Theoretical Physics 1
Answers to Examination 2006 L0V 7

Warning — these answers have been completely retyped. ..
Please report any typos/errors to emt1000@Qcam.ac.uk

Q1. Bookwork: the canonical momenta are p; = 0L/0¢;. The Hamiltonian is
H=) pg—L,
i

which is a function of (g;,p;) but not ¢;. Hamilton’s equations are

__0H __ 9H

g = BE iy b= “EE; '
i.e. a set of 2N first-order equations for the coordinates and momenta. For a
charged particle we add the scalar —¢(¢ — A-&) to the Lagrangian. The
canonical momentum is then p = ma + gA, but the Hamiltonian is still
H = zma?* + q¢. Expressed as a function of p we have

_ 2
g P—q4)
2m

The vector potential (—By,0,0) has VxA = (0,0, B) as required and
E = —V¢ as required. i

The Hamiltonian is

+q¢

A

(PataBy)® Py P21 5,
F=Pe40Y) By D _
2m e
It does not depend on x, z or £, so pg, p. and H are constants of motion. e
The equations for p,, z and y are
, oH  ¢B i
By = —5-=—"—(p:+qBy) - muwgy ; KZ
;o OF _piaBy, \
p, m
§ = BB , U
op, m 3 = ¥ :
Differentiating the y equation and substituting we get the required result
TR R S
U+ (W +w)y —
where w = ¢B/m, the Larmor frequency. This has general solution
Pz W
=A 2 - ==
Yy cos({2t + §) oy | &
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where A, § are arbitrary constants and §22 = w? + w2. Using this general
solution we have

F= Acos(9t+5)——%J+& (a
so that
= 5Asm((2t+ e fﬁt =E J-t + const

If we now apply the boundary condition v = (v,,0,0) at ¢t = 0 and remove
irrelevant constants we have

wi, B
z = ﬁ“‘ ﬁgln(!)t) : O-p
y = _ymw—cosmt)

Where v = p,/m and § = v, — vwy /2.

These solutions have a number of special cases. For § = 0 the trajectory in

the z,y plane is a straight line with y = —vw/§22. For small 8 the trajectory

is a sinusoidal oscillation around this value of y. Larger values of # produce a /
helical trajectory. For large B the kinetic energy in the z direction is &
quenched and the trajectory tends towards a closed circle.

Q2. Hamilton’s principle states that § [ dt L(q, ¢,t) = 0 and leads to (via calculus
of variations)
d (0L oL
bt | e 208 4
dt (&j) dq &

i.e. a collection of N 2nd order equations for the coordinates g;.

The kinetic energy of the masses at B and B’ is 2 x %mlag(éz + 22 sin? §).
The mass at A’ has the velocity 2a6 sin @ and so contributes the kinetic
energy 2maa?sin? 6 §2. The potential energy is made of two contributions from
the m; masses and one from mg, giving V' = —ga cos8(2m; + 2msz). This
gives the Lagrangian in question, L =T — V, with the only variable 0(t).
The corresponding canonical momentum p = 8L/ = a§(2m, + 4my sin® g).
The equation of motion is (note the partial cancellation of the ¢ term)

a®(2my +4my sin? 0)f + 4a®my sin 6 cos 6 6 = 2a sin §(mya 2 cos 8 — g[my +ma))

(5)
In equilibrium the Lh.s. is zero and so
_ g(mu +ma)
cosfl = hatE (6)
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The stable position has to be at ¢ = 0 unless cosfy < 1, which gives the
critical spinning velocity

_ g(my + ma)

- ma

92

o]

For small oscillations about # = 6, we ignore the 62 term and expand the
r.h.s. of the dynamic equation, obtaining

a(my + 2mg sin® 6y)8 ~ 66(mas2*[cos? 8y — sin? By] — glmy + ma] cos by) (7)

where 66 = 6 — 6 is the small deviation from equilibrium. Substituting
g(my + mgz) from the expression above leads to cancellation of cos? terms and
the final equation

a(my + 2mg sin? 8)68 + myas2? sin? 6, 66 (8)

The frequency of the resulting small oscillations is, therefore, as given in the
question.

Q3. First of all, let’s write down the Lagrangian in the simplifying case. Now

(dz°, dz') = (cdt, dz) and
_(9&) 0O
=0 st )

which gives, after multiplication under the root, 4]
L= —mo\/cgg(ac) — #2g(z) = —mocy/gy/1 — v?/c?
The Lh.s. of the Euler-Lagrange equation will then take the form 4]

(the factor following the mgv is therefore denoted as I" in the question. The

r.hs. is

by e T o gl o g 2 e

Oz mocy1 =¥/ (2\@ 8:5) I (’:?m[2g(m)J
where ¢ is the expression in square brackets. 8]
For the general case of L = —myg4/g,2#&" we just need to be careful with

components and indices. For the three spatial components of the 4-vector
variable, we’ll have in the 1.h.s. of the Euler-Lagrange equation:

LR Tl B
dt\05;) ~ dt \ "2 Jguarar) b "
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Here i = (1,2,3) and p,v = (0,1,2, 3). Now evaluating the derivatives in the [10]

r.h.s. we should group terms together into v = —my/4/g,u@#2v (or,
equivalently, without myg as this cancels on both sides of the linear equation):

el
@ = —m, (8gl-’fy/a$1)$ T = %”Y (agﬁﬂ’> _’jj#jju.

= 0
oz; 2 \/ Gy THE dz;

Q4. The inverse transform is

p(r) = @

The relation between the Fourier transforms is
kg =

so we can (in the absence of noise) find the potential via the relation

k p(k) exp(—ik-r) [ 4?3 -

Q|
5
\

p(r) = . f d*k Ak )exp( tk-r) 1 Z@j -

(2 Peo

For the case p(r) = Acos(Qz) for the layer —t < z < ¢, we have the Fourier
transform

i 00 e ¥
pla,y,2) = f_t dz'/;oo dyf_oo dz Acos(Qz) exp(i(kzz + kyy + k.2))

|k[?

Writing cos(Qz) = 3 (exp(iQz) + exp(—iQz)), using

2o, dz exp(—tkz) = 2wd(k) for the z and y integrals and doing the z
integral explicitly, we find

sm(k t)

Z

plk) = (2m)* Ad(ky) (6(ke — Q) + 6(ks + Q)) ——

The back-transform is only required for y = z = 0 (the potential is
independent of i anyway, but the variation in z is quite interesting...), so,
after the trivial k, integral, we have

sin(k,t) exp(—i(k,zx))
k. k2+k2
(14)

wlz,0,0)=

/ dk/ dky (0(ks — Q) + 8(ks + Q)

?TE()

Doing the k, integral leaves

o - AR [ ol S,
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using the definition of /{a) given.

To do the integral, you can either write sin k = (exp(ék) — exp(—ik))/2i and
close over the top for the first term and underneath for the second one, or
express it as ¥(exp(tk)) and just use the pole at k& = ia, which has residue
exp(—a)/2a?. There is an slight subtlety with the pole at the origin, which
has residue 1/a®, but only contributes 7i x residue because it is exactly on
the path of integration.

The final answer is egp(z,0,0) = Acos(Qz) (1 — exp(—Qt)) /Q2.

Q5. We wish to evaluate

1
I=/ Vi ot ds
—1

using contour integration.

Consider (22 — 1)'/? with a branch cut from -1 to 1. For z = z on the real
axis, just above the cut we have

(22 — )2 =iy1 - 22

Consider the contour C' in the figure:

jé(zQ _1)M2dy =

/,

V1 —z2dz

~25]

We can deform the contour C to the contour Cg, the circle of radius R, as
there are no singularities betwen C' and Cg

(22 January 2007)
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. Hence
1
/ ) W1 —z2dx
v
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Let ( = 1/z, and let ',z be the circle of radius 1/R traversed clockwise, so
that Cy/g is the image of Cg under the transformation z — ¢. Then
z = —(7%d(, s making the substitution

o Ly —2 _ \1/2(_p-
T=gif (€= D¥=¢C
Now,

(€= D) = =P 2+ )

so the integrand has a singularity at ¢ = 0 with residue 1/2. Therefore
(introducing a minus sign because Cy/g is traversed in the negative sense),

= N3

I=—%z‘x2m‘x%

We wish to prove that

1 2

oo
2 (a+n)? sin’ma

n=—co

using the identity

weotan mz
j{ dz =0,
c

(a+2)?

The integrand of the identity has (i) simple poles at z = n where n is any
integer and (ii) a double pole at z = —a.

To find the residue of cot wz, put 2z = n + £ for small &:

_cos(nm+&m)  cosmm 1
"~ sin(nw +€n)  (cosnm)ém Em

cotmz

The residue of the integrand a z = n is thus m(a +n)~2x~%.

Putting z = —1 + £ for small £ and determining the coefficient of £71

Teot e s
m = f—g COt(—ﬂBﬂ' + 571')
o d
== cot(—am) + £ 4 cot . +...
so that the residue at the double pole z = —a is
™ [—WCOSQCQ’}TZ]Z__ = —7’cosec’ma.
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Collecting together these terms and using the residue theorem gives

7 cot 7rz [ 1
= fg‘ =2mi |y ——— — w cosec’ma
(a+ 2)?  (a+n)

where N equals the integer part of £. But as the radius R of C tends to oo,
cot mz — £1 (depending on whether $(z)is greater or less than zero
respectively. Hence,

I< / k—d*
(a+ 2)2
which tends to zero as R — co. Thus I — 0 as R (and hence N — co. We
therefore have
00 1 T('2

2 (a+n)2=

n=—oco

sin® wa

Q6. Need to describe, for a discrete one-dimensional process with length scale a
and timescale T, the idea that the transitions rates into Py41(m) are given
by w(m,m')Px(m').

Principle of detailed balance is then w(m, m')P(m’) = w(m/,m)P(m) for
each pair m, m’

The idea of the derivation presented in the notes was to consider the case
when transitions are made only from m to m = 1, so that

Pyyi(m) = w(m,m+ 1)Py(m + 1) —w(m + 1,m)Py(m) (18)
+w(m,m — 1)Py(m — 1) — w(m — 1,m)Py(m)

If the diffusion is symmetric w = 1/2, and we get the diffusion equation with
coefficient D = a?/7

If there is a vertical asymmetry due to gravity, then transitions to k — 1 are
preferred over those to k& + 1, giving the first-derivative term in

OP 1_(8°P 1ng OP
— =D — + —=
ot 022 kg1 0z

The argument leading to the coefficient on this term will probably be circular

(appeal to Boltzmann factors. .. ), but never mind. An alternative is to use
the formal Fokker-Planck equation derivation for a constant force F = mg.

(19)

The steady-state solution of this equation is
P(z) x exp(—mgz/kT) (20)

The critical size of particle is that for which 7hga/kT ~ 1. Evaluating this
for the given parameters we find o ~ 107% m
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