NATURAL SCIENCES TRIPOS Part 11

Wednesday 16 January 2008 10.30am to 12.30pm

THEORETICAL PHYSICS 1

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains four sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

1 A thin hollow cylinder of circular cross-section and radius R can roll on a
rough horizontal table. A particle is suspended from its axis by a light rod
attached to a frictionless bearing. If M and m are the masses of the cylinder and
particle, respectively, and c is the length of the rod, supposed less than R,
construct the Lagrangian of the system.

Show that small oscillations about the position of stable equilibrium have the
same period as those of a simple pendulum of length 2M¢/(2M + m).

The system is set in motion from rest by giving the cylinder a velocity V' in
the direction in which it can roll. By using the constants of the motion, show that
the subsequent angular motion of the rod is given by
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where ¢ is the angle it makes with the downward vertical.

2 What are the main advantages of the Hamiltonian formulation of mechanics
over the Lagrangian formulation?
Derive Hamilton’s equations of motion for the one-dimensional Hamiltonian

H(q,p) = pd — L(q,4q) -

(You should assume the symbols have their usual meanings.)
If the Hamiltonian is written in terms of transformed position and
momentum coordinates

Q=Q(g,p), P=Plgp)

show that the transformed Hamiltonian H(Q, P) obeys Hamilton’s equations of
motion in the new coordinates if

{Q, P}q,p =1
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where the Poisson bracket is defined by

ouov U oV
Vb= 5000 "o 0

Show that for the coordinate transformations
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the above Poisson bracket holds.
Rewrite the one-dimensional harmonic oscillator Hamiltonian
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in terms of (), P and solve Hamilton’s equations in these coordinates. Show that

your solutions are consistent with the solutions to the harmonic oscillator solved
using q, p.

3 The Lagrangian density for the Schrodinger wave function ¥ is
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(a) Show that £ has a global phase symmetry.

(b) Derive the associated Noether density and current. Show explicitly that
they satisfy the expected conservation equation.

(¢) Derive the stress-energy tensor components 7%, T% T90 and T7* where
J.k =1,2 or 3. (Use units such that ¢ = 1.)

(d) Show explicitly that these components satisfy the expected conservation
equations.

4 The action for a system consisting of a relativistic charged particle and an
electromagnetic field is

1
S = —/mCZdT — /eAde“(t) — — [ FopF*Pd*x
441

(a) Explain the meaning of the terms in this equation.

(b) Show how the action leads to the equation of motion for the particle and
the inhomogeneous Maxwell equations for the field.
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3

(c) Explain what is meant by a gauge transformation and show that it does

not affect the dynamics of the system. [7]
(d) Show how to include a charged scalar field ¢ in such a way that the
gauge symmetry is preserved. [6]
0 —E,/c —E,/Jc —E./c
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5 A real scalar field ¢ has Lagrangian density

L=< [(0"0)(0up) + a9’ +bg’
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where a and b are real constants.
(a) Derive the equation of motion, the canonical momentum density and the
Hamiltonian density. Find the conditions for the Hamiltonian density to be
bounded from below. [10]

(b) The Lagrangian is symmetric under the transformation ¢ — —¢. Find
the conditions under which this symmetry is spontaneously broken, and the
resulting minimum-energy solutions for the field and energy density. [10]

(c¢) Find the equation of motion and dispersion relation for small variations
of the field around the minimum-energy solutions. [13]

6 The Green’s function for a quantum-mechanical particle with Hamiltonian H

is defined by

(Zh(?at — H) Glr,r';t,t) =8 (r —v)6(t —t)

Use Fourier methods to derive the Green’s function
G(r,r';z) = /eiz(t—t/)/hG(r,'r’;t,t’) dt
for a non-relativistic free particle in three dimensions (H = —h*V?/2m), with
z = E + ie for the four cases 8]
(1) E>0,e>0; (i) E>0,e<0; (iti) E<0,e>0; (iv) E<0,e<O.

The parameter ¢ should be assumed to be real and small.
Use your results to show that [6]
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where

AG(r, 7, E) = lim [G(r,v'; E+ile|]) — G(r,7'; E — i|e])]

Calculate the density of states (the number of quantum states per unit
energy per unit volume) p(E) for a non-relativistic free particle in three
dimensions using a simple phase-space argument. Hence show that for this case

Now consider the general case. For a system with Hamiltonian H, energy
eigenvalues E, and corresponding eigenfunctions ¢, (), show that

G(’I‘, 'r’; z) = Z ¢ngrz¢égr,)

n
Use this expression and the identity
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to show in general that
A )
o(r: E) = i G(r,r"; E)
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