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Spin and Oscillator

An oscillator as a Classical Spin

Consider first a classical particle in a two-dimensional quadratic
potential well.

H =
p2 + q2 + x2 + y2

2
, . (1)

where p and q momentums conjugated to coordinates x and
y respectively. Introduction of the coplex amplitudes

a =
x + ip√

2
, ā =

x − ip√
2

, (2)

b =
y + iq√

2
, b̄ =

y − iq√
2

(3)

allows to re-write the Hamiltonian in the form

H = āa + b̄b = ᾱα, (4)

where the spinor notations

α =





a
b



 , ᾱ =
(

ā, b̄
)

(5)

1



2

is introduced. Next stage is to parametrize the spinor α by

the mean of spherical angles θ and χ:

α =
√

E





cos θ/2

sin θ/2



 eiχ/2, (6)

where E is the total energy. Using the the fact that the
pairs x and p and y and q are canonically conjugated, one

can find out that the complex amplitudes are conjugated in
the sence of canonic equations

ȧ = −i
∂H

∂ā
= −ia, ˙̄a = i

∂H

∂a
= iā, (7)

ḃ = −i
∂H

∂b̄
= −ib, ˙̄b = i

∂H

∂b
= ib̄, (8)

or, in the spinor notations,

α̇ = −i
∂H

∂ᾱ
= −iα, ˙̄α = i

∂H

∂α
= iᾱ. (9)

Making the Legendre transformation, find the lagrangian

 L(α̇, α) = −iα̇ᾱ − H(α, ᾱ) (10)
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An oscillator as Spin

Consider first a quantum particle in a two-dimensional quadratic

potential well.

H =
p2 + q2 + x2 + y2

2
; [x, p] = i; [y, q] = i. (11)

This Hamiltonian can be diagonalised by introducing the

creation-destruction operators

b =
x + ip√

2
, b+ =

x − ip√
2

, a =
y + iq√

2
, a+ =

y − iq√
2

;(12)

H =
b+b + bb+ + a+a + aa+

2
, E(n1, n2) = n1 + n2 + 1.(13)

The Hamiltonian (11) possesses axial symmetry and, as a
result, the operator of angular momentum

l̂ = py − qx = i(b+a − ba+) (14)

commutes with the Hamiltonian. But this is not the only

symmetry of the Hamiltonian (11). Since the variables x, p
and y, q are separable, the Hamiltonians for the motion

along x and y axis commutes with the total Hamiltonian.
As a result, the operator

ŝ =
p2 − q2 + x2 − y2

2
= b+b − a+a (15)

also commutes with the Hamiltonian. The commutator of

l̂ and ŝ is
[l̂, ŝ] = 2iĥ, (16)
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where the Hermitian operator

ĥ = b+a + ba+ = pq + xy (17)

has non-zero matrix elements for following transitions

n1 → n1 + 1, n2 → n2 − 1,

which does not change the energy. So, it is not surprising
that ĥ commutes with the Hamiltonian as well. Three oper-

ators ĥ, l̂ and ŝ form a closed algebra with the commutation
relations:

[ĥ, l̂] = 2iŝ; [ŝ, ĥ] = 2il̂; [l̂, ŝ] = 2iĥ. (18)

These relations strongly remind the commutation relation

for spin operators. Introducing

ŝ = 2ĵx; ĥ = 2ĵy; l̂ = 2ĵz, (19)

we find that ĵx,y,z commute exactly like the spin compo-
nents. Thus, the Hamiltonian (11) commutes with all three

generators of the SU(2) group, which implies that each en-
ergy level can be characterized by the eigenvalues j(j + 1)

of the Casimir operator

J2 = j2
x + j2

y + j2
z = j(j + 1). (20)

The Casimir quantum number j can be equal to any posi-
tive integer or half-integer or zero. It follows directly from

definitions (14) and (15) that

4J2 = 4j2 + 4j = H2 − 1, (21)
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which gives the following values of the energy

Ej = 2j + 1, (22)

where j is either zero, or a positive integer or half-integer.

Each energy level is (2j + 1)-fold degenerate. The orbital
momentum l is equal to the doubled value of the projection

jz of J on the z-axis, jz being equal to

jz = −j,−j + 1, ...j.

Therefore, if j is an integer (or zero), then l is an even
integer

0 ≤ l ≤ 2j.

If j is a half-integer, then l is an odd integer

1 ≤ l ≤ 2j.

This separation of the even and odd values of the angular

momentum is the result of the commutation of the parity
operator

P : x → −x, y → −y, p → −p, q → −q (23)

with the Hamiltonian (11) and all operators l, s and h of

the algebra. The commutation implies that the eigenstates
of the Hamiltonian have either even or odd parity. This

means, in particular, that, unlike the hydrogen atom, a
linear oscillator has no linear Stark-effect.



6

Complex Coordinates

To find the wave functions of a two-dimensional oscillator

it is useful to switch from the Cartesian coordinates x and
y to the complex coordinates z and z̄

z =
x + iy√

2
, z̄ =

x − iy√
2

, (24)

∂ =
1√
2

(

∂

∂x
− i

∂

∂y

)

, ∂̄ =
1√
2

(

∂

∂x
+ i

∂

∂y

)

,(25)

dz ∧ dz̄ = −i · dx ∧ dy. (26)

Instead of the creation-destruction operators a, a+, b, b+, we
introduce the operators

φ =
b + ia√

2
=

1√
2

(

z + ∂̄
)

, (27)

φ̄ =
b − ia√

2
=

1√
2

(z̄ + ∂) , (28)

φ+ =
b+ − ia+

√
2

=
1√
2

(z̄ − ∂) , (29)

φ̄+ =
b+ + ia+

√
2

=
1√
2

(

z − ∂̄
)

. (30)

The operators φ, φ̄ and φ+, φ̄+ commute exactly like a, b

and a+, b+

[φ, φ̄] = [φ+, φ̄+] = [φ, φ̄+] = 0, [φ, φ+] = [φ̄, φ̄+] = 1,
(31)

and the Hamiltonian can be rewritten as

H = {φ+φ + φ φ+ + φ̄+φ̄ + φ̄ φ̄+}. (32)



7

The ground state |0 > corresponds to the wave function

Φ0(z, z̄), which obeys two conditions:

φ Ψ0(z, z̄) ∝
(

z + ∂̄
)

Ψ0(z, z̄) = 0 (33)

φ̄ Ψ0(z, z̄) ∝ (z̄ + ∂) Ψ0(z, z̄) = 0. (34)

The solution of both Eqs (33) and (34 ) has the form:

Φ0(z, z̄) = exp [−zz̄] (35)

The first excited states Φ1(z, z̄) can be obtained by acting

by operators φ+ and φ̄+ on Ψ0:

Ψ1,1(z, z̄) = φ+ exp [−zz̄] =
√

2 z̄ exp [−zz̄] , (36)

Ψ1,−1(z, z̄) = φ̄+ exp [−zz̄] =
√

2 z exp [−zz̄] . (37)

Acting on Φ0(z, z̄) n+ times by operator φ+ and n− times
by operator φ̄+, where n+ + n− = n, we obtain the basis of
2n + 1 functions of the n-th excited state. All wave func-

tions for these states are polynomials of joint order n in z
and z̄, multiplied by the exponential Eq (35).

Spin as an Oscillator

We found that the wave functions, which are forming the
multiplets of a two-dimensional oscillator, form, at the same

time, representation of appropriate degeneracy of the su(2)
algebra with generators λ, σ and η. This means that the os-

cillator’s creation and annihilation operators form a repre-
sentation (14,15,17,19) of the spin operators (the Schwinger
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representation):

jy =
i(a+b − b+a)

2
, jx =

a+b + b+a

2
, jz =

a+a − b+b

2
.

(38)
The Schwinger construction of angular momentum via cre-

ation and annihilation operators of the oscillator consists of
several stages:

• Take the groud state |0, 0 > of the oscillator and create

an excited state

|n1, n2 >=
(a+)n1(b+)n2

√
n1! n2!

|0.0 >; (39)

• introduce the rising and lowering operators j± and the
operator jz

j+ = jx + ijy = a+b; j− = jx − ijy = b+a,(40)

jz =
a+a − b+b

2
; (41)

< (n1 + 1, n2 − 1|j+|n1, n2 >=
√

(n1 + 1)n2; (42)

< (n1 − 1, n2 + 1|j−|n1, n2 >=
√

n1(n2 + 1) (43)

< (n1, n2|jz|n1, n2 >=
n1 − n2

2
. (44)

• assume n1 + n2 = 2j and n1 − n2 = 2m, from which

follows

n1 = j + m; n2 = j − m; < j, m|jz|j, m >= m ;(45)

< j, m + 1|j+|j, m >=
√

(j + m + 1)(j − m); (46)

< j, m − 1|j−|j, m >=
√

(j + m)(j − m + 1). (47)
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• this makes

|j, m >=
(a+)j+m(b+)j−m

√

(j + m)! (j − m)!
|0, 0 >; (48)

|j, j >=
(a+)2j

√

(2j)!
|0, 0 > . (49)

• the square of total momentum j2 = j2
z +(j+j−+j−j+)/2

is equal j2 = j(j + 1).

Schwinger managed to obtain from this representation the
explicite expression for rotation matrices, the Clebsch-Gordon

coefficients and many other things.
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Appendix. Two-dimensional electron in

magnetic field

Complex coordinateds are very convenient for solving the Schrödinger equa-
tion in magnetic field. First of all, the Laplacian ∇2 can be written in very
simple form:

∇2 = 2 ∂̄ ∂.

It follows from curl A = B that

Bz = ∂xAy − ∂yAx = i (∂ A− ∂̄ Ā); A =
Ax − iAy√

2
, Ā =

Ax − iAy√
2

. (50)

In the uniform magnetic field B directed along z-axis, the vector potential
(A, Ā) has the following form:

A = − i z B

2
+ f(z̄); Ā =

i z̄ B

2
+ f̄(z). (51)

The gauge-fixing condition (axial gauge)

∂̄A = ∂Ā = 0 (52)

gives

A = − i z B

2
; Ā =

i z̄ B

2
. (53)

The Schrödinger Hamiltonian H in magnetic field may be written as

Ĥ = −∇2 = −(∂̄ − i e Ā)(∂ − i e A) − (∂ − i e A)(∂̄ − i e Ā) = (54)

Measuring coordinates z and z̄ in the units of magnetic length and introduc-
ing operators φ, φ̄, φ+ and φ̄+ in these new units by the means of Eqs (27,
28, 29, 30), obtain

Ĥ = e B
(

φ+φ + φ φ+
)

= e B (2n + 1). (55)

The fact that the Hamiltoian (54) contains only operators φ and φ+ and does
not contain (and, therefore, commutes with) operators φ̄ and φ̄+, means that:
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• the ground state still has the form

Ψ0,0 ∝ exp[−z̄z ] (56)

• all states
Ψn,0 =

(

φ+
)n

Ψ0,0 ∝ z̄n exp[−z̄z ] (57)

correspond to the states at n-th Landau level with the energies En =
e B (2n + 1).

• all states
Ψn,m =

(

φ̄+
)m

Ψn,0 (58)

correspond to the states at n-th Landau level with the value m of
angular momentum and the energie En = e B (2n + 1).

• in paricular, the states

Ψ0,m =
(

φ̄+
)m

Ψ0,0 ∝ zm exp[−z̄z ] (59)

correspond to the states at lowest Landau level.

An example of a state at n-th Landau level is

Ψn,1 ∝ (2z̄z − n) z̄n−1 exp[−z̄z ] (60)


