢)
Vg =P+ 2 /(g — o) W)+

In the mass-and-spring case, the friction forceiisso the instantaneous power dissipatiohifs
Since the average efn?(wt + ¢) over one cycle is one half, the average rate power dissip&tio

a1 r
(e T

i = —agwsin(wt + ¢) =

(145)

(146)

In fig.[45a we plot the power absorbed by three oscillatork @ifferent damping as a function
of driving frequency. We see a resonance peak in the powerlads when the oscillators are
driven atwy, and that the reducing the damping dramatically incredsepeak power.
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[(a) (b)

P/PFES [

0.8, P % P g 120

Figure 45: (a) Power absorbed by damped driven oscillators as a functiadriving frequency. The
maximum power is absorbed at the resonant frequangyand the magnitude of the maximum power
increases if the damping coefficienis decreased. (b) Same curves as (a) but with each curve limgtha
to the same height. We see that the resonance peaks arertfonitiee higher quality oscillators. (c)
Zoomed in graph of the same power curve for the least dampmdmyy = 0.05, showing the definition
of dw, the width of the peak at half maximum power. The dashed Brtbeé Lorentzian power spectrum
given by eq 147 instead of efn 146, which agrees very well.

5.4.2 Example: IR Absorption Spectra

Molecules can be thought of as assemblies of

masses (atoms) connected by springs (bonds), so power

they exhibit many vibrational modes of oscillation,

each with a characteristic frequency. If we fire a absorbed

beam of light into a beaker containing many iden-

tical molecules it drives these oscillations at its fre-

guency. If we then measure how much of the light P AT e
0} 10x10

passes through the beaker, we know how much
power the oscillations have absorbed. The absoRxure 46: HCI's infrared absorption spectrum.
tion at each frequency is described by €gn|146 so,

if we scan through frequencies, we can plot a graph likd fi shéwing high absorption peaks
at each natural frequency. Such a graph is called an infrabsorption spectrum because the
vibrational frequencies lie in the infra-red. From the et frequencies we can work out which
molecule we have in our beaker. Higl] 46 shows the absorbgmeotrsm of HCI, which, as we
saw earlier, we can model as two masses connected by a spoitige spectrum shows a single
big peak at the resulting resonant frequency.

5.4.3 Lorentzian Peaks in Spectra (Non-examinable)

Other types of spectrography depend on resonances ofatiffescillations, for example nuclear-
magnetic resonance depends on atomic nuclei oscillateig tlagnetic moment in a magnetic
field. In all these spectra, we see peaks described by edqndidégpout of background noise.
Since we can't see the peak’s tails, we describe them witimaliied version of eqil_146 that
only applies around the peak. Thedependent term in the denominator(is;? — w?)/w)? =
(w — wo)*(w + wp)?/w?. Whenw ~ wy (i.e. near resonance) this is well approximated by

(w—wo)®(w+w)?® _ (w—wp)?(2wy)” 9 9 9 1 f?
~ =4 — b ~ —b .
o2 2 wo(w —wp)® = < xz > 8 (W — wo)2 + 7

(147)
This symmetric function, which describes the peak, is daflé_orentzian or a Cauchy distribu-
tion.
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5.4.4 Resonance width and the quality factor

In fig. [48b we plot the same absorption curves as in the lefitrone, but normalized so they
all have the same height. This reveals a second feature afaase: the width of the resonant
peak becomes narrower as the oscillator gets better. Trassat, if we wish to cause a low
damping oscillator to resonate, we need to drive it veryelosts resonant frequency.

We quantify this by asking how far from the resonant freqyemar driving frequency can
be before the total power absorbed falls by a half. We calirioith of the resonant peak at half
powerdw, as sketched in fig._45c. From elgn 146, we see that if we drvesiillator at exactly
wo the power absorbed i§°b/(8v%). To reduce this by half we ne€d? — w?)/w = +2v, a
guadratic equation fap solved by

Whp = Fy +y/wi +7%  (we take the positive discriminant so wp, > 0). (148)
The resonant peak thus has width = 2+. Recalling the definition of the quality factor, we have
0 2 1
w_0_ = (149)

wo wp @

Although high quality oscillators have dramatic resonandbey only occur if you drive them
very close to their resonant frequency.

5.4.5 Example: Breaking a wine glass

When | strike a wine glass, it rings at 789, and the sound dec@'m half a second. If | seek to
shatter the glass by singing at its resonant frequency, hmwiate a singer do | need to be?

In half a second, the glass perforffig) x 0.5 = 350 cycles. Quality factor is the number of
radians for the oscillation to decay, so itjs~ 350 x 27 ~ 2100. The glass is thus a very good
oscillator, so when struck it rings very close to its natfir@juencyw,. To break the glass | must
sing at this resonant frequency. My margin for error is gilogn

0w = ov = L ~ 0.0005 = Jor = 0.0005r = 0.3Hz. (150)
Wo Y Q
At this frequency a semitone is around 20Hz, so this is diffidtis easier if you simultaneously
sing at many glasses, each with a slightly different resbfiaquency.

5.5 Transients and the quality factor (Non examinable)

Thus far we have only dealt with steady state driven osmltgt However, we are also interested
in how long it takes our system to reach the steady state: ifveda system at the resonant
frequency how long do | have to wait for the amplitude reasliiital value? Our general damped
driven oscillator is governed by by the equation

¥+ 2yd + wir = f cos(wt). (151)

We can write the general solution to this equatiorras =z, + x4, the sum of the steady state
solution, z,,, which we have already found, and a part decaying part,However eqini 132 is
linear inx so substituting this form in gives

(Zss + 27Tss + ngss) + (8q + 2724 + ngd) = f cos(wt). (152)

3We actually hear the glass ring for several decay times Hisitd because our ears are amazing and can perceive
sound over many magnitudes of amplitude.
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We know thati,, + 2vi.s + wize, = fcos(wt), so this reduces té; + 2vi4 + wizg = 0.
This is the equation for a damped undriven oscillator, whvehalready know is solved by, =
age” "t cos(wat + ¢q), Wherew? = w@ — +* anda, andg, are constants. The full solution is thus

T = Tgs + g = T = ag cos(wt + @) + age” " cos(wat + Pa), (153)

where the steady state amplitude and phasand¢, are fixed by eqh 144, while; and¢, are
fixed by the initial displacement and velocity. The systeaches its steady state whepn has
decayed which, since itis the same solution, takes the samgéhl of time as undriven oscillations
in the system take to decay. In this time the system condboistg radians of oscillation. Thus
Q is also the number of radians of oscillation a driven syste@ds to reach its steady state.

5.5.1 Example: Breaking a wine glass Il

If, to break the wine glass from the previous example, | needull amplitude of the resonance,
how long must | sustain the accurate note for?

When struck the glass’s oscillations decay in 0.5s. Theydegagart of eqri_ 153 thus also
decays in 0.5s so, to reach the steady state (and break 88 pteeed to sing for at least 0.5s.

5.6 More examples of resonance

e Mechanical resonance in bridgesEngineers must be careful to design bridges that don’t
have resonances that are driven by the bridge’s environniém Millennium Bridge in
London has a resonant frequency close to walking frequeanay, people walking on it
initially caused it to sway disconcertingly. The bridge wassed while damping was
added to reduce the resonant amplitude. More dramatitaflyfacoma Narrows Bridge in
Washington State USA had a resonant frequency excited lwitite causing it to collapse.
You can watch this atmww. yout ube. com wat ch?v=] - zczJXSxnw.

Figure 47: Tacoma Narrows Bridge. Figure 48: The Bay of Fundy in Canada.
Still from film taken by Barney Elliott Map by Decumanus at en.wikipedia.

e Tidal resonances: The Bay of Fundy in Canada (fig. 48) is a shallow rectangular ba
facing the ocean. It takes about 12h for a wave to travel froenlday’s mouth to its
back, reflect, and return to the mouth. High tide is every 13inis, providing a periodic
forcing at close to the bay’s natural frequency, so the theewasonates and builds up a
large amplitude. In the open ocean tides are less than a rak@n the Bay of Fundy tides
reach 16m.

e Acoustic resonances in musical instrumentsA trumpet is a column of air with certain
resonant frequencies. When the player drives the trumpebulazing with his/her lips
into the mouthpiece, the trumpet produces a loud sound, rdutiothe driving (buzzing)
frequency matches one of the trumpet’s resonant frequencie
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e Electrical resonances in Radio and TV Tuners:These have electrical resonances which
are used to selectively amplify the frequency of the broatdsggnal, but not unwanted
channels or noise. These resonances need ahgghthe resonant peak is thin and we only
amplify a very small frequency range. Traditional radiastaned by changing the resonant
frequency until it matches the channel. Modern TVs and adre more complicated.
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Figure 49: Higgs Boson Resonance from CERN

¢ Higgs Boson ResonanceAccording to the standard model of particle physics, a Higgs
Field permeates all of space, and it has a resonant frequanagcillation. If we fire
protons together with a range of energies (which in quantweuhanics are equivalent to
frequencies, related via) then, when we approach this resonant energy/frequeney, th
protons drive an oscillation of the Higgs Field, which we ssethem colliding to form
a Higgs Boson. This shows up in our experiment as an increasigei probability that
the protons collide that looks just like a resonance peakRICEecently found this peak,
shown in fig[49, verifying the existence of the Higgs Boson.
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6 Electrical Circuits

6.1 Charge and Coulomb’s Law

Some fundamental particles carry a property called chavheh comes in two types, positive
and negative. Most matter we encounter contains an almaestlg>equal number of protons,
which are positivity charged, and electrons, which are Byt negatively charged, so the
matter is electrically neutral. However, electrons ardéiciehtly mobile that we can easily move
some from one object to another, leaving both objects aagrstinet electrical charge. When we
do this, we discover that objects carrying the same sign afgehrepeal each other, while those
carrying opposite sign charges attract each other. If, akchkd in fig[ 5D, one object carries a
chargey; and the othe,, and they are a distaneeapart, the magnitude of this force is given by
Coulomb’s law,

qZ

154 T~ qqu ! r v qqu
( ) F= dmey? b F Aney?

q192
r2’

F x

where a n.e'gatlve force de.notes attractl igure 50: Coulomb force between two charged particles.
and a positive force repulsion. If we work
in Sl units (i.e. we measure length in meters and charge indoas) then the constant of pro-
portionality iswleo, wheree, = 8.854187817... x 107'2F /m. In this unit system, the charge on a
proton ise = 1.60217657-1°C, while the charge on an electron-is.

We interpret this force as follows. There exists at everynpimi space a vectdr, which we
call the electric field, and if we put a particle with chargmto an electric field, it feels a force

F = ¢E. (155)

However, charges algoroducean electric field, which points ra-
p=—4 ¢ dially away from them if they are a positive and radially tods
) 4mey? them if they are negative. More specifically, a distandeom a

F=F charge, it produces an electric field
i E= 1 3 156
n 47Teor2r’ (156)

wheret is a unit-length vector pointing away from the charge,
as sketched in fig. 51. Putting these two results togethentb fi
the force on one charge because of the electric field of a decon
charge gives us back Coulomb’s law. This should remind you of
Newton’s law of gravitation, although with the importantfdrence that we can have positive and
negative charge, whereas mass is always positive.

You will study static fields and charges extensively in Ea$egm. However, in this course
we are going to jump ahead of ourselves and think about flovebafge around circuits. These
underpin all electronic devices, so their importance islharoverstate.

Figure 51: Electric field from
caused by a positive charge.

6.2 Current

An electrical conductor is a material which contains moblarge carriers. Typically this is a
metal containing free electrons, though it could also beid ftantaining mobile ions. When we
apply an electric field to a conductor, the charges feel a&fgicand the mobile ones consequently
accelerate alond:. If the mobile charges were in a vacuum they would acceleratefinitely.
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6 ELECTRICAL CIRCUITS 6.2 Current

However, they are actually in amongst densely packed atéonsnetallic conductors, a lattice
of atoms) with which they undergo energy-dissipating isttacollisions. The mobile charge
carriers thus reach a finite average terminal velocity, kmaw/the drift velocity.
Consider a wire with cross-sectional arda shown in fig.
52, containing: mobile charges per unit volume, each carrying
a charge;. If we apply an electric field along the of the wire, the
charge carriers drift along the wire with average velogity. In a
! Q time ¢, the charge in a voluma (v) ¢ passes an observer standing
4 alongside the wire, which is a total char@e= ngA (v)t. The

Figure 52: Electric field in a rate at which charge flows past the observer is thus
wire exerts a force on mobile

charges, causing them to move dQ
with average velocityv). I'=-— =nqA(v), (157)

which we call the electric current, If (v) changes as a function
of time so will the current. The total charge that flows pashen given by integrating eqn 157:

Q= / Idt. (158)
In the special case wherds constant, we can trivially integrate this to get
Q=1It. (159)

It is important to understand that this does not mean the iwibecoming charged? indicates
how much charge has flowed through the wire in a tigdaut in every section of wir€) flows in
and( flows out so the wire remains neutral.

The SI unit of current is the Ampere, which is one Coulomb floyvpast each secof{d.
Since the charge on an electron-ig.6 x 10~C, if we have a current on 1A, then we have
1/(1.6 x 1071) ~ 6 x 10'® electrons flowing past each second.

6.2.1 Example: speed of electrons in a current

A copper wire with cross-sectional ared = 1mm? carries 1A of current. How fast do the
electrons drift? Copper has one free electron per atom, ieps—= 9g/cm3 and atomic weight
63.5/mol.

A cubic centimeter of copper weighs 99, so it contaii§3.5 ~ 0.14 moles of copper.
Recalling that Avogadro’s number ¥, ~ 6 x 10?3, this is8.5 x 10?2 copper atoms. Each
copper atom contributes one free electron, so the densftg®glectrons is = 8.5 x 10*2cm 3.
The current flowing iF = —neA (v) = 1A, and we knowe = 1.6 x 107C andA = 1mm? =
0.01cm?, so the drift velocity is(v) = 1/(ngA) ~ —0.01lcms™!, or a tenth of a millimeter per
second. This is remarkably slow. Electric signals travetrgeh faster than this because, when
we fire up a circuit, the electrons all along the wires starvimg almost simultaneously.

The electron velocity above is negative because electranyg @ negative charge, so they
move in the opposite direction to the current. This is a sempétter of convention: we are stuck
with one introduced by Benjamin Franklin in the 1700s.

4Actually, the Ampere has a more fundamental definition arfthds the Coulomb, but that’s beyond this course.
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6.3 \oltage

Consider a ball of mass: held a distancé:. above the ground. If it is released, it will fall
under gravity gaining kinetic energy. When it reaches treugd, gravity has exerted a force
mg though a distance, so it has done workl’ = mgh on the ball, which has been converted
to kinetic energy. If the ball were not freely falling but king slowly through a viscous fluid,
gravity would still have done the same amount of work, butdhergy would be dissipated as
heat in the fluid. We therefore say that when the ball is at giiéi it has gravitational potential
energymgh, which is released when the ball moves down to the ground.eNenerally, we
might say there is a gravitational potential differencegf,, = gh between the heighit and the
ground, which is an energy per unit-mass, meaning that if ssthamoves fromh to ground, it
releases gravitational potential enetg;, ..

Exactly the same considerations apply to a charge movingin a
electric field. If we have an electric field pointing along a wire, and
a charge in the wire moves a distantiealong the field direction, as
shown in fig. [58, the electric field does work on the chatfg =
qFEdl. If the charge moves a long distance down the wire, frotm b,
the total work done by the electric field is

da,

=

b Figure 53: If I move
W =q [ Ed. (160) a chargeq a distanced!

a against the electric field
E(l) in a wire, | must do
work gE(1)dl.

This work done by the electric field must be converted into sother
form of energy. For current in a wire, it is released as heairbather
circumstances the energy may be turned into light or motitins
useful to introduce a new concept, the electric potentiétiince between andb, defined as

b
Viyy = / Bdl, (161)

so that, if a chargé) flows between frona — b, the total electric energy released is
W = QVasp. (162)

This electric potential difference is measured in Voltsevenone \Volt is one Joule of energy per
Coulomb of charge. When one Coulomb of charge moves thronghagotential difference of

one \Volt, one Joule of energy is released. Note that, in bwletectric and the gravitational case,
we only speak of the potential difference between two poimgsthe absolute potential at a point.

6.4 EMF and Batteries

A battery is a device with two terminals, that generates gasusd potential difference, conven-
tionally labeleds, between them. If we connect a wire between the two termittase will be a
voltage drop along the wire (and hence an electric field withe wire) so a current,, will flow
through it. Consequently a currehtis departing from the high voltage terminal and a current
I is arriving at the low voltage terminal, so a currdnélso appears to be flowing through the
battery. When a Coulomb of charge flows through the wire @éaség Joules of energy as heat,
so when it then flows through the battery, from low voltagenieal to high voltage terminal, it
must acquire Joules of electrical energy to release on its next trip thhaihe wire. We say that
the battery has an electro-motive-force ¢onf) £, which is also measured in Volts (i.e. Joules per
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Coulomb) but in this case, meaning Joules of electricalggngained by a Coulomb of charge
when it flows through the battery.

In a typical battery, energy is stored as chemical energg, anly converted to electrical
energy when a current flows. Other devices genezaitsby converting other forms of energy
into electrical energy: generators convert mechanicatggnt® electrical energy, solar panels
convert light energy and microphones convert sound energy.

While the picture of current flowing through a battery in thigy is a good way to think about
circuits, itisn’t necessarily how sourcesearhfactually work. Some sources (notably generators)
do work in exactly this way, but, in general, we have no gu@ithat the charges that flow into
the low voltage terminal are those that subsequently flovobtite high voltage terminal. Indeed
in most batteries charges do not move from low to high voltagkin the battery (except when
you charge it) rather the high voltage terminal has a largeksof charge at high voltage, and
once it has all flowed to the low voltage terminal the batterysed up.

6.5 Resistance

If we connect a wire between two terminals of a battery themecu flows through it, but how
much current? The answer depends both on the material argktmeetry of the wire, but for
almost all wires we find that the current is proportional te #pplied potential difference

V =1IR, (163)

where the constant of proportionality is called the wiresistance. This resultis known as Ohm’s
law and the units of resistance are Ohfis£{ VA1), The number of Ohms of a component tells
you how many \olts you must apply to drive a current of one Ahmugh it.
We can understand Ohms law better by thinking microscolgicmhagine a cylindrical wire
of length/ connected between the terminals of a battery witteari of V. The wire will then
contain an electric field which will push the charge carrign®ugh the wire with an average
velocity drift proportional E, giving (v) = SE. We recall there is an average drift velocity
because, although the electric field accelerates the chattygy then collide with the atoms in
the wire and slow down again, sbdepends on the atoms in question, and hence the material
of the wire. The drift velocity will be constant along the @/s length, so the electric field must
also be constant. This means that, looking atfeqh 161, weeeathe electric field must have size
E = V/l. Putting this into eqh 157, the total current in the wiré is ngA5V/1, which is Ohm’s
law and, as a bonus, we have derived the wire’s residiafice [/(ngApB).
Distilling this argument to its bare essentials, if we dauile voltage
over the wire, we double the electric field in the wire, so welde the
drift velocity of the charge carriers, so we double the aurr€urrent is g
thus proportional to voltage. We also see that the resistaha wire de-
pends on its geometry: if the wire is twice as long its resistadoubles,
if it doubles in cross-sectional area its resistance halves Figure 54: A battery
with emf ¢ drives a cur-
6.51 Resistors rent/ through a resistor.

R

Although all wires have some resistance, in practice thisteesce of wires is very low. When
we build circuits we normally limit the current by using coaments known as resistors, which
have resistances that are orders of magnitude higher thamcaltwire. We can make these, for

SWe typically merge the three material dependent quantitiesa single material parameter, the conductivity of
the materialg = ngp or, if you prefer, its resistivity = 1/0.
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example, by using a material such as graphite that has a mghbkrhresistance than a metal.
We can now analyze the simplest possible circuit: a resaftaragnitudel connected across a
perfect battery producing amfof £. This is shown as a circuit diagram in fig.]54. The question
we ask is: what is the current through the resistor? The anisvgemple: the potential difference
across the resistor is equal to tef of the battery, and the current through the resistor is given
by Ohm’s law:

S
1= (164)

6.5.2 Resistorsin series

Suppose we now have two resistors, of resistatcand R,, connected
in series across the battery, as shown in fig] 55. The samenturr
I must flow through both resistors (otherwise we have moregehar
flowing out of the first resistor than into the second, whicluldaesult

in it building up between them) and the potential differeaceoss the
each resistor is given by Ohm'’s law

Vi=Visy=1Ry Vo=Vi,e=1IRs. (165)

A Coulomb of charge liberates potential energy when it passes
through resistor 1, the#; when it passes through resistor two. All
this energy must have been given to the Coulomb of chargedgnth
of the battery, so we have

E=Vi+Vo=IR, +1Ry =I(Ry + Ry). (166)
Figure 55: A battery
drives a current through We see that the two resistors offer a combined resistan¢etourrent

two resistors in series.  of R = R; + Rs. This easily generalizes toresistors in series, giving

This is consistent with our observation that a wire’s resise is
proportional to its length. This result also confirms ouuitibn that
we can neglect the resistance of the wires in a circuit likd5#y The
wire has a tiny resistanck,, and is in series with a resistét, so the
total resistancé,, + R is scarcely bigger thaR. Correspondingly the
voltage drop across the wite, = I R,, is also tiny, so the big resisto
feels almost the the wholanf of the battery. In practice we completely
neglect the wire’s resistance in this type of circuit.

6.5.3 Resistors in parallel
Figure 56: A battery
Trives a current’ through
Qwo resistors in parallel.

Next we consider two resistor®; andR,, connected in parallel acros
the battery, as shown in fig. 56. Now there is no need for thetow
carry the same current, but in both cases any charge thattthoasgh
the resistor must lose the entire amount of energy it wasngoyethe battery so the potential
difference across each resistor is the whest® ¢. The current in both resistors is thus

E L _ 8

[ = — = —
1 le 2 RQ’

(168)
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6 ELECTRICAL CIRCUITS 6.6 Power in electric circuits

and the total current provided by the battery is

1 1
I=L+L=V(—=—+—=—). 169
L+ 1 <R1+R2) (169)

From the battery’s perspective, the resistors are equivtdea single resistor with resistance

1 1 1
—=—4+ —. 170
R R i Ry (170)
Again we can easily generalize this taaesistors in parallel,
1 1 1 1
—. (171)

—=— 4+ —+ ..
R R Ry R,
This is consistent with our observation that a wire’s resise is inversely proportional to its area.
Rint

6.5.4 Realistic Batteries a

A
1
1
1
1
1
1
1

4 C
Ideal batteries produce the sam@f regardless of how much current +
they are providing. Real batteries are not so impressiveesihey g() Vzerm: R[]
do offer some resistance to current passing though. A maidestie = |
model is that they behave like an ideal battery in series wigmall
internal resistanc&;,,;, as shown in fig. 37. When the battery is calleﬂ _ER
on to produce current, the voltage drop across the internal resistanée” nt
isV = IR;,, so the voltage seen by the rest of the circult is R;,:. Figure 57: A realistic bat-
For most purposes we neglect this complication. tery can be modeled as an
ideal battery in series with
aninternal resistanck;,;.

b d

6.6 Power in electric circuits

If a total charge? flows through a potential differendé then the total electrical energy released
isW = QV. The rate at which electrical energy is being released is thu

aw . dQ
P=—=V—==17]V 172
dt dt ’ (172)

This applies in any situation where a current flows througbltage so, for example, if a battery
produces aemf of £ and a current, it is providing electrical energy at a ragé. If the voltage
drop is accross a resistor (and the current through theoesithen the power we are calculating
is the rate at which electrical energy is dissipated as Imetita resistor. However, in this case,
voltage and current are related by Ohm’s law, so we can wrégeneral result as

P=1V=-—=1IR. 173
7 (173)

6.7 Kirchhoff’'s Laws

Kirchhoff’s laws encode two principles that we have alreadplicitly used in our treatment of
resistors in series and parallel. However, writing them dermally allows us to tackle more
complicated networks of resistors and batteries.
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6.7.1 Kirchhoff's Current Law

Kirchhoff’s current law states that current is conservea @inction, that is, the total current
flowing into a junction of a circuit is equal to the total curtdlowing out. If this were not
true there would be more charge arriving than departinghsoge would be building up at the
junction, which is not observed.

An example of a junction in a circuit is shown in f[g.158. Kiraffis law tells us that/; =
I, + I3 + 1. In general we write this as

> =0, (174)

where currents are assigned positive values if they areritpwito I, >
the junction and negative values if they are flowing out.

We already used this principle when we discussed resistors
in parallel: when we stated that the total current providedhe
battery is equal to the sum of the currents flowing throughwme Figure 58: A battery drives a
resistors, we were implicitly applying Kirchhoff’s curretaw to current! through two resistors
the junction marked A in fig. 56. in parallel.

6.7.2 Kirchhoff’'s Voltage Law

Kirchhoff’s voltage law is a somewhat disguised versionha principal of conservation of en-
ergy. If we imagine a charge moving around any loop in ourutirahe amount of electrical
potential energy it picks up going through any sourceeraf should equal the amount it loses
passing through any resistors. If this were not true, therwaeld have a situation where we
were producing more heat energy in the resistors than we gsracting from our sources of
emf violating conservation of energy. When a chaggeasses through a component over which
there is a voltage chandg, it gains or loses energyl;. The formal statement of Kirchhoff’s
voltage law is thus that around any loop

Y vi=o, (175)

so that the total energy picked up by a charge going arountbtge ¢ > . Vi, is zero. TheV,
are positive if a charge moving through the component gawesgy, and negative if the charge
moving through the component loses energy, where the mavemi the direction of the loop
we are imagining taking the charge in.

We already used this principle when we discussed resigigrariallel: when we stated that
the voltage across each resistor was equal to the batemf'we were implicitly applying Kirch-
hoff’s voltage law to the loop in the circuit containing thattery andR;, and the loop in the
circuit containing the battery anll;. Similarly with resistors in series, when we stated that the
sum of the voltage drop across the two resistors should ¢da@alattery’semf we were implicitly
applying Kirchhoff’s voltage law to the single loop in theaiit.

6.7.3 Using Kirchhoff’s laws: signs

When applying Kirchhoff’s laws it is all too easy to get coséa about the signs of the various
currents and voltages. The current law is easy. Draw a dagfathe circuit and label each
branch with the current flowing through it;, and an arrow indicating the current’s direction. It
doesn’t matter if the arrow points in the direction the cotractually flows — if it doesn’t you
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will just find your current is negative — but it is imperativeethoose a direction for each current
and stick to it. At each junction, the signs in Kirchhoff’sroent law are dictated by whether the
currents as marked flow into or out of the junction. The vadtéay is harder because there are
two sets of signs to keep track of. The voltage across a coemgdabels how much energy a
charge gains or loses when it flows through the component artecplar direction. This can be
positive if the component extracts electrical energy, éikesistor, of positive if it supplies energy
like a battery. Secondly, when we apply the voltage law toap|ave must also keep track of
whether we pass each component with or against the assigeetah of the voltage. A simple
way through is to mark next to each component a voltegerhich is the potential lost by a
charge flowing through the component in the direction of titedated current. For a resistor, this
is positive, related to the current by Ohm’s lav= I, R, while for a battery, if the current flows
through from the negative terminal to the positive termibalill be negative,V; = —£. In the
voltage law we then imagine taking a charge around a loof,leseas energyV; if it passes the
component in the direction of the indicated current and gaimergyqV; if it passes against the
direction of the indicated current. The voltage law therssimat the total energy change around
the loop must be zero.

a b c a n b K c
R, R, ! I 2
+ + + +
“O ] On —r0O [ O
~ - ~ . -
f e d f e I, d

Figure 59: Left: Diagram of a circuit containing two batteries. Righite label a current in each branch
and a voltage for each component.

As an example of using Kirchhoff’s laws, consider the cit@hiown if fig.[59. On the left
we see the circuit problem as posed: a network of three ogsiand two batteries. We wish to
find the voltage over and current through. On the right, we have the same circuit, but now
each of the three branches has a current assigned, withréegidns indicated by an arrow, and
each component has a voltage change assigned. Applyingitrentlaw to the junction &t (or
equivalentlye) gives

[1+[2_[3:0 (176)

Applying the voltage law to the left loop going clockwise{ b — ¢ — f — a) we pass three
components, each in the direction of the indicated cursantye have

In the latter equality, we have applied Ohm'’s law to the twsistrs, and used the fact that we
know the battery’ssmf which appears with a positive sign because théndicate the energy
lost by a Coulomb of charge flowing through a component, bubal@nb of charge passing

through the battery gains energy Bp = —¢;. Similarly, applying the voltage law to the right
loop (¢ = b — e — d — ¢) we have

—V-V;=V;=0 = & —DLRy—I3R;=0. (178)
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These three equations can be solved for the three unknowentsi7,, /> and/;. Using the latter
two to eliminatel; and/, from the first gives a linear equation foy,

&1 — I3R3 N §o — I35 &1/Ry + &/ Ry

—I3=0 = I3= . 179
R R, ’ ° " 14 Rs/Ry+ Rs/ Ry (179)
The voltage drop oveR; is correspondingly
R R
V _ [3R3 _ 51/ 1 + £2/ 2 (180)

1/Rs+1/Ry+1/Ry

6.7.4 Using Kirchhoff’s laws: current loops

The fact that current must be conserved, means that a R p R
charges must continuously flow in loops. If we assign

| E—
to each loop in a circuit a current flowing around it, we N N
generate a set of currents that automatically obey Klrtgﬁ <> @ CD T £,

hoff’'s current law, leaving us with less work to do. To = =
treat the previous problem in this manner, we assign cur-
rents/; andI, to the two loops, as shown in fig. 160, so f e d

that the current flowing througi®;, which is in both

loops, isI; + I,. Notice that Kirchhoff's current law isFigure 60: Analyzing the circuit in figl 5B
automatically satisfied dtande. All that remains is to Vi current 1oops.

apply the voltage law to the two loops, giving

61 — ]1R1 — (]1 + IQ)Rg =0 and 62 — IQRQ — (Il + ]2)R3 =0. (181)

We wish to find the current througRs, which is I; + I, so we simply add the first equation
divided by R; to the second divided bx, to get

&1/Ry + &/ Ry

Ri+&/Ro—(L1+15)(1+Rs/Ri+R3/Ry) =0 = L+, = , (182
51/ 1 £2/ 2 ( 1 2)( 3/ 1 3/ 2) 1 2 1 +R3/R2 +R3/R1 ( )
as before.
R, R, R; This technique saves more effort in cir-
1 cuits with more loops such as that shown
. in fig. [61. Suppose here we wish to
- find the current thoughRs. The circuit
R
al? g) HR4 UR5 U ® has six branches, so our original approach
would require us to introduce six currents,
but using loops we can use only three

Figure 61: A more complicated circuit analyzed via cur€Urrents, and immediately satisfy Kirch-

rent loops hoff’s current law. Applying the voltage
law to the three loops then gives three lin-
ear equations in our three unknown currents,

S — LR — (L — )Ry =

— IRy — (I — I3)Rs — (I, — I,) Ry
—I3R3 — I3Rs — (I3 — I))Rs =

I
o o o

which, in principle, we can easily solve to firigl
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6.7.5 Using Kirchhoff’s laws: Assigning Voltages

We can do an analogous trick to automatically implementhdodf’s voltage law. We know from
Ohm’s law that there is negligible potential differencecssreach wire in the circuit, so we label
each wire in the circuit with a voltage relative to some adnit reference point in the circuit,
normally taken for convenience as the negative terminahefattery. The potential difference
across each component is then given by the difference iagedt of the wires on either side of
it. If we do this then Kirchhoff’s voltage law is automatiabatisfied since, whatever loop we
move a charge around, it gets back to the same voltage iedtatt Consider, for example, our
resistors in series diagram, fig.155. If we assign a volfdg® the wire marked:, V;, to wire b
andV, = 0 to wire ¢ (which connects to the negative terminal) then, workingk¥ase around
the loop, the voltage drop ovét; isV; =V, — V}, the voltage drop oveR, isV, =V}, — V. and
the voltage drop over the batteryWis = V. — V,. Kirchhoff’s voltage law is thus automatically
satisfied:

Vi Vo= Vi = (V= Vi) = (Vo= Vo) — (Ve = V) = 0. (183)

RecallingV,. = 0, we know the battery’emfis &, soV, = &. Applying Ohm’s law to the two
resistors then give§— V, = I R; andV}, = I R,, which we can solve to findR;, + IR, = &, as
before, and/, = £ Ry /(R + Ra).

6.8 Capacitors

Consider two parallel conducting plates, one holding agdar
+@Q and the other a charge(), as sketched in fig. 62. If
a small chargel is released from the-() plate, it will N F— m
be repelled by the-@ plate and attracted by the(@ plate AN 1/
so, if there is a vacuum between them, it will fly towards
the —(@ plate gaining kinetic energy. When it collides with A /
the —Q plate it will stick, turning all its kinetic energy intoFr———— -Q
heat. Where did this heat energy come from? The separated
+@ and —(Q charges are storing electrical potential energy.
When the chargel@ flows between them, both plates be-
come slightly less charged, so they are storing less aetattrFigure 62: A capacitor formed from
potential energy, and the balance has been released as taegparallel plates with charge ().
We define the voltage between the two plates as the amount
of electrical potential energy released when one Coulondihafge moves between them, so, in
the previous situation, the amount of electrical potergredrgy converted to heat wasi(Q).

Two such charged plates are an example of a circuit com-
ponent called a capacitor. Typically between the plates wep I
put a good insulating material, SO N0 charge can Pass DE m—
tween them as discussed above. However, if we then CON m—— C R
nect a resistoR between the two plates, as shown in fig] 63 -Q
it provides path for charge to flow between them and a cur-
rent/ = V/R will flow through the resistor until the platessigure 63: When a resistor con-
are completely uncharged. The charged plates thus beha¥egd across the plates of a charged
like a battery withemf of V, except that, rather than storeapacitor, it drives a current through
ing energy chemically, they store energy directly as eleatr the resistor.

potential energy. However, unlike a battery which has fixed
voltage between its terminals, the voltage between the tatepdepends on the charge they are
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holding. Returning briefly to the case where a chat@eis allowed to pass between the plates,
if we double the charge on the plates, we double the electid ietween them, so the charge
is pushed twice as hard, and it arrives at the negative pldketwice as much energy, meaning
the voltage between the plates has also doubled. In gereralditage between the plates is
proportional to the charge on them, so we write

Q=CV, (184)

where the constant of proportionality, is called the plates’ capacitance, and is measured in
Farads, where one Farad is one Coulomb per \olt.

A capacitor can be formed by any pair of separated condutttats
carry equal and opposite charges: for example a pair of atgmhcon-
ducting spheres, or concentric conducting cylinders (fi§) & con-
centric conducting spheres. However, all capacitors aserdeed by
eqn[184, with the value of the capacitance depending on the gy
of the capacitor. A capacitor is a circuit component, likeaftdry or a
resistor, but with the voltage across it described byleghra8¥er than
Ohm’s law (resistors) or simply being a constant (battgrid¥e say

Figure 64: Concentric thatacapacitor carrying charges) on its two conductors is “charged”
cylindrical conductors as aor “carries a charg€)”, but it is important to realize that, although the
capacitor. two conductors are charged, overall, the capacitor is akutr

6.8.1 Energy stored in a Capacitor

To charge a capacitor we must move charge from the negatWasged plate to the positively
charged plate. If the capacitor is holding a chayglkeen to move a further chargle we must do
work dWW = Vdq which is stored as electrical potential energy. Howevegesit is a capacitor,
this voltage depends on the charge the capacitor is holdingar 184, givingliV’ = (¢/C)dg.
To find the total work needed to charge a capacitor for Q twe must sum these contributions
using an integral, giving
¢ @ _1 185

W= [ (/0= 5 = 5av. (185)
where( is the final charge on the capacitor avidts final voltage. We can verify that all this
energy is stored in the capacitor by considering dischgrgithrough a resistor. Each time a
chargedq flows through from the positive plate to the negative oneuglothe resistor, it converts
dW = Vdgq of electric energy into heat. However, again, this voltagpeihds on the charge the
capacitor is holding via edn 1B4, giving? = (¢/C)dgq. If we sum these contributions to find
the total energy dissipated in the resistor during the @igyy we have exactly the same integral
as eqri_185. Thus all the energy we thought we stored in thecitapa released as heat in the
resistor during discharge, confirming it was stored in thEacéor.

6.8.2 Exponential decay in an RC circuit

We are also interested in how long it takes to charge and aligela capacitor. If we have an RC
circuit, as shown in fig._83, in which the capacitor has a ch&)gthen the voltage across the
resistor isV’ = )/C, and the current through the resistor discharging the éapas/ = V/R =
@/(CR). However, current is rate of flow of charge so, if a curréffibws for a timedt¢ then a
charged( = Idt has flowed from the positive plate to the negative plate,cieduthe charge on
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the capacitor bylQ). We thus have

Q_,_V_ «Q

i~ R CR
where the negative sign arises because the capacitor is dis-Q“
charging, so the current acts to redu@e Integrating this Q(0)
gives a simple exponential decay of the charge on the capac-
itor as a function of time:

(186)

Q(t) = Q(0)e 7o, (187)

The charge on the capacitor, as sketched infigy. 65, decgy@/e| - ‘
with characteristic decay time = RC. As we might ex- O(0)/e} LD
pect, a big resistor means little current flows, so the capaci = =91 >t
discharges very slowly.

The energylV/ (¢) stored in a discharging capacitor is thfggure 65: Decay of the charge on
a capacitor as it discharges through a
2 2
10 _1QO07 L

w0 . 188 resistor.
g g — RC

W(t)

so the energy decays twice as quickly as the charge, wittydena RC /2 = 7/2.

6.8.3 Charging a capacitor with a battery +Q -Q

Finally, we are also interested in the mechanics of charging
capacitor with a battery. Consider a circuit such as thawsho 1 I I
in fig. [68 containing a battery a capacitor and a resistohdf t n C
capacitor starts uncharged, we expect that current will fitow
the circuit, charging the capacitor. é: )
To analyze this circuit, we first apply Kirchhoff’s voltage
law, which tells us that the voltage across the resistor and
capacitor must sum to themf of the battery

§=1IR+ Q (189) Figure 66: Charging a capacitor with
C a battery.
Secondly, we know that the capacitor remains overall urggirso the current flowing on to its
positive plate must equal the current flowing off its negaplate, so we havé = %. Taking a
time derivative of the above equation thus gives a simpleegptial decay law for the current in
the circuit:

0= R% + é — [ =1I(0)e =e. (190)
We see that the current in the circuit is high at early timad, @ecays thereafter. This is because
at first the capacitor is uncharged, so there is no voltagesadt, and the wholemf of the battery
is lost across the resistor, driving a large current throiiglhs charging proceeds, the voltage
over the capacitor rises, so the voltage across the residl®rand hence the current also falls.
At t = 0 the capacitor is uncharged (= 0) so substituting this current (egn_190) into €gn]189
gives/(0) = £/ R. The same substitution gives the charge ad

Q) = C¢ (1 . e—%> . (191)
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We see that the capacitor charges with the same charaicténst - = RC as it takes to decay.

Finally, it is interesting to think about energy in this ofjiaig process. There is something of
a mystery here, since a charge= C¢ has flowed off the positive terminal of the battery and
onto the negative terminal, releasing ene€gy, but the energy stored on the capacitor is only
$Q¢. The other half of the energy is dissipated in the resista.cah see this directly, since we
know the power dissipated in a resistor ¥4z, so the total energy dissipated in the resistor in the
charging process is

o) 2 inf
W = / I(t)?Rdt = g_/ e Tedt = lcgz = 1@5. (192)
o R J, 2 2

If our resistor is very small, the capacitor will charge vguickly, but half the energy lost by the
battery is always dissipated in the resistor.

6.9 Inductors

This is not a course on magnetic fields, which are coveredaatgr detail in Easter term. How-
ever, here we need to understand a final circuit componeleidcah inductor, which works via
magnetic fields, so we first recap their properties.

6.9.1 Magnetic Fields

The magnetic field, much like the electric field, is describgd vector at each point in space,
which we labelB. However, the forces produced by magnetic fields are albegebore compli-
cated than those produced by the electric field: unlike inefleetric case, the universe doesn’t
contain any objects that carry a net “magnetic-charggeivhich experience a forcE = ¢gB. If
we put a regular electrically charged particle into a maigrfetid, it does experience a force, but
only if it's moving. More precisely, if a chargghas velocityv in a magnetic field, it experiences
a magnetic force which is orthogonal to both the magnetid f&ld the velocity of the particle
given by:

F =q(v x B). (193)

The unit of the magnetic field is the Tesla (T), where one
1T=1Ns/(Cm): a charge of one Coulomb moving at one me-
ter per second perpendicular to a field of 1 Tesla feels a force
of one Newton.

We can thus observe magnetic fields by looking at t
forces they exert on moving charges, or currents in wir
However, nature also provides us with another tool. Some ob-
jects, such as bar magnets, carry magnetic dipoles, meanin
that they appear to carry a magnetic chargg or north-pole
at one of—¢g (a south-pole) at the other end. These magnetic
charges appear to produce magnetic fields that radiate out of
the positive charge (north-pole) and into the negativegsar
(south pole), so the whole dipole produces the well-knoWwigure 67: Magnetic Field of a bar
field of a bar magnet, shown in fig.167. Furthermore, jugfgnet. The field lines radiate out of
like electric charges, the north-poles of two magnets regselthe north pole and into the south pole.
do the south-poles, while north and south poles attract eltfge by wikipedia user by Geeks,
other. However, unlike in the electric case, we cannot teolicensed as GFDL.
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a net charge: if we try, for example by cutting a bar magnetai, lwe find it divides into two
shorter dipoles rather than separate north and south peles if we get down to fundamental
particles, we find that they still cary an intrinsic magnetipole. The magnetic charges are a
useful way of thinking, but, as far as we know, they don’t adijuexist.

If we put a dipole in a homogeneous magnetic field, the fielddaet exert a net force on the
dipole (since the forces on the two poles are opposite anzktant) but it does produce a turning
moment that tries to align the dipole with the magnetic fi€lthis is how a magnetic compass
works: the needle in it is a magnetic dipole, which alignshwitie magnetic field of the earth.
Iron filings behave similarly since they acquire a magnepol& when placed in a magnetic field.
This allows us to visualize magnetic fields by sprinklingnifdings or little bar magnets around
another source of magnetic field and observing which way &tigy.

6.9.2 Magnetic Field from a wire

If we have a long straight wire and we run a currétitrough

it, it produces a magnetic field in its surroundings. We can ob

serve the form of this field with iron filings, and we discov

that, as sketched in fi§. 68, the magnetic field forms as ring B

around the wire, with a direction given by a right-hand-rule

(point your right thumb along the current, and your fingers

wrap in_the direction of the field). The strength of the field ﬁgure 68: Magnetic Field of a cur-
proportional to the strength of the current. rent carrying wire. The field forms

Historical note: this was first reported by Oersted igoncentric circles around the wire,
1820, who conducted a famous experiment placing a cqfih the direction given by the right-
pass over a conducting wire, and showing that the needlé&fd-rule. Image by wikipedia user
the compass aligned perpendicular with the wire. This wiagJfmelero, licensed as GFDL.
the first time a force had been seen to act between two objects
(the needle and the wire) that wasn't along their separatibthen took Ampere less than a week
to show that the magnetic field lines lie in concentric ciscd&ound the wire.

a : TSR The magnetic field of a wire bent into a loop is shown
traced in fig[6D. We can qualitatively understand the shape
of the field by breaking the wire into small arc lengths that ar
effectively straight, and imagining that each produce eoAc
tric rings of field. Each of these contributions producesld fie
through the loop in the same direction, so there is a large: fiel
through the loop. Outside the loop the contributions paint i
different directions, so the field is weaker. The strengitinef
field is proportional to the strength of the current.

6.9.3 Electromagnetic Induction

]

Figure 69: Magnetic Field of a cur- Thus far, electricity and magnetism have been separate phe-
rent loop traced with iron filings.  nomena, albeit both acting on the same charges. However, a
simple experiment reveals that, at least when the fields vary
in time, they are intimately linked. If , as sketched in figl, W@ have a wire loop, and we move
a bar magnet towards it, we discover it causes a current tofioiae loop. However, the current
only flows while the magnet is being moved: if we hold the magti# the current stops. More
precisely, the current is proportional to the strength efrilagnet’s field and the velocity of the
magnet through the loop. If we reverse the velocity of the meagve reverse the direction of the
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current. We can also establish that the current is invers@gortional to the wire’s resistance,
so, invoking Ohm'’s law, we can say that the movement of themegtiprough the loop is inducing
anemfin the loop proportional to the velocity and strength of thegmet.

More careful experiments reveal that temf around any

»? loop induced by changing magnetic fields is given by
dos
= — 194

whereg¢ s, called the magnetic flux, measures how much mag-
netic field passes through the loop. If we think of the magneti
field as a velocity field for a fluid, we can then calculaigas
the rate at which the fluid flows through the loop. For example,
_ in the very simple case where we have a loop of ateand a
Figure 70: W'he.n.a magnet moves, ,stant magnetic fiel& flowing through it perpendicular, we
towards a coil, it induces a current.. ; 9
0 flow in the coil §|mply havg¢B = BA. The units ofgb,? are thusI'm~. In our
initial experiment, when the magnet is far from the loopy¢he
are very few magnetic field lines flowing through the loop«sois small. When the magnet is
close to the loop, many field lines pass through the loop,s® big. Theemfin the loop arrises
wheng g changes, which occurs when the magnet approaches the loop.

The minus sign in egqn_194 encodes an important idea. As werséig.i[69, when current
flows in a loop it produces its own magnetic field, which itslelivs through the loop. The signiin
eqn 194 indicates that the direction of the current indundte coil will be such that its magnetic
field opposes the changedr driving the current. The result is known as Lenz’s law.

6.9.4 Self Inductance

When a current flows around a loop it produces a magnetic heldtself flows through the loop.
Thus the magnetic field of the loop itself has a magnetic #liuxthrough the loop. Although
calculating this flux is difficult, we know that if we doubleglcurrent in the loop, we will double
the strength of the field, and thus have twice the flux, so thetfitough the loop is proportional
to the current in the loop. We therefore write

¢p = LI, (195)

where the constant is known as the loop’s self-inductance, and is measured nryde where
1H = 1Tm?/A. This linear relationship holds for all geometries of loppst the constant of
proportionality,Z, is different for loops of different shapes.

If the current through a loop changes, then the flux throughdbp from its own magnetic
field, o = LI, changes. By the law of electromagnetic induction, [eqn 1184, means that an
emfis generated in the loop

e—_ dos _pdl (196)

This emf is proportional to the rate of change of the current in theloblowever, theemf is
also within the loop, so it drives current in the loop. Lerdaw allows us to understand how this
influence works: themf acts to oppose the change in flux through the loop that occlesthe
current changes, so it acts against the change in currene tfy to increase the current in the
loop, anemf appears around the loop trying to drive a current in the oppaéection to slow
the build-up of current, while, if we decrease the currerthimloop, aremf appears around the
loop that acts to push more current around the loop, slowiaglecrease in the current.
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6.9.5 Inductors as circuit elements

We use the effect of self-inductance to make a circuit corepbialled an
inductor. As with our previous circuit elements, this is ati@rminal device,
but between the terminals is a wire wound into coil, as shawfigi [71. The
wire coil has negligible resistance, but if a current flowsttgh it, each loop
in the coil makes a magnetic field like that in fig.] 69, whichgmssthrough
both itself and many other loops of the colil, so the inducts b very high
selfinductancd.. When the current through the coil changesearigiven by

_ ~given by eqri_196 appears between the two ends of the coibéwveen the
Figure 71: Awire  terminals of our inductor. An inductor is thus a two termioatuit element,
coil forms an air- \here the voltage across it is determined by the rate of ahafigurrent
core inductor. passing through it. This contrasts with a resistor, for Whice voltage is
determined by the current flowing through it, a capacitaryibich the voltage is determined by
the charge, or a battery, for which it is constant.

6.9.6 Inductor and a battery

The simplest circuit we can make involving an inductor is@pleontaining
an inductorZ and a battery with aemf of ¢, as shown in fig.[712. The
battery tries to drive a current through the inductor, big th resisted by  +
the backemf of the inductor. The current at every point is the same. %/
Kirchoff’s voltage law, theemf of the battery must equal tlenf across the ()
inductor, so we have —

dl £
& — LE =0 = I{t)= ft’ (197) ]
i.e. the current through the inductor grows linearly in tiniehis makes
sense: a linearly increasing current gives a linearly gisiox through the gigyre 72: A battery
inductor, and hence a constant batkf across the inductor, which matchegng an inductor.

theemf of the battery.

6.9.7 Energy in an inductor

In the above example, an ever increasing amount of currems fllom the positive terminal of
the battery to the negative one, releasing the batteryggra a ratef /, leading us to ask where
this energy has gone. There is no conventional resistanoarigircuit to dissipate the energy
as heat. The answer is that the energy is stored in the eweasing magnetic field inside the
inductor. We can calculate how much energy the inductoestby looking at how much energy
the battery has released by tifie

B T B T §2t - §2T2 - 1
W_/O g[(t)dt_/o Tdt_ 57 _ELI(T)Q. (198)

More generally, the power absorbed by an inductor is, asyatee product of the current through
it and the voltage over iP = VI = /L4, The power absorbed in a tind¢ is thusdW = Pd¢ =
VI = IL%dt = I LdI, so the power absorbed building the current up from zetbiso

1
W= [ ILdI = 1Lﬂ, (199)
0 2

which agrees with our previous calculation. This is the gainesult of the energy stored in an
inductor when it is carrying a curreit
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6.9.8 Exponential decay of an RL circuit

Consider a circuit consisting of an inductor and a resistarloop, as shown

in fig. [73. If, att = 0, we prepare the circuit with a currehflowing in it,
what happens next? The flow of the current is resisted by istog, but

a reduction in the current is resisted by the inductor. Apg\Kirchoff’s
voltage law to the loop, we the baeknf from the inductor must match theR
potential difference across the resistor, giving

—IR-— L% —0 = I(t)=1(0)e T, (200)
i.e. the current in the circuit decays exponential with geaaer = L/R.
We can understand this from an energy perspective. At theebthe
inductor is storing energng(O)Q. However, the same currerdt,is flowing
through the resistor, dissipating energy as heat at a?ate /2R. This energy must ultimately
come from the stock of energy in the inductor, so this stotik fa time, meaning the current in
the loop falls in time. The total energy dissipated in thestes is

Figure 73: A induc-
tor and a resistor.

> > 2 1
W = / I?Rdt = / [(0)2Re™Z'dt = 5LJ(O)Q, (201)
0 0

i.e. all the energy that starts in the inductor is ultimattisipated in the resistor.
The energy stored in the inductor decay$a$t) = s LI(t)* = E.(0)e L', so it also decays
exponentially but at twice the rate as the current, with geitae T = L/(2R).

6.10 Summary of Circuits

e The electric current through a surface is the rate at whielngghpasses through the surface:

_ g

I=—". 202
o (202)

e The potential difference between two points is the amourdleétrical energy turned to
other forms of energy when a unit of charge moves between,ttreme when a charge
moves,

W =qV. (203)

e A battery gives electrical energy to the charges that floaugh it. In a circuit the potential
difference across a perfect battery is alway®itg ¢,

V=—¢ (204)

e When a capacitor of capacitan€eholds a charg€), the potential difference across it is
given by
V=Q/C. (205)
e When a currenf flows through a resistak the potential difference across it is

V =IR. (206)
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When the current through an inductdr,is changing the potential difference across it is

d7
= —. 207
vV T (207)

To analyze circuits, we need the above constitutive lawsdch component, and Kirchoff’s
laws. Firstly, at a junction in a circuit current is consefye . /; = 0. Secondly, the sum of
the potential differences around every loop in a circuit sdgero) |, V; = 0.

When a current flows through a potential differendé, the rate at which electrical energy
is converted to other forms is
P=VI (208)

A battery thus puts electrical energy into a circuit at a rate
P =I¢. (209)
The power that flows into a resistor is dissipated as heatatta r

P=VI=V?/R=1IR. (210)

The power that flows into capacitors and inductors is stoneldcan be recovered later. The
energies stored in a capacitor and an inductor are

We = LQv = Lov? = 1Q%/(20) Wy =3iLI” (211)
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