
NATURAL SCIENCES TRIPOS Part II

Wednesday 15 January 2020 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer all questions to the best of your abilities. The approximate
number of marks allotted to each part of a question is indicated in
the right margin where appropriate. The paper contains five sides
and is accompanied by a booklet giving values of constants and
containing mathematical formulae which you may quote without
proof.

1 Two identical beads of mass m are each attached to a pivot point P by a
light spring of constant κ and unstretched length ` = 0, in the presence of a
gravitational acceleration g. They are further connected to one another by a spring
of constant κ′ and unstretched length l′ > 0. The centres of the two beads are
confined to move within a vertical plane through P , as sketched below.

(a) Show that the Lagrangian of the system can be written as

L = m
(
Ẋ2 + Ẏ 2

)
− 2mg (Y − α)− κ

[
X2 + (Y − α)2

]
+m

(
ẋ2 + ẏ2

)
− κ

(
x2 + y2

)
− 2κ′

(√
x2 + y2 − `′

2

)2

,
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where X = (x1 + x2)/2, Y = (y1 + y2)/2 + α, x = (x1 − x2)/2, y = (y1 − y2)/2.
Here, (x1, y1) and (x2, y2) denote the coordinates of the centres of the two beads in
the Cartesian reference frame given by the dashed axes in the figure, and α is a
generic constant. Find the Euler-Lagrange equations of motion of the system. [7]

(b) Find the equilibrium positions of the beads and show that, for an appropriate
choice of α, they satisfy [6]

X = Y = 0 , x2 + y2 =

(
κ′`′

κ+ 2κ′

)2

.

(c) For the value of α chosen in (b), find the normal modes and the corresponding
frequencies of small oscillations about the equilibrium positions. [8]

(d) Discuss the continuous symmetries of the Lagrangian and find the
corresponding conserved quantities.

[Up to 3 bonus marks]. [4]
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2 Consider a 2-component real vector field φ = (φ1, φ2)
T and its relativistic

Lagrangian density in 3+1 space-time dimensions,

L = (∂µφ)T M (∂µφ)− φTMφ− λ
(
φTMφ

)2
,

where M is a real symmetric 2× 2 matrix and λ > 0.

(a) Derive the Euler-Lagrange equations of motion for the fields φ1 and φ2. [5]

(b) State Noether’s theorem and write a general expression for the conserved
current in the case of a multi-component field. [3]

(c) Consider the transformation φ→ Dφ where D =

(
α 0
0 1/α

)
with α > 0.

Find the conditions that one must impose on the elements of the matrix M so that
this transformation is a symmetry of the system. [5]

(d) Show that, under such conditions, the symmetry of the system with respect to
the transformation φ→ Dφ leads to a conserved current of the form [5]

Jµ ∝ φ1∂
µφ2 − φ2∂

µφ1 .

(e) Using the Fourier representation for each component of the field,

φi =

∫
d3k N(k)

[
ai(k)eiωt−ik·x + a∗i (k)e−iωt+ik·x

]
, i = 1, 2 ,

where N(k) = [(2π)32ω]−1, express the conserved charge associated with the
current Jµ = φ1∂

µφ2 − φ2∂
µφ1 in terms of the relevant Fourier modes ai(k). [7]
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3 Consider a real scalar field φ(t, x) in 1 + 1 space-time dimensions, with
action S =

∫
dt dxL and Lagrangian density

L = φ̇2 − γ φ′2 + αφ2 − β

2
φ4 ,

where φ̇ = ∂φ
∂t

and φ′ = ∂φ
∂x

, and α, β, γ are real and positive constants.

(a) Find the units of α, β and γ, and use them to obtain a characteristic length
scale and an energy scale for the system. [7]

(b) Derive the components of the stress-energy tensor, and discuss its conservation.
Use it to define the total energy E of the system. [8]

(c) Consider a field that interfaces between the two constant values:

lim
x→−∞

φ(x, t) = −
√
α

β
and lim

x→+∞
φ(x, t) =

√
α

β
.

Using an appropriate variational calculation (φ→ φ+ δφ), or otherwise, show that
the field φ(x, t) which minimises the total energy E for the above boundary
conditions takes the form

φ(x) =

√
α

β
tanh

[√
α

2γ
(x− x0)

]
,

where x0 is an arbitrary constant. (It is sufficient to show that δE = 0 and you do
not need to demonstrate that it is an actual minimum.) [10]

(d) Define the energy EI of the interface as the difference between the energy of
the field discussed in part (c), namely with the interface present, and the energy of
a uniform field, φ =

√
α/β. Either by direct computation or by an appropriate

scaling analysis, determine how EI depends on the parameters α, β and γ.
[Up to 5 bonus marks.]
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4 Consider the following Lagrangian density for a complex relativistic scalar
field

L = (∂µφ
∗)(∂µφ) +

m2

2
(φ∗φ)2 − λ

3
(φ∗φ)3 ,

where m and λ are real positive constants.

(a) Derive the minimal energy state(s) of the field φ and obtain the Lagrangian
density for small fluctuations χ about (one of) the minimum energy state(s), φ0,
up to quadratic order in χ. Discuss briefly the behaviour of the real and imaginary
components of χ. [8]

(b) Consider coupling the complex scalar field φ in this question to an
electromagnetic field via the covariant derivative. Discuss briefly what happens to
the fluctuating complex field χ as a result. [3]

(c) Write the Lagrangian density of such a coupled electromagnetic field when the
complex scalar field is exactly at (one of) its minimum energy state(s). If needed,
you may ignore irrelevant constant terms. Find the corresponding Euler-Lagrange
equations of motion for the 4-vector potential, and show that (by an appropriate
choice of gauge or otherwise) they can be written as [6](

∂2t − ∂2x +
2e2m2

λ

)
Aν = 0 ,

in 1+1 space-time dimensions and natural units. You may use, without deriving it,
the result:

∂

∂(∂µAν)

(
FαβF

αβ
)

= 4F µν where Fαβ = ∂αAβ − ∂βAα .

(d) Using the Fourier transform conventions:

Ãν(k, t) =

∫
Âν(k, ω) e−iωt

dω

2π
Aν(x, t) =

∫∫
Âν(k, ω) e−ikx−iωt

dk dω

(2π)2
,

and defining the constant M2 = 2e2m2/λ for convenience, derive the Green’s
function Ãν(k, t) for the equations of motion in (c). (This may require shifting
poles or deforming the integration contour, according to the physical expectation
in a relativistic system.) [8]

END OF PAPER
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