Theoretical Physics 1
Answers to Examination 2001

Warning — these answers have been completely retyped...Please report any ty-
pos/errors.
steve@mrao.cam.ac.uk

Q1. Bookwork: Hamilton’s principle is ¢ [ dt L(g;, ¢;,t) = 0 and leads (via the calculus

of variations) to
d 0L 0L

-7 7= 1
3t 94: ~ g )
i.e. N 2nd-order equations for the coordinates g;.

The kinetic energy of the masses at B, B' is 2 x sm;a?(Q?sin?6# + 6?). The mass

at A’ has velocity 2afsin @ so contributes 2msa?sin?§ 62. The potential energy is
V = —gacosf(2m, + 2my) so the Lagrangian L =T —V is

L = mia®(Q%sin? 0 + 6%) + 2mya® sin® 6% + 2ag cos B(my + my) . (2)

The conjugate momentum is pyg = 9L/ 08 = a2é(2m1 + 4mgysin®§). The equation
of motion is (note a partial cancellation in the 6? term)

a®(2m, +4my sin® 0)é+4a2m2 sinfcosf 6% = 2asin 0 (mlaQ2 cosf — g(my + m2)) )

(3)

In equilibrium the LHS is zero so

g(my + my)
myaf)2

cosfy = (4)
The stable position has to be § = 0 unless cosfy < 1, so the critical condition is

02 = g(m1 + mao)/mia.

For small oscillations we ignore the 62 term and expand the RHS, getting
a(my + 2mysin? 6y) 0 ~ 66 (mlaQ2(c0s2 By — sin® ) — g(my + ma) cos 00) , (5)

where 60 = 6—6,. Substituting g(m;+ms) from (4) above, the cos? term disappears
and we get

a(my + 2my sin® 0y)0 ~ —50m a)? sin® 6 . (6)

The angular velocity of small oscillations is thus 2sin 6y/ \/ 1+ 2(mg/my) sin® 6.

Give full marks for any reasonable expression.

Q2. Bookwork: the conjugate momenta are p; = 0L/dq;. The Hamiltonian is

HEZZML‘—L, (7)
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which is a function of (¢;, p;) but not ¢;. Hamilton’s equations are

. OH . o0H

i.e. a set of 2N first-order equations for the coordinates and momenta.

The Lagrangian is
L=3m (7'"2 + 2% + r2sin? 9 ¢2) - V(r) (9)

The momenta are
pr=mi; pp=mril; psy=mr’sin?6 ¢ (10)

and the Hamiltonian (which must be expressed in terms of (g;, p;)) is

2 2 D)
D Dy Dy
H=-—"1 V . 11

2m + 2mr? + 2mr2sin? +V(r) (11)

To show that p, is constant note that 0H/0¢ = 0 (but method using Lagrangian
symmetry or any other valid approach gets full marks).

From Hamilton’s equations we have

2
. pycos b
= 07 12
L (12)
so it isn’t constant unless cosf = 0 (6 = 7/2).
[Remaining bits are a good deal easier to see using the Hamiltonian approach, but
any other valid method gets full marks.|

By writing the angular momentum in terms of the momenta,
P

sin?g’

J? = m?rt (02 + ¢? sin? 0) =p; + (13)

we see that (using p, = 0)

p; cos 6

2JJ = 2pgpy — 20 (14)

sin® @
Now use § = OH/8py = pg/mr? and recall (12) above to see that J is a constant.

When the potential has a dipole term A cos 0/r2, we still have 0H/d¢ = 0 so that
Py is constant. We now get, however,

. pjcost N Asinf  dJ?  2pgAsind

= 1
po sin® 6 72 = dt r2 (15)
From the definition of py we see that
dJ? - d
- = i = —— 1
& 2mAsiné 6 & (2mAcosb) , (16)

so that J% 4+ 2mA cosf is a new conserved quantity.
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Q3. The form

S=/&L=/&(ng—Um> (17)

v

is the correct expression for the relativistic action because dt = vdr, where 7 is the
invariant proper time. This form of the Lagrangian allows us to express the proper
times of all the particles of the system in terms of the laboratory time ¢.

In polar coordinates we have

22 242\ /2
L=ﬂm8G—l—ii> _U(r) . (18)

c? c?
The Lagrangian does not depend on § so the (angular) momentum conjugate to
6 is constant. This evaluates to ymyr?0 = J. The Lagrangian does not depend
on time explicitly, so the Hamiltonian is also a constant, equal to the total energy
moc*y + U(r) = E.
We need an expression for something like dr/df which we can get from 7/§. To
manipulate these conservation laws, write them in the form

242 _ J? L 2 (E- U(r))? 1
Y= 2 = 2 4 (19)
mgriy mge
Then use the definition of :
R SR Y
TeT @ TETat e Tl e (20)

Now divide through by 6%1/c2 = J2/(m2c®y?) to generate the required term
(dr/d@)? on the LHS:

1 (dr\® 1 d /n\\> 1 m(*-1)
— = ==z —= 21
r <d0> TR <d0 (r)) T J? (21)

Finally substitute for 42 to get the required form

(35 () + 5 - Ui @2)

Setting u = 1/r and U = —Ku we see that the equation is of the form

2
(du) L2 K?u? 2EKu+E2—m§c4. (23)

de NEr J?2c?
This can be easily be manipulated into the form given in the question by completing
the square. Looking at the quadratic term in u, we see that o® =1 — K?/J?c%.

The orbit is a precessing ellipse provided that J2¢? > K2. Orbits that have angular
momentum lower than this will certainly encounter the origin. . .
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Q4. The inverse transform is

1 (o = = .
o) = oy |, F 5B exp(iFi) (24)

The relation between the Fourier transforms is

EPp =2 (25)
€0

so we can (in the absence of noise) find the potential via the relation

_ 1 ° oz p(E) ”
o) = Gy | OF T e(=ikA) (26)

For the case p(7) = Acos(Qz) for the layer —t < z < t, we have the Fourier
transform

t o] o]
plz,y,2) = / dz/ dy/ dz Acos(Qz) exp(i(kyx + kyy + k,2)) (27)
-t —00 —00
Writing cos(Qz) = 3(exp(iQz) + exp(—iQz)), using [0 dz exp(—ikz) = 2md(k)
for the x and y integrals and doing the z integral explicitly, we find

sin(k,t)
k.

p(E) = (2m)2 Ab(ky) (5(kz — Q) + 6 (ks + Q) : (28)

The back-transform is only required for y = z = 0 (the potential is independent
of y anyway, but the variation in z is quite interesting...), so, after the trivial &,
integral, we have

sin(k,t) exp(—i(kyx))

k, K2+ k2
(29)

o(,0,0) = 2 [* ak, /_°° dky (8(ks — Q) + 8(ky + Q)

2mey J—oo

Doing the k, integral leaves

Acos(Qx) /00 sin(k;t)  Acos(Qz)

2
€ dk. L2+Q2)  me t°1(Q1) , (30)

¢(z,0,0) =

oo

using the definition of I(a) given.

To do the integral, you can either write sin k = (exp(ik) — exp(—ik))/2i and close
over the top for the first term and underneath for the second one, or express it as
S(exp(ik)) and just use the pole at k = 4a, which has residue exp(—a)/2a?. There
is an slight subtlety with the pole at the origin, which has residue 1/a?, but only
contributes 7¢ X residue because it is exactly on the path of integration. Because
there was so much pole-wiggling in the course we’ll be lenient. ..

The final answer is €yp(z,0,0) = Acos(Qz) (1 — exp(—Q1)) /Q>.



Q5. The propagator G(z, z'; t) is used to express the wavefunction ¥(z,t) as an integral
g

Q6.

over the initial one ¥(z, 0):

U(z, 1) = / da' Gz, 2 )0 (', 1) . (31)
The propagator satisfies the equation
AG — ih%G = 5z — 2)0(t) | (32)

so that the correct time evolution of ¥(z,t) is guaranteed.

If we have a complete set of eigenvctors Hb, = Enén and write

U(a,8) = 3 capne Pt (33)

n

then the integral becomes
Uz, 1) = [ ' Y pu@)dh(@)e P endm(@') = 3 cmmla)e P (34)

The integrals [ dz'¢} ¢, (z) = dyn, so the form of the propagator is verified.

Start from the Schrédinger equation for the propagator G(z,z');t) and make the
analogy with a diffusion process with an imaginary “effective diffusion constant”
D = ifi/m. Discuss how, for an infinitesimal time interval, one can represent the
solution as the product of two independent processes: one of the free “diffusion”
and the other due to the modified potential. (Taking the case of a free quantum
particle, with no potential, would be sufficient for this discussion.)

Divide the time-axis into small discrete intervals. Use the property of convolu-
tion, G(a,b) = [dc G(a,c)G(c,b), and show how the propagator G(a,b) can be
represented as a sequence of integrals over dz, (at each time ¢,) of a product of
diffusion-like propagators over each infinitesimal time step.

By formally going to an infinitely-fine discretisation, define a notation for the path
integral and its measure D[z]. Identify the continuous squared time-derivative in
the exponent and arrive at the expression: G(a,b) = [ D[z]exp(— [ dt mv?/2D) =
[ D[z] exp(+(i/h) fdt L).

Setting OP/0t = 0 gives

oP
3 + agP = constant (35)
q

The constant has to be zero, because the probability and its derivative must vanish
at ¢ = oo. The integral is then

1 0P

- = —_ 2
P og aqg = P x exp(—ag”/2) , (36)

which is a zero-mean Gaussian with variance 1/ca.
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It’s slightly easier to take the logarithm of P for the term on the LHS, so that

1oP 8, (¢g-@?*\ _ A (=@, ,-@Q)
por o (s ) = ax (05 e o

as required.

The other terms follow similarly:

1P 1 (g-Q)? 19 _ q(qg - Q)
Pog AT Az Fa_q(aqp)_O‘(l_T)' (38)

Collecting up the terms we get

%(_14_@)4_@%:17(%—%((];72@)2—%@—@@) . (39)

Both sides have to be equal, so the coefficients of all powers of ¢ have to be the
same. The term in ¢* gives

A D /1
= a(5e) (40)

which is (almost) one of the required equations for A. To get the rest easily, it’s
best to express the final term in (39) as a((¢ — @)*> + Q(¢ — Q)) and collect powers
of (¢— Q). The term linear in (¢ — Q) is then seen to imply Q = —DaQ. Checking
the other powers of (¢ — @), we confirm the previous form for A and all terms
cancel correctly.

The solution is Q(t) = Qo exp(—Dat) and A(t) = (1 — exp(—2Aat))/c, which is
a really lovely example of how the Fokker-Planck equation can be used in non-
equilibrium statistical mechanics.



