Tale 45
Spin and Oscillator

An oscillator as a Classical Spin

Consider first a classical particle in a two-dimensional quadratic
potential well.
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where p and ¢ momentums conjugated to coordinates x and

y respectively. Introduction of the coplex amplitudes
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allows to re-write the Hamiltonian in the form

H = aa + bb = aq, (4)
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where the spinor notations
a/ _ _ —
az(b), a=(a, b) (5)
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is introduced. Next stage is to parametrize the spinor a by
the mean of spherical angles 6 and y:
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where FE is the total energy. Using the the fact that the
pairs z and p and y and ¢ are canonically conjugated, one
can find out that the complex amplitudes are conjugated in
the sence of canonic equations
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a= Z@EL_ 1a, a—zaa—za,
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b = —Z% = —Zb, b = Z% = Zb, (8)
or, in the spinor notations,
oH . oH

Making the Legendre transformation, find the lagrangian

L(c, ) = —ida — H(a,a) (10)



An oscillator as Spin

Consider first a quantum particle in a two-dimensional quadratic
potential well.
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This Hamiltonian can be diagonalised by introducing the
creation-destruction operators
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The Hamiltonian (11) possesses axial symmetry and, as a
result, the operator of angular momentum
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E(ni,ng) = ny + ng + 1(13)

[ =py—qu = i(b*a — ba™) (14)

commutes with the Hamiltonian. But this is not the only
symmetry of the Hamiltonian (11). Since the variables z, p
and y,q are separable, the Hamiltonians for the motion
along r and y axis commutes with the total Hamiltonian.
As a result, the operator
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also commutes with the Hamiltonian. The commutator of
[ and § is

=b'b—ata (15)

s =

[0, 8] = 2ih, (16)
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where the Hermitian operator
h=b"a+bat = pg+ zy (17)
has non-zero matrix elements for following transitions
ng—ni+1, no—mng—1,

which does not change the energy. So, it is not surprising
that h commutes with the Hamiltonian as well. Three oper-
ators iz, [ and § form a closed algebra with the commutation
relations:

A ~

(h, 1) = 2i5;  [3,h) = 2l; [I,3] = 2ih. (18)

These relations strongly remind the commutation relation
for spin operators. Introducing

SN

5= ij; h = 2jy; = 2527 (19)
we find that j,,. commute exactly like the spin compo-
nents. Thus, the Hamiltonian (11) commutes with all three
generators of the SU(2) group, which implies that each en-
ergy level can be characterized by the eigenvalues j(j + 1)
of the Casimir operator

P =gi4g+ =30+ (20)

The Casimir quantum number j can be equal to any posi-
tive integer or half-integer or zero. It follows directly from
definitions (14) and (15) that

4J* =45* +45 = H* -1, (21)



which gives the following values of the energy
E; =25 +1, (22)

where j is either zero, or a positive integer or half-integer.
Each energy level is (2j + 1)-fold degenerate. The orbital
momentum [ is equal to the doubled value of the projection
7. of J on the z-axis, j, being equal to

J: =3, =]+ 1.7,

Therefore, if j is an integer (or zero), then [ is an even
integer
0<1<25

If 5 is a half-integer, then [ is an odd integer
1<1<25.

This separation of the even and odd values of the angular
momentum is the result of the commutation of the parity
operator

P: o——z,y——-y,p——p qg——q (23

with the Hamiltonian (11) and all operators [, s and h of
the algebra. The commutation implies that the eigenstates
of the Hamiltonian have either even or odd parity. This
means, in particular, that, unlike the hydrogen atom, a
linear oscillator has no linear Stark-effect.



Complex Coordinates

To find the wave functions of a two-dimensional oscillator
it is useful to switch from the Cartesian coordinates x and
y to the complex coordinates z and z

T+ 1y T —wy
= — = 24
z \/§ Y z \/§ Y ( )
1 /0 0 - 1 /0 0
? V2 <8x Z@y) ’ ? 2 (&x —H@y) (25)
dzNdz = —i-dxAdy. (26)

Instead of the creation-destruction operators a,a™, b, b, we
introduce the operators

b+ ia 1

¢ = 7 :ﬂ(wé), (27)
— b—1a 1

¢ = \/§ :\/E(Z—}_a)v (28)
L bt —dar 1

Cb - \/5 —\/5(2—(9), (29)

. b +ida® 1

o = 2 zﬁ(z—é).

The operators ¢, ¢ and ¢T, ¢+ commute exactly like a, b
+ ot

(30)

and a

(0.0l =107 0] =[0.07]=0, [b,¢"]=1[00"]

I
—~ =

and the Hamiltonian can be rewritten as

H={¢"o+¢ ¢ "+ 0+ o'} (32)
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The ground state |0 > corresponds to the wave function
®q(z, Z), which obeys two conditions:

¢ Wo(z,2) x (2 +0) Uy(z,2) =0 (33)
¢ Wo(z,2) o< (2 +0) ¥y(z,2) = 0. (34)

The solution of both Egs (33) and (34 ) has the form:
dy(z,2) = exp [—2Z] (35)

The first excited states ®1(z, Z) can be obtained by acting
by operators ¢ and ¢ on Uy:

Ui1(2,2) = ¢Texp[—22] = V2 2 exp[—22], (36)
Uy 1(2,2) = ¢" exp[—22] = V2 2 exp[—22]. (37)

Acting on ®g(z, Z) ny times by operator ¢ and n_ times
by operator ¢t, where ny +n_ = n, we obtain the basis of
2n + 1 functions of the n-th excited state. All wave func-
tions for these states are polynomials of joint order n in z
and z, multiplied by the exponential Eq (35).

Spin as an Oscillator

We found that the wave functions, which are forming the
multiplets of a two-dimensional oscillator, form, at the same
time, representation of appropriate degeneracy of the su(2)
algebra with generators A, o and n. This means that the os-
cillator’s creation and annihilation operators form a repre-
sentation (14,15,17,19) of the spin operators (the Schwinger
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representation):

ilatb—bTa) .  atb+bta . ata—0>bTh
2 I 9 y  Jz = —.

jy =

(38)

The Schwinger construction of angular momentum via cre-

ation and annihilation operators of the oscillator consists of
several stages:

e Take the groud state |0,0 > of the oscillator and create
an excited state

(a—i-)nl(b—i—)ng
vni! ns!

e introduce the rising and lowering operators j+ and the
operator j,

1, Mo >= 0.0 >; (39)

Jr=Je+ijy=a"b;  jo=j.—ij, = bTd40
, ata—b"b
Jz = f; ( 1

)

)

< (n1+1,n2—1\j+\n1,n2 >= \/( ) (42)

< (?’Ll —1,n9+ 1\j_\n1,n2 >= 711(712 + ) (43)
ny — N9

) 44

: (44)

< (n1, naljzn1,ng >=

e assume n; + no = 27 and ny — ny = 2m, from which
follows

< jym—+1ljilj,m >=/(j + m + 1)(j — m); (46)
< jym—1]j_|j;m >=\/(j +m)(j — m+1). (47)




e this makes

(a—i—)j—i—m(b-l-)j—m

|7, m >= V(j o )] 0,0 >; (48)
1, >= (‘1;2)]! 0,0 > . (49)

e the square of total momentum j* = j2+(j,j_+j_j4)/2
is equal j> = j(5 + 1).

Schwinger managed to obtain from this representation the
explicite expression for rotation matrices, the Clebsch-Gordon
coefficients and many other things.
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Appendix. Two-dimensional electron in
magnetic field

Complex coordinateds are very convenient for solving the Schréodinger equa-
tion in magnetic field. First of all, the Laplacian V? can be written in very
simple form:
V2=200.
It follows from curl A = B that
Ay —iAy - Ay —iA

B, =0,A,— 0,4, =i (0 A—-0 A); A= 7% LA = 7 Y. (50)

In tlle uniform magnetic field B directed along z-axis, the vector potential
(A, A) has the following form:

a=-2L s A=), (51)
The gauge-fixing condition (axial gauge)
0A=0A=0 (52)
gives B B
A:—“’2 : [12”‘2 . (53)

The Schrédinger Hamiltonian H in magnetic field may be written as
H=-V’=—-(0—ieA)0—ieA) —(0—ieA)(d—ieAd)= (54)

Measuring coordinates z and z in the units of magnetic length and introduc-
ing operators ¢, ¢, ¢ and ¢T in these new units by the means of Eqs (27,
28, 29, 30), obtain

H=e¢B (¢t +¢ ¢T)=e B (2n+1). (55)

The fact that the Hamiltoian (54) contains only operators ¢ and ¢T and does
not contain (and, therefore, commutes with) operators ¢ and ¢+, means that:
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e the ground state still has the form

Voo x exp[—Zzz ] (56)
e all states
Uno=(¢")" Wgo ox 2" exp[—2z ] (57)

correspond to the states at n-th Landau level with the energies E, =
e B (2n+1).

e all states B
\Iln,m = (¢+)m \I’n,O (58)

correspond to the states at n-th Landau level with the value m of
angular momentum and the energie E, = e B (2n + 1).

e in paricular, the states
Uom = (01)" Wo o oc 2™ exp[—22 ] (59)
correspond to the states at lowest Landau level.

An example of a state at n-th Landau level is

U,1 o< (222 —n) 2" L exp[—2z | (60)



