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6.2 Answers

1. (a,b) Expanding the expression for the area we obtain the partition function

Z =

∫
Dh(x)e−βH[h],

βH = βσA = βσ

∫
dd−1x

[
1 +

1

2
(∇h)2 + · · ·

]

=
βσ

2

∫
(dq)q2|h(q)|2 + · · ·

(c) Making use of the correlator

〈h(q1)h(q2)〉 = (2π)d−1δd−1(q1 + q2)
1

βσq2
1

,

we obtain the correlator

〈
[h(x) − h(0)]2

〉
=

∫
(dq1)(dq2)

(
eiq1·x − 1

) (
eiq2·x − 1

)
〈h(q1)h(q2)〉

=
4

βσ

∫
(dq)

sin2(q · x)

q2
.

By inspection of the integrand, we see that for d ≥ 4, the integral is dominated by
|q| & 1/|x|, and

〈
[h(x) − h(0)]2

〉
∼ const.

In three dimensions, the integral is logarithmically divergent and

〈[h(x) − h(0)]〉 ∼
1

βσ
ln |x|.

Finally, in two dimensions, the integral is dominated by small q and

〈[h(x) − h(0)]〉 ∼ |x|.

This result shows that in dimensions less than 4, a surface constrained only by its
tension is unstable due to long-wavelength fluctuations.

——————————————–

2. Essay question: Refer to Lecture notes
——————————————–
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3. Solving the classical equation of motion r̈ = −ω2r, a general solution takes the form

r(t) = A cos(ωt) + B sin(ωt).

Applying the boundary conditions r(0) = 0 and r(t̄) = r̄ we find A = 0 and
B = r̄/ sin(ωt̄),

rcl(t) = r̄
sin(ωt)

sin(ωt̄)
.

From this result we obtain the classical Lagrangian

L[rcl] =
1

2
mω2 r̄2

sin2(ωt̄)

[
cos2(ωt) − sin2(ωt)

]
=

1

2
mω2r̄2 cos(2ωt)

sin2(ωt̄)
.

and the classical action

S[rcl] =

∫ t̄

0

L[rcl]dt =
1

2
mωr̄2 cot(ωt̄).

Being quadratic, fluctuations around the classical trajectory generate the expansion

L[rcl + δr] = L[rcl] + L[δr].

Expanding as a Fourier series,

δr(t) =
∑

n

an sin

(
πnt

t̄

)
,

we find
∫ t̄

0

(δr(t))2dt =
∑

nm

anam

∫ t̄

0

sin

(
πnt

t̄

)
sin

(
πmt

t̄

)
dt =

t̄

2

∑

n

a2
n.

Similarly

∫ t̄

0

(δṙ)2dt =
t̄

2

∑

n

(πn

t̄

)2
a2

n.

Altogether, we obtain

S[δr] =
mt̄

4

∑

n

a2
n

[(πn

t̄

)2
− ω2

]
.

Using the Gaussian integral,

∏

n

∫ ∞

−∞

dane(i/!)S[δr] =
∞∏

n=1



 2π!

im t̄
2

(
πn
t̄

)2 [
1 −
(
ωt̄
πn

)2]




1/2

,
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we obtain the propagator

Z = J
∞∏

n=1

(
2π!

im t̄
2

(
πn
t

)2

)1/2(
2πi!

t̄

m

)1/2( mω

2πi! sin(ωt̄)

)1/2

e(i/!)S[rcl].

In the limit ω → 0, S[rcl] = mr̄2/2t̄, and

(
mω

2πi! sin(ωt̄)

)1/2

→
( m

2πi!t̄

)1/2
,

the free particle result. Thus we can deduce that

J =
( m

2πi!t̄

)1/2
∞∏

n=1

(
im(t̄/2)(πn/t)2

2π!

)1/2

.

——————————————–

4. To obtain full marks, the answer to the first part of the question should involve an
account of spontaneous symmetry breaking in systems with a continuous symmetry.
Marks will be given for writing a generic expression for the Ginzburg-Landau free
energy describing Goldstone fluctuations; an estimate of the correlation functions
in dimensionality d = 2, 3 and 4; a definition of the lower critical dimension, and a
statement of the Mermin-Wagner theorem. Additional marks will be given for the
mention of examples. It is expected that the calculation of the Green function for
a point charge in d dimensions can be performed with the use of Gauss’ theorem.

The calculation itself is a simple subset of the first part of the problem. The idea
is that, by virtue of solving the technical part of the question, the student can use
more time for discussion in the first part of the problem.

Applying Gauss’ theorem as in the notes, the real space representation of the prop-
agator can be found directly,

〈
[ϕ(x) − ϕ(0)]2

〉
=

2

(2 − d)Sd

1

ρs

(
x2−d − a2−d

)
,

where a is the ultraviolet cut-off. The logarithmic dependence in two-dimensions
should be easy to extract. As for the numerical prefactor, if all else fails, it can be
deduced from the answer given.

——————————————–

5. All four topics are book-work. Credit will given for a discussion of concepts rather
than a verbatim reworking of the lecture notes. This is particularly true with
sections (c) and (d) which are otherwise rather trivial. By virtue of studying past
papers, the students should have practised writing a solution to all of these problems.

(a) Look for a definition of a second-order phase transition, and a brief introduction
to the philosophy that lies behind the Ginzburg-Landau theory; a statement of
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what is meant by Landau theory, and an indication of how it can be used to obtain
critical exponents; a mention of how fluctuations lead to a breakdown of mean-field
theory; Mermin-Wagner theorem and the definition of the lower critical dimension;
Ginzburg criterion and the definition of the upper critical dimension.

(b) It is difficult to imagine that any of the students will attempt this part. If they
do, I would look for a general discussion of the importance of the scaling concept
in statistical mechanics; how far one can get with the homogeneity assumption; a
calculation of some the critical exponent identities; hyperscaling; and how these
ideas fit in with the Ginzburg-Landau theory.

(c) I expect that this question will be popular with those students who attempt
problem (1). I would expect a brief discussion of the high and low temperature
expansion; a derivation of the lower temperature power law decay of spin-spin cor-
relation functions turning over to exponential decay at high temperatures; a classi-
fication of topological versus hydrodynamic degrees of freedom and a definition of
vortex configurations; an estimate of the condensation temperature; a qualitative
discussion of the binding energy of vortex pairs and the unbinding transition.

(d) This is another easy option. For this reason extra credit will be given to students
who provide a simple example. In answer to this question, I would expect a definition
of the Feynman path integral (Hamiltonian and Lagrangian formulation) and an
indication of its origin; a discussion of how it connects to quantum propagator;
connection to classical statistical mechanics; and to the quantum partition function;
E. g. Harmonic oscillator; strings.

——————————————–

6. The first part of this question is again book-work. Expect a statement of the Feyn-
man path integral for the double well. An account of the instanton method should
explain the utility of the Euclidean time representation, and the inverted potential;
a qualitative description of the bounce saddle-point together with an indication of
the relative time scales (i.e. what sets the width of the bounce — ω−1

0 required in
the second part of the problem); a description of the free instanton gas; and finally,
an indication how this formulation leads to the quantum splitting of the degenerate
minima. Extra credit will be given for a description of the zero mode.

The second part of the question is indeed quite straightforward although it may
look challenging. By parametrising the instanton/anti-instanton pair as a top-hat
with smoothed edges (taken from first part of the problem), it is a trivial matter
to show that the integral generates the logarithmic potential. Students who would
encounter difficultly in understanding what approximations to employ should again
be able to draw on the answer to figure out what is happening.

The final part of the problem involves the realisation that this term in the action
can lead to a confinement of the instanton pairs and a complete suppression of
tunnelling — zero temperature quantum phase transition. I.e. typical separation is
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given by (Spart is constant, independent of τ)

〈τ〉 ∼
∫

dττ (ω0τ)
−ηq2

0/π →
{
∞ ηq2

0/2π < 1,
const. ηq2

0/2π > 1.

——————————————–

7. The phenomenology of Ginzburg-Landau theory is based on the divergence of the
correlation length in the vicinity of a second-order phase transition. This implies
that singular critical properties of the theory depend only on fundamental symmetry
properties of the model and not on the microscopic details of the Hamiltonian. This
include locality, translational or rotational invariance, and scale invariance.

(a) In the mean-field approximation, the average magnetisation takes the homo-
geneous form m = m̄ê& where ê& represents a unit vector along some arbitrary
direction, and m̄ minimises the free energy density

f(m̄) =
βH [m̄]

V
=

t

2
m̄2 + um̄4.

Differentiating, we find that

m̄ =

{
0 t > 0,√

−t/4u t < 0.

(b) Applying the expansion, and making use of the identities

(∇m)2 = (∇φ&)
2 + (∇φi

t)
2

m2 = m̄2 + 2m̄φ& + φ2
& + (φi

t)
2

(
m2
)2

= m̄4 + 4m̄3φ& + 6m̄2φ2
& + 2m̄2(φi

t)
2 + O(φ3)

we find

βH = βH [m̄] +

∫
d2x

K

2

[
(∇φ&)

2 + ξ−2
& φ2

& + (∇φi
t)

2 + ξ−2
t (φi

t)
2
]

where

K

ξ2
&

=
{

t t > 0
−2t t < 0

,
K

ξ2
t

=
{

t t > 0
0 t < 0

(c) Expressed in Fourier representation, the Hamiltonian is diagonal and the trans-
verse correlation function is given by

〈φi
t(q)φj

t(q
′)〉 = (2π)dδd(q + q′)δij

1

K(q2 + ξ−2
t )

Turning to the real space correlation function, for t < 0

〈φi
t(x)φj

t(0)〉 =

∫
ddq

(2π)d

eiq·x

Kq2
∼

1

K|x|d−2
.
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In dimensions d > 2 the correlation function decays at large distances while in
dimensions d ≤ 2 the correlation function diverges. This is consistent with the
Mermin-Wagner theorem which implies the destruction of long-range order due to
Goldstone mode fluctuations.

——————————————–

8. Essay question: Refer to lecture notes.
——————————————–

9. Switching to the momentum basis

θ(q) =

∫
d2reiq·rθ(r), θ(r) =

∫
d2q

(2π)2
e−iq·rθ(q),

the Hamiltonian takes the form

βH =
J

2

∫
d2q

(2π)2
q2|θ(q)|2

According to this result there exist low energy massless fluctuations of the field θ
known as a Goldstone modes. The influence of these fluctuations on the long-range
order in the system can be estimated by calculating the autocorrelator.

In the momentum basis, the autocorrelator of phases takes the form

〈θ(q1)θ(q2)〉 = (2π)2δ2(q1 + q2)
1

Jq2
1

.

from which we obtain the real space correlator

〈
(θ(r) − θ(0))2〉 =

∫
d2q

(2π)2

|1 − eiq·r|2

Jq2
= 4

∫
d2q

(2π)2

sin2(q · r)
Jq2

=
1

πJ
ln

(
|r|
a

)

where a represents some lower length scale cut-off. From this result, we see that
the correlation function decays as a power law in two-dimensions corresponding to
quasi-long range order. This is in accord with the Mermin-Wagner theorem which
states that the breaking of a spontaneous symmetry is accompanied by the existence
of massless Goldstone modes which destroy long-range order in dimensions d ≤ 2.

(a) A vortex configuration of unit charge is defined by

∂θ(r) =
1

|r|
êr × êz

Substituting this expression into the effective free energy, we obtain the vortex
energy

βEvortex =
J

2

∫
d2r

r2
= πJ ln

(
L

a

)
+ βEcore
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where a represents some short-distance cut-off and βEcore denotes the core energy.

(b) According to the harmonic fluctuations of the phase field, long-range order is
destroyed at any finite temperature. However, the power law decay of correlations is
consistent with the existence of quasi-long range order. The condensation of vortices
indicates a phase transition to a fully disordered phase. An estimate for this melting
temperature can be obtained from the single vortex configuration. Taking into
account the contribution of a single vortex configuration to the partition function
we have

Z ∼
(

L

a

)2

e−βEvortex

where the prefactor is an estimate of the entropy. The latter indicates a condensation
of vortices at a temperature J = 2/π.

——————————————–

10. In a second order phase transition an order parameter grows continuously from zero.
The onset of order below the transition is accompanied by a spontaneous symmetry
breaking — the symmetry of the low temperature ordered phase is lower than the
symmetry of the high temperature disordered phase. An example is provided by the
classical ferromagnet where the appearance of net magnetisation breaks the symme-
try m ,→ −m. If the symmetry is continuous, the spontaneous breaking of symmetry
is accompanied by the appearance of massless Goldstone mode excitations. In the
magnet, these excitations are known as spin waves.

(a) Applying the rules of Gaussian functional integration, one finds that 〈θ(x)〉 = 0,
and the correlation function takes the form

G(x,x′) ≡ 〈θ(x)θ(0)〉 = −
Cd(x)

K̄
, ∇2Cd(x) = δd(x)

where Cd denotes the Coulomb potential for a δ-function charge distribution.
Exploiting the symmetry of the field, and employing Gauss’,

∫
dx ∇2Cd(x) =∮

dS ·∇Cd, one finds that Cd depends only on the radial coordinate x, and

dCd

dx
=

1

xd−1Sd
, Cd(x) =

x2−d

(2 − d)Sd
+ const.,

where Sd = 2πd/2/(d/2 − 1)! denotes the total d-dimensional solid angle.

(b) Using this result, one finds that

〈
[θ(x) − θ(0)]2

〉
= 2
[
〈θ(0)2〉 − 〈θ(x)θ(0)〉

] |x|>a
=

2(|x|2−d − a2−d)

K̄(2 − d)Sd
,

where the cut-off, a is of the order of the lattice spacing. (Note that the case
where d = 2, the combination |x|2−d/(2 − d) must be interpreted as ln |x|.
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This result shows that the long distance behaviour changes dramatically at
d = 2. For d > 2, the phase fluctuations approach some finite constant as
|x| → ∞, while they become asymptotically large for d ≤ 2. Since the phase is
bounded by 2π, it implies that long-range order (predicted by the mean-field
theory) is destroyed.

Turning to the two-point correlation function of m, and making use of the
Gaussian functional integral, obtains

〈m(x) · m(0)〉 = m̄2Re
〈
ei[θ(x)−θ(0)]

〉
.

For Gaussian distributed variables 〈exp[αθ]〉 = exp[α2〈θ2〉/2].

We thus obtain

〈m(x) · m(0)〉 = m̄2 exp

[
−

1

2
〈[θ(x) − θ(0)]2〉

]
= m̄2 exp

[
−

(|x|2−d − a2−d)

K̄(2 − d)Sd

]
,

implying a power-law decay of correlations in d = 2, and an exponential decay
in d < 2. From this result we find

lim
|x|→∞

〈m(x) · m(0)〉 =

{
m2

0 d > 2,
0 d ≤ 2.

——————————————–

11. (a) A second order phase transition is associated with the continuous development
of an order parameter. At the critical point, various correlation functions
are seen to exhibit singular behaviour. In particular, the correlation length,
the typical scale over which fluctuations are correlated, diverges. This fact
motivates the consideration of a coarse-grained phenomenology in which the
microscopic details of the system are surrendered.

To this end, one introduces a coarse-grained order parameter which varies on
a length scale much greater than the microscopic scales. The effective Hamil-
tonian, is phenomenological depending only on the fundamental symmetries of
the system.

A general d-dimensional theory involves an n-component order parameter m(x),
i.e.

x ≡ (x1, · · ·xd) ∈ Rd (space), m ≡ (m1, · · ·mn) ∈ Rn (orderparameter).

Some specific problems covered in this framework include:

n = 1: Liquid-gas transitions; binary mixtures; and uniaxial magnets;

n = 2: Superfluidity; superconductivity; and planar magnets;

n = 3: Classical isotropic magnets.

While most applications occur in three-dimensions, there are also important
phenomena on surfaces (d = 2), and in wires (d = 1). (Relativistic field theory
is described by a similar structure, but in d = 4.)

A general coarse-grained effective Hamiltonian can be constructed on the basis
of appropriate symmetries:
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(a) Locality: The Hamiltonian should depend on the local magnetisation and
short range interactions expressed through gradient expansions:

βH =

∫
dx f [m(x),∇m, · · ·]

(b) Rotational Symmetry: Without magnetic field, the Hamiltonian should
be isotropic in space and therefore invariant under rotations, m ,→ Rnm.

βH [m] = βH [Rnm].

(c) Translational and Rotational Symmetry in x: This last constraint
finally leads to a Hamiltonian of the form

βH =

∫
dx
[ t
2
m2 + um4 + · · ·

+
K

2
(∇m)2 +

L

2
(∇2m)2 +

N

2
m2(∇m)2 + · · ·− h · m

]

This final result is known as the Ginzburg-Landau Hamiltonian. It depends
on a set of phenomenological parameters t, u, K, etc. which are non-universal
functions of microscopic interactions, as well as external parameters such as
temperature, and pressure.

With this definition, the total partition function for the system is given by the
functional integral over the field configurations of the order parameter weighted
by the corresponding Boltzmann weight

Z =

∫
Dm(x)e−βH[m(x)].

(b) According to the Mermin-Wagner theorem, spontaneous symmetry breaking of
a continuous symmetry leads to the appearance of Goldstone modes which de-
stroy long-range order in dimensions d ≤ 2. However, in two-dimensions, there
exists a low temperature phase of quasi long-range order in which the corre-
lations decay algebraically at long-distances. This leaves open the room for
a phase transition at some intermediate temperature in which the correlation
function crosses over to exponential decay.

To understand the nature of the transition, it is necessary to take into account
the existence of topological defects, vortex configurations of the fields. The
elementary defect which has a unit charge involves a 2π twist of θ as one
encircles the defect. More formally,

∮
∇θ · d/ = 2πn =⇒ ∇θ =

n

r
êr × êz,

where êr and êz are unit vectors respectively in the plane and perpendicular
to it. This (continuum) approximation fails close to the centre (core) of the
vortex, where the lattice structure is important.
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The energy cost from a single vortex of charge n has contributions from the
core region, as well as from the relatively uniform distortions away from the
centre. The distinction between regions inside and outside the core is arbitrary,
and for simplicity, we shall use a circle of radius a to distinguish the two, i.e.

βEn = βE0
n(a) +

K

2

∫

a

d2x(∇θ)2 = βE0
n(a) + πKn2 ln

(
L

a

)
.

The dominant part of the energy comes from the region outside the core and
diverges logarithmically with the system size L. The large energy cost as-
sociated with the defects prevents their spontaneous formation close to zero
temperature. The partition function for a configuration with a single vortex of
charge n is

Z1(n) ≈
(

L

a

)2

exp

[
−βE0

n(a) − πKn2 ln

(
L

a

)]
,

where the factor of (L/a)2 results from the configurational entropy of possible
vortex locations in an area of size L2. The entropy and energy of a vortex both
grow as ln L, and the free energy is dominated by one or the other. At low
temperatures, large K, energy dominates and Z1, a measure of the weight of
configurations with a single vortex, vanishes. At high enough temperatures,
K < Kn = 2/(πn2), the entropy contribution is large enough to favour sponta-
neous formation of vortices. On increasing temperature, the first vortices that
appear correspond to n = ±1 at Kc = 2/π. Beyond this point many vortices
appear and the equation above is no longer applicable.

In fact this estimate of Kc represents only a lower bound for the stability of
the system towards the condensation of topological defects. This is because
pairs (dipoles) of defects may appear at larger couplings. Consider a pair of
charges ±1 separated by a distance d. Distortions far from the core |r| & d
can be obtained by superposing those of the individual vortices

∇θ = ∇θ+ + ∇θ− ≈ 2d ·∇
(

êr × êz

|r|

)
,

which decays as d/|r|2. Integrating this distortion leads to a finite energy, and
hence dipoles appear with the appropriate Boltzmann weight at any temper-
ature. The low temperature phase should therefore be visualised as a gas of
tightly bound dipoles, their density and size increasing with temperature. The
high temperature phase constitutes a plasma of unbound vortices.

(c) The divergence of the correlation length at a second order phase transition
suggests that in the vicinity of the transition, the microscopic lengths are irrel-
evant. The critical behaviour is dominated by fluctuations that are statistically
self-similar up to the scale ξ. Self-similarity allows the gradual elimination of
the correlated degrees of freedom at length scales x 1 ξ, until one is left
with the relatively simple uncorrelated degrees of freedom at scale ξ. This
is achieved through a procedure known as the Renormalisation Group (RG),
whose conceptual foundation is outlined below:
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(a) Coarse-Grain: The first step of the RG is to decrease the resolution by
changing the minimum length scale from the microscopic scale a to ba
where b > 1. The coarse-grained magnetisation is then

m̄(x) =
1

bd

∫

Cell centred at x

dy m(y).

(b) Rescale: Due to the change in resolution, the coarse-grained “picture” is
grainier than the original. The original resolution a can be restored by
decreasing all length scales by a factor b, i.e. defining

x′ =
x

b
.

Thus, at each position x′ we have defined an average moment m̄(x′).

(c) Renormalise: The relative size of the fluctuations of the rescaled magneti-
sation profile is in general different from the original, i.e. there is a change
in contrast between the pictures. This can be remedied by introducing a
factor ζ , and defining a renormalised magnetisation

m′(x′) =
1

ζ
m̄(x′).

The choice of ζ will be discussed later.

By following these steps, for each configuration m(x) we generate a renor-
malised configuration m′(x′). It can be regarded as a mapping of one set of
random variables to another, and can be used to construct the probability dis-
tribution. Kadanoff’s insight was to realise that since, on length scales less
than ξ, the renormalised configurations are statistically similar to the origi-
nal ones, they must be distributed by a Hamiltonian that is also close to the
original. In particular, if the original Hamiltonian βH is at a critical point,
t = h = 0, the new (βH)′ is also at criticality since no new length scale is
generated in the renormalisation procedure, i.e. t′ = h′ = 0.

However, if the Hamiltonian is originally off criticality, then the renormalisa-
tion takes us further away from criticality because ξ′ = ξ/b is smaller. The next
assumption is that since any transformation only involves changes at the short-
est length scales it can not produce singularities. The renormalised parameters
must be analytic functions, and hence expandable as

{
t(b; t, h) = A(b)t + B(b)h + O(t2, h2, th),
h(b; t, h) = C(b)t + D(b)h + O(t2, h2, th).

However, the known behaviour at t = h = 0 rules out a constant term in the
expansion, and to prevent a spontaneously broken symmetry we further require
C(b) = B(b) = 0. Finally, commutativity A(b1 × b2) = A(b1) × A(b2) implies
A(b) = byt and D(b) = byh . So, to lowest order

{
tb ≡ t(b) = bytt,
hb ≡ h(b) = byhh.
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where yt, yh > 0. As a consequence, since the statistical weight of new con-
figuration, W ′[m′] is the sum of the weights W [m] of old ones, the partition
function is preserved

Z =

∫
Dm W [m] =

∫
Dm′ W ′[m′] = Z ′.

From this is follows that the free energies density takes the form

f(t, h) = −
lnZ
V

= −
lnZ ′

V ′bd
= b−df(tb, hb) = b−df(bytt, byhh),

where we have assumed that the two free energies are obtained from the same
Hamiltonian in which only the parameters t and h have changed. The free
energy describes a homogeneous function of t and h. This is made apparent
by choosing a rescaling factor b such that bytt is a constant, say unity, i.e.
b = t−1/yt , and

f(t, h) = td/ytf(1, h/tyh/yt) ≡ td/ytgf(h/tyh/yt)

(d) Starting from the time-dependent Schrödinger equation

i!
∂

∂t
|Ψ〉 = Ĥ|Ψ〉

the time evolution operator is defined by

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = exp

[
−

i

!
Ĥ(t′ − t)

]
.

In the real space representation

U(x′, t′; x, t) = 〈x′| exp

[
−

i

!
Ĥ(t′ − t)

]
|x〉,

According to the Feynman path integral, the quantum evolution operator is
expressed as the sum over all trajectories subject to the boundary conditions
and weighted by the classical action. In the Hamiltonian formulation,

U(x′, t′; x, t) =

∫
Dx(t)

∫
Dp(t) exp

[
i

!
S(p, x)

]
,

S(p, x) =

∫ t′

t

dt′′ [pẋ − H(p, x)] ,

and in the Lagrangian formulation,

U(x′, t′; x, t) =

∫
D̄x(t) exp

[
i

!
S(x)

]
,

S(x) =

∫ t′

t

dt′′
[m

2
ẋ2 − V (x)

]
.
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To establish an analogy with statistical mechanics we have to consider propa-
gation in imaginary or Euclidean time T . In this way, we obtain

U(x′, t′ = −iT ; x, t = 0) =

∫
Dx(τ) exp

[
−

1

!
S(x)

]
,

where

S(x) =

∫ T

0

dτ

[
m

2

(
∂x

∂τ

)2

+ V (x(τ))

]

.

Interpreting the action as a classical free energy functional, and the path in-
tegral as a classical partition function, one has the analogy: The transition
amplitude for a quantum particle for the time (-iT) is equal to the classical
partition function for a string of length T computed at the value β = 1/!.

A second analogy follows from the fact that the quantum partition function for
the particle is given by Zqu = Tr exp[−βH ] and hence,

Zqu =

∫
dx〈x|e−βH |x〉 =

∫
dxU(x, t′ = −iβ!; x, t = 0).

Therefore, in quantum statistical mechanics, the inverse temperature plays the
role of an imaginary time.

——————————————–

12. In mean-field, the free energy can be shown to take a homogeneous form around a
second order transition. According to the scaling hypothesis, when one goes beyond
mean-field, homogeneity of the singular form of the free energy (and of any other
thermodynamic quantity) retains the homogeneous form

fsing.(t, h) = t2−αgf(h/t∆)

where the actual exponents α and ∆ depend on the critical point being considered.
(Additional credit for discussion of hyperscaling.)

(a) From the free energy, one obtains the magnetisation as

m(t, h) ∼
∂f

∂h
∼ t2−α−∆gm(h/t∆).

In the limit x → 0, gm(x) is a constant, and m(t, h = 0) ∼ t2−α−∆ (i.e.
β = 2 − α − ∆). On the other hand, if x → ∞, gm(x) ∼ xp, and m(t =
0, h) ∼ t2−α−∆(h/t∆)p. Since this limit is independent of t, we must have p∆ =
2 − α−∆. Hence m(t = 0, h) ∼ h(2−α−∆)/∆ (i.e. δ = ∆/(2 − α−∆) = ∆/β).

(b) From the magnetisation, one obtains the susceptibility

χ(t, h) ∼
∂m

∂h
∼ t2−α−2∆gχ(h/t∆) ⇒ χ(t, h = 0) ∼ t2−α−2∆ ⇒ γ = 2∆− 2 + α.
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(c) Close to criticality, the correlation length ξ is solely responsible for singular
contributions to thermodynamic quantities. Since lnZ(t, h) is dimensionless
and extensive (i.e. ∝ Ld), it must take the form

lnZ =

(
L

ξ

)d

× gs +

(
L

a

)d

× ga

where gs and ga are non-singular functions of dimensionless parameters (a is
an appropriate microscopic length). (A simple interpretation of this result is
obtained by dividing the system into units of the size of the correlation length.
Each unit is then regarded as an independent random variable, contributing
a constant factor to the critical free energy. The number of units grows as
(L/ξ)d. The singular part of the free energy comes from the first term and
behaves as

fsing.(t, h) ∼
lnZ
Ld

∼ ξ−d ∼ tdνgf (t/h
∆)

As a consequence, comparing with the homogeneous expression for the free
energy, one obtains the Josephson identity

2 − α = dν

——————————————–

13. (a,b,c) Expanding the Hamiltonian to cubic order in the longitudinal and transverse
fluctuations, we obtain

βH [φ] − βH [0] =

∫
ddx
{K

2

[
(∇φl)

2 + (∇φt)
2
]
+

[
t

2
+ 4um̄2

]

+

[
t

2
+ 2um̄2

]
φ2

t + 4um̄
(
φ3

l + φlφ
2
t

)
+ · · ·

}
,

where, for t < 0, m̄2 = |t|/4u, and for t > 0, m̄ = 0. Thus, for t < 0, we obtain

βH [φ] − βH [0] =

∫
ddx
{K

2

[
(∇φl)

2 + (∇φt)
2
]
+

|t|
2
φ2

l + 4um̄φlφ
2
t + · · ·

}
.

Keeping only the quadratic order, the bare correlators takes the form

〈φl(q1)φl(q2)〉0 = (2π)dδd(q1 + q2)
1

Kq2
1 + |t|

〈
φαt (q1)φ

β
t (q2)

〉

0
= (2π)dδd(q1 + q2)

1

Kq2
1

.

From this result, we obtain the momentum dependent susceptibility

χl =
1

Kq2 + |t|
, χt =

1

Kq2
.
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Treating the cubic interaction as a perturbation, we obtain the cumulant expansion

〈φl(q)φl(q
′)〉 =

〈
φl(q)φl(q′)e−U

〉
0

〈e−U〉0
= 〈φl(q)φl(q

′)〉0 +
1

2

[〈
φl(q)φl(q

′)U2
〉
0
− 〈φl(q)φl(q

′)〉
〈
U2
〉
0

]
+ · · ·

(d) Making use of the correlator

〈φt(q1) · φt(q2)φt(q
′
1) · φt(q

′
2)〉0 =

(2π)2d

K2

[
(n − 1)2 δ

d(q1 + q2)δd(q′
1 + q′

2)

q2
1q

′
1
2

+(n − 1)
δd(q1 + q′

1)δ
d(q2 + q′

2)

q2
1q

2
2

+ (n − 1)
δd(q1 + q′

2)δ
2(q2 + q′

1)

q2
1q

2
2

]
,

we obtain

〈φl(q)φl(q
′)〉 − 〈φl(q)φl(q

′)〉0 =
16(um̄)2

2

∫
(dq1)(dq2)(dq3)(dq4)

×(〈φl(q)φl(q
′)φl(−q1 − q2)φl(−q′

1 − q′
2)〉0

−〈φl(q)φl(q
′)〉0 〈φl(−q1 − q2)φl(−q′

1 − q′
2)〉0)

×〈φt(q1) · φt(q2)φt(q
′
1) · φt(q

′
2)〉0

Using the cumulant

〈φl(q)φl(q
′)φl(−q1 − q2)φl(−q′

1 − q′
2)〉0

−〈φl(q)φl(q
′)〉0 〈φl(−q1 − q2)φl(−q′

1 − q′
2)〉0

= 〈φl(q)φl(−q1 − q2)〉0 〈φl(q
′)φl(−q′

1 − q′
2)〉0

+ 〈φl(q)φl(−q′
1 − q′

2)〉0 〈φl(q
′)φl(−q′)φl(−q1 − q2)〉0 ,

we obtain

〈φl(q)φl(q
′)〉 − 〈φl(q)φl(q

′)〉0 =
2u|t|(2π)d

K2(Kq2 + |t|)(Kq′2 + |t|)

×
[
(n − 1)2δd(q)δd(q′)

∫
(dq1)(dq2)

q2
1q

′
1
2 + 2(n − 1)δd(q + q′)

∫
(dq1)

(q + q1)2q2
1

]
.

Note that the last term is infrared divergent in dimensions d < 4.
——————————————–

14. Essay question: Refer to lecture notes.
——————————————–

15. (a) Applying the Hubbard-Stratonovich transformation,

exp

[
1

2

∑

ij

σiJijσj

]

= C

∫ ∞

−∞

∏

k

dmk exp

[

−
1

2

∑

ij

mi[J
−1]ijmj +

∑

i

miφi

]

,
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and summing over the spin configurations, we obtain

Z = C

∫ ∞

−∞

∏

k

dmk exp

[

−
1

2

∑

ij

mi[J
−1]ijmj +

∑

i

ln (2 cosh(2(mi + h)))

]

.

To determine J−1 it is convenient to switch to the basis in which J is diagonal —
reciprocal space. Defining the Fourier series

σ(q) =
∑

n

eiq·nσn, σn =

∫ π

−π

(dq)e−iq·nσ(q),

we obtain

1

2

∑

ij

σiJijσj =

∫
(dq)J(q)|σ(q)|2, J(q) =

J

2

∑

ê

eiq·ê

where ê denote the primitive lattice vectors. From this result, we obtain the expan-
sion

J(q) = J
D∑

d=1

cos qd ≈ D −
q2

2
+ · · ·

Inverting and applying the inverse Fourier transform, we obtain

[J−1]ij =

∫
(dq)

eiq·(ni−nj)

J(q)
≈

1

J

∫
(dq)eiq·(ni−nj)

(
D−1 +

q2

2D
+ · · ·

)

=
1

DJ
δni,nj −

1

2D2J
∇2

ni−nj
+ · · ·

Applying this expansion, we obtain

Z ≈ C

∫
Dm exp

[
−

1

2

∫
ddx

(
m2

DJ
+

1

2D2J
(∇m)2

)
+

∫
ddx ln (2 cosh(2(m + h)))

]
.

Expanding the logarithm for small h and m we obtain

Z =

∫
Dme−βH ,

where the effective Ginzburg-Landau Hamiltonian takes the form

βH =

∫
ddx

(
K

2
(∇m)2 +

t

2
m2 + um4 − hm

)

with

K =
1

4D2J
, t =

1

2DJ
− 1, u =

1

12
.

Setting t = 0, we establish the critical point at J−1
c ≡ T−1

c < 2D.

(b-d) An estimate of the mean-field properties of the Ginzburg-Landau Hamiltonian
is straightforward and can be found in the lecture notes.

——————————————–
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16. (a) Expressed as a Euclidean time path integral, the transition probability is given
by

Z =

∫
Dq(τ)e−S[q(τ)]/!, S[q] =

∫ ∞

0

dτ
[m

2
q̇2 + U(q)

]
,

where the confining potential takes the form

U(q) = 2g sin2

(
πq

q0

)
.

The corresponding classical equation of motion is given by the Sine-Gordon Equation

mq̈ −
2πg

q0
sin

(
2πq

q0

)
= 0.

Applying the trial solution

q̄(τ) =
2q0

π
tan−1 (eω0τ ) ,

we find the equation is satisfied if ω0 = (2π/q0)
√

g/m.

From this result we obtain the “classical” action

S[q̄] =

∫ ∞

0

dτ
[m

2
˙̄q
2
+ U(q̄)

]
=

∫ ∞

0

dτm ˙̄q
2

= m

∫ q0

0

dq ˙̄q

= 2
mq2

0

π2
ω0.

(b) In Fourier space, the action of the classical string takes the form

Sstring =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

1

2
(ρω2 + σk2)|u(ω, k)|2.

Representing the functional δ-function as the integral

∫
Df exp

[
i

∫ ∞

−∞

dω

2π
f(ω)

(
q(−ω) −

∫ ∞

−∞

dk

2π
u(−ω,−k)

)]
,

and performing the integral over the degrees of freedom of the string, we obtain

∫
Due−Sstring/!−i

R

dτf(τ)u(τ,0) = const. × exp

[
−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

1

2

!

(ρω2 + σk2)
|f(ω)|2

]
.

Applying the integral

∫ ∞

−∞

dk

2π

1

ρω2 + σk2
=

1

|ω|η
,
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where η =
√
ρσ, and performing the Gaussian functional integral over the Lagrange

multiplier f(ω), we obtain the effective action

Seff = Spart. +
η

2

∫ ∞

−∞

dω

2π
|ω||q(ω)|2.

(c) Approximating the instanton/anti-instanton pair q(τ) = q̄(τ + τ̄) − q̄(τ − τ̄) by
a “top-hat” function we find

q(ω) =

∫ τ̄/2

−τ̄/2

dτq0e
iωτ = q0τ̄

sin(ωτ̄/2)

(ωτ̄/2)
.

Treating the dissipative term as a perturbation, we obtain the action

η

2

∫ ω0

0

dω

2π
|ω|(q0τ̄)

2 sin2(ωτ̄/2)

(ωτ̄/2)2
,

where ω0 serves as a high frequency cut-off. Taking ωτ̄ & 1 we obtain the approxi-
mate integral

2 ×
η

4

∫ ω0

1/τ̄

dω

2π
q2
0

4

ω
=

q2
0

π
η ln(ω0τ̄).

Employing this result as a probability distribution, we find

〈τ̄〉 =

∫
dτ̄ τ̄ exp

[
−

q2
0

π!
η ln(ω0τ̄)

]
∼ const. ×

∫ ∞

dτ̄ τ̄ 1−q2
0η/π!.

The divergence of the integral shows that for

η >
2π!

q2
0

instanton/anti-instanton pairs are confined and particle tunneling is prohibited.
——————————————–

17. (a) In the mean-field approximation (i.e. η is spatially non-varying), by minimising
the Free energy density, it is straightforward to show that

η̄ =

{
0 t > 0,
(−t/v)1/4 t > 0.

, βF̄ =

{
0 t > 0,
−|t|3/2/3v1/2 t < 0.

,

From this result it is easy to obtain the heat capacity,

Cmf = −T
∂2f

∂t2
≈ −Tc

∂2f

∂t2
=

{
0 t > 0,
(−vt)−1/2Tc/4 t < 0.
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(b) Expanding the Hamiltonian to second order in the vicinity of the mean field
solution, one finds

βH(η) − βH(η̄) =
K

2

∫
ddr

[
(∇η)2 +

η2

ξ2

]
,

1

ξ2
=

{
t/K t > 0,
−4t/K t < 0.

From this result it is straightforward to determine the asymptotic form of the cor-
relation function using the formula given at the end of the question.

〈η(0)η(r)〉 =
e−|r|/ξ

KSd|d − 2||r|d−2

This identifies ξ as the correlation length which diverges in the vicinity of the tran-
sition.

(c) Again, in the Gaussian approximation, the free energy and heat capacity are
easily determined.

βF =
1

2

∫
ddq

(2π)d
ln
[
K(q2 + ξ−2)

]
, Cfl = C − Cmf ∝ K−d/2|t|d/2−2

(d) Taking the results for the mean field and fluctuation contribution to the heat
capacity, one obtains,

Cfl

Cmf
∝

|t|(d−3)/2

√
Kd/v

from which one can identify the upper critical dimension as 3.

(e) Most important difference is the appearance of Goldstone modes due to massless
fluctuations of the transverse degrees of freedom. This gives rise to a power law decay
of the correlation function below Tc.

——————————————–

18. (a) In the harmonic approximation

〈h(q1)h(q2)〉 =
1

r0q2 + κ0q4
(2π)2δ2(q1 + q2).

The corresponding autocorrelation function is given by

〈[h(x) − h(0)]2〉 =

∫
d2q

(2π)2

|1 − eiq·x|2

r0q2 + κ0q4
∼

1

πr0
ln (qc|x|) ,

where qc ∼
√

r0/κ0 represents the short-distance or ultraviolet cut-off of the integral.
The divergence of this function at long distance implies that there is no long-range
positional order.
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(b) The fluctuation in the normals is given by

〈[∇h(x) −∇h(0)]2〉 =

∫
d2q

(2π)2

q2|1 − eiq·x|2

r0q2 + κ0q4
∼ const.

Since this result remains finite (independent of x) in the thermodynamic limit we
can deduce that, while there is no long-range positional order, there is long-range
orientational order of the membrane in three dimensions.

(c) The general formula for the perturbative RG is just bookwork. Simply writing
the identity,

Z = Z>

∫
Dh<e−βH0[h<]

〈
e−βHI

〉
h>

and performing a cumulant expansion, one obtains the advertised formula.

(d) Evaluation of the perturbative correction leads to contributions of two non-
trivial kinds. The first brings about a renormalisation of the interfacial tension
while the second renormalises the bending modulus.

〈βHI〉h>
→

5κ0

4

∫ Λe−!

0

d2q1d2q2

(2π)4

∫ Λ

Λe−!

d2q3d2q4

(2π)4

×q2
1q

2
2q3 · q4h

<
q1

h<
q2

〈
h>

q3
h>

q4

〉
(2π)2δ2(q1 + q2 + q3 + q4).

Substituting the form of the propagator, and making use of the approximation

5

4

∫ Λ

Λe−!

d2q

(2π)2

κ0q
2

r0q2 + κ0q4
≈

5

4

1

2π
Λ2(1 − e−&)

κ0Λ2

r0Λ2 + κ0Λ4
≈

5/

8π
,

we obtain the renormalisation in the text. Extra credit for providing a diagrammatic
representation of the same.

In conclusion, we see that there is a renormalisation of the bending modulus to lower
values at longer length scales. The eventual unphysical sign change of the modulus
is a signature of the breakdown of the perturbative expansion of the Hamiltonian. It
provides an estimate for the length over which the membrane remains approximately
rigid (i.e. the persistence length).

——————————————–

19. Essay question: Refer to lecture notes.
——————————————–

20. (a) Solving the Schrödinger equation, the wavefunctions obeying periodic boundary
conditions take the form ψm = eimθ, m integer, and the eigenvalues are given by
Em = m2/2I. Defining the quantum partition function as Z = tre−βH we obtain
the formula in the text.
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(b) Interpreted as a Feynman path integral, the quantum partition function takes
the form of a propagator with

Z =

∫
Dθ(τ) exp

[
−
∫ β

0

dτL
]

,

where the L = I θ̇2/2 denotes the Lagrangian. The trace implies that paths θ(τ)
must start and finish at the same point. However, the translational invariance of
the angle in integer multiples of 2π implies the boundary conditions advertised.

(c) Evaluating the partition function, we note

∫ β

0

(∂τθ)
2dτ =

∫ β

0

[
2π

β
+ ∂τθp

]2
dτ = β

(
2πm

β

)2

+

∫ β

0

(∂τθp)
2dτ.

Thus, we obtain the partition function

Z = Z0

∞∑

m=−∞

exp

[
−

I

2

(2πm)2

β

]
,

where

Z0 =

∫
Dθp(τ) exp

[
−

I

2

∫ β

0

(∂τθp)
2dτ

]
=

√
2πI

β
.

denotes the free particle partition function.

(d) Apply the Poisson summation formula with

h(x) = exp

[
−β

x2

2I

]
,

we find

∞∑

n=−∞

exp

[
−β

x2

2I

]
=

∞∑

n=−∞

∫ ∞

−∞

dφ exp

[
−β

φ2

2I
+ 2πimφ

]

=

√
2πI

β

∞∑

m=−∞

exp

[
−

I

2

(2πm)2

β

]
.

——————————————–

21. (a) This question is, to a large extent, bookwork. Part (a) involves direct application
of the RG procedure:

Coarse-Grain: The first step of the RG involves the elimination of fluctuations at
scales a < |x| < ba or Fourier modes with wavevectors Λ/b < |q| < Λ. We
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thus separate the fields into slowly and rapidly varying functions, m(q) =
m>(q) + m<(q), where

m(q) =

{
m<(q) 0 < |q| < Λ/b,
m>(q) Λ/b < |q| < Λ.

Since the Ginzburg-Landau functional is Gaussian, the partition function is
separable in the modes and can be reexpressed in the form

Z =

∫
Dm<(q)e−βH[m<]

∫
Dm>(q)e−βH[m>].

More precisely, the latter takes the form

Z = Z>

∫
Dm<(q) exp

[

−
∫ Λ/b

0

ddq

(2π)d

(
t + Kq2

2

)
|m<(q)|2 + h · m<(0)

]

,

where Z> = exp[−(nV/2)
∫ Λ

Λ/b(d
dq/(2π)d) ln(t + Kq2)]. [Full credit does not

require an evaluation of the functional integral over m>.]

Rescale: The partition function for the modes m<(q) is similar to the original, ex-
cept that the upper cut-off has decreased to Λ/b, reflecting the coarse-graining
in resolution. The rescaling, x′ = x/b in real space, is equivalent to q′ = bq in
momentum space, and restores the cut-off to the original value.

Renormalise: The final step of the RG is the renormalisation of the field, m′(x′) =
m<(x′)/ζ . Alternatively, we can renormalise the Fourier modes according to
m′(q′) = m<(q′)/z, resulting in

Z = Z>

∫
Dm′(q′)e−βH′[m′(q′)],

βH ′ =

∫ Λ

0

ddq′

(2π)d
b−dz2

(
t + Kb−2q′2

2

)
|m′(q′)|2 − zh · m′(0).

As a result of the RG procedure the set of parameters {K, t, h} has transformed
from to a new set

{
K ′ = Kb−d−2z2,
t′ = tb−dz2,
h′ = hz.

The singular point t = h = 0 is mapped onto itself as expected. To make the fluc-
tuations scale invariant at this point, we must ensure that the remaining parameter
in the Hamiltonian K stays fixed. This is achieved by the choice z = b1+d/2 which
implies

{
t′ = b2t yt = 2,
h′ = b1+d/2h yh = 1 + d/2.
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For the fixed point t = t′, K becomes weaker and the spins become uncorrelated —
the high temperature phase.

(b) From these equations, we can predict the scaling of the Free energy

fsing.(t, h) = b−dfsing.(b
2t, b1+d/2h), b2t = 1,

= td/2gf(h/t1/2+d/4).

[This implies exponents: 2 − α = d/2, ∆ = yh/yt = 1/2 + d/4, and ν = 1/yt = 1/2.
Comparing with the results from the exact solution we can can confirm the validity
of the RG.]

(c) At the fixed point (t = h = 0) the Hamiltonian is scale invariant. By dimensional
analysis x = bx′, m(x) = ζm′(x′) and

(βH)∗ =
K

2
bd−2ζ2

∫
dx′ (∇m′)2, ζ = b1−d/2.

For small perturbations

(βH)∗ + up

∫
dx |m|p → (βH)∗ + upb

dζp

∫
dx′ |m′|p.

Thus, in general up → u′
p = bdbp−pd/2 = bypup, where yp = p − d(p/2 − 1), in

agreement with our earlier findings that y1 ≡ yh = 1+ d/2 and y2 ≡ yt = 2. For the
Ginzburg-Landau Hamiltonian, the quartic term scales with an exponent y4 = 4−d
and is therefore relevant for d < 4 and irrelevant for d > 4. Sixth order perturbations
scale with an exponent y6 = 6 − 2d and is therefore irrelevant for d > 3.

——————————————–

22. (a) Applying a continuum approximation, and expanding the lattice Hamiltonian
we obtain

βH = −J
∑

〈ij〉

cos (θi − θj) ≈ −J
∑

〈ij〉

[

1 −
(θi − θj)

2

2
+ · · ·

]

= −JN +
J

2

∫
d2r(∇θ)2 + · · ·

where we have made use of the approximation θi+êx − θi ∼ ∇θi.

(b) Recast in the momentum basis

θ(q) =

∫
d2reiq·rθ(r), θ(r) =

∫
d2q

(2π)2
e−iq·rθ(q),

the Hamiltonian takes the form

βH = −JN +
J

2

∫
d2q

(2π)2
q2|θ(q)|2 + · · ·
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To quadratic order, the correlator of phases takes the form

〈θ(q1)θ(q2)〉 = (2π)2δ2(q1 + q2)
1

Jq2
1

.

Using this result, the real space correlator takes the form

〈
(θ(r) − θ(0))2〉 =

∫
d2q

(2π)2

|1 − eiq·r|2

Jq2
= 4

∫
d2q

(2π)2

sin2(q · r)
Jq2

=
1

πJ
ln

(
|r|
a

)

where a represents some lower length scale cut-off. Turning to the spin-spin corre-
lation function, we require the average

〈S(r) · S(0)〉 =
〈
ei(θ(r)−θ(0))

〉
= exp

[
−

1

2

〈
(θ(r) − θ(0))2〉

]
.

Altogether we obtain the result sought in the question. [Note that in this part of
the question and the next establishing the numerical prefactor from the integral
might not be that easy. However, it is intended that the candidates can deduce
these constants from the answer given in the question.]

(c) A vortex configuration of unit charge is defined by

∂θ(r) =
1

|r|
êr × êz

Substituting this expression into the effective free energy, we obtain the vortex
energy

βEvortex =
J

2

∫
d2r

r2
= πJ ln

(
L

a

)
+ βEcore

where a represents some short-distance cut-off and βEcore denotes the core energy.

(d) According to the harmonic fluctuations of the phase field, long-range order is
destroyed at any finite temperature. However, the power law decay of correlations is
consistent with the existence of quasi-long range order. The condensation of vortices
indicates a phase transition to a fully disordered phase. An estimate for this melting
temperature can be obtained from the single vortex configuration. Taking into
account the contribution of a single vortex configuration to the partition function
we have

Z ∼
(

L

a

)2

e−βEvortex

where the prefactor is an estimate of the entropy. The latter indicates a condensation
of vortices at a temperature J = 2/π.

——————————————–
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23. Essay question: Refer to lecture notes.
——————————————–

24. (a) Applying the Hubbard-Stratonovich transformation, the classical partition func-
tion is given by

Z =
∑

{σi}

e−βH[σi] = I
∑

{σi}

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj + 2

∑

i

σimi +
∑

i

hσi

]

= I

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj +

∑

i

ln (2 cosh(2mi + h))

]

= I

∫ N∏

k=1

dmke
−S,

where S represents the effective free energy shown in the question.

(b) For small m and h the effective free energy can be expanded as

U(m) = − ln 2 +
t

2
m2 +

4

3
m4 − 2hm + · · ·

where t = 2(coth(κ/2)/J − 2). Evidently, at zero magnetic field, the effective
potential U(m) is quartic. For t < 0, the potential takes the form of a double well.

The path integral for a particle in a potential well is given by

Z =

∫
Dr(t) exp

[
i

!

∫ t

0

dt′
(m

2
ṙ2 − U(r)

)]

=

∫
Dr(τ) exp

[
−

1

!

∫ T

0

dτ ′
(m

2
ṙ2 + U(r)

)]

By identifying r with m, and τ with x, the partition function of the Ising model is
seen to be equivalent to the path integral of a particle in a double well potential
where the transition time T is equalent to the length of the spin chain L. From this
analogy, the magnetic field can be seen as inducing an asymmetry of the potential.

——————————————–

25. The basis of the Ginzburg-Landau phenomenology rests on the divergence of the
correlation length in the vicinity of the critical point. This shows that the na-
ture of the long-distance correlations near the critical point can be described by a
phenomenological Hamiltonian which relies only on the fundamental symmetries of
the system viz. locality, translational, rotational symmetry, isotropy. Taking into
account these constraints one obtains the the Ginzburg-Landau Hamiltonian.
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(a) In the mean-field approximation the partition function is dominated by the
minimum Hamiltonian. In this approximation one obtains

Z 4 e−βF , βF = min[βH ]

Symmetry under internal rotations of m implies that the mean-field involves
a spontaneous symmetry breaking. Minimising one obtains the magnitude of
the saddle-point mean field to be

m̄ =

{
0 t > 0
(−t/4u)1/2 t < 0.

From this result, we obtain the free energy density

f(m) ≡
βF

V
=

{
0 t > 0
−t2/16u t < 0.

Then making use of the identity

E = −
∂ lnZ
∂β

,

one obtains the specific heat capacity

Csing. =
∂E

∂T
=

{
0 t > 0
−1/8u t < 0.

(b) After substitution into the Ginzburg-Landau Hamiltonian, a quadratic expan-
sion of the free energy functional

(∇m)2 = (∇φl)
2 + (∇φt)

2,

m2 = m̄2 + 2m̄φl + φ2
l + φ2

t ,

m4 = m̄4 + 4m̄3φl + 6m̄2φ2
l + 2m̄2φ2

t + O(φ3
l ,φlφ

2
t ),

generates the perturbative expansion of the Hamiltonian

βH = V

(
t

2
m̄2 + um̄4

)
+

∫
dx

[
K

2
(∇φl)

2 +
t + 12um̄2

2
φ2

l

]

+

∫
dx

[
K

2
(∇φt)

2 +
t + 4um̄2

2
φ2

t

]
+ O(φ3

l ,φlφ
2
t ).

(c) Expressed in the Fourier basis, the quadratic Hamiltonian is diagonal. The
correlation function

〈φα(q)φβ(q
′)〉 = δαβ(2π)dδd(q + q′)Gα(q), G−1

α (q) = K(q2 + ξ−2
α )

where

K

ξ2
l

≡ t + 12um̄2 =

{
t t > 0,
−2t t < 0,

K

ξ2
t

≡ t + 4um̄2 =
{

t t > 0,
0 t < 0.
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Then, expressed in real space, one obtains the correlation function

Gc
α,β(x,x′) ≡ 〈(mα(x) − m̄α)(mβ(x

′) − m̄β)〉 = 〈φα(x)φβ(x
′)〉,

= −
δαβ
K

Id(x − x′, ξα), (6.3)

where

Id(x, ξ) = −
∫

dq

(2π)d

eiq·x

q2 + ξ−2
.

Using this result and the expression given in the text, one obtains the asymp-
totics of the distribution function.

——————————————–

26. The divergence of the correlation length at a second order phase transition im-
plies self-similarity of spatial correlations. This, in turn, implies that the form of
the free energy remains invariant under coordinate rescaling. This invariance is ex-
ploited in the renormalisation group procedure: The scaling of the parameters of the
Ginzburg-Landau Hamiltonian under coordinate rescaling allows an identification
of the fixed theory and the exposes the nature of the critical point. Operationally,
the renormalisation procedure is implemented in three steps described in detail in
the question:

(a) Expressed in a Fourier representation

m(x) =

∫
ddq

(2π)d
m(q)eiq·x

With this definition, the long-range coupling of the Hamiltonian takes the form

1

2

∫
ddq

(2π)d
J(q)m(q) · m(−q), J(q) =

∫
ddxJ(x)eiq·x = Kσ|q|σ

With this result we obtain the expression shown in the text.

(b) Coarse-Grain: The first step of the RG involves the elimination of fluctuations
at scales a < |x| < ba or Fourier modes with wavevectors Λ/b < |q| < Λ.
Applied to the Gaussian model described in the text, the fields can be separated
into slowly and rapidly varying functions, m(q) = m>(q) + m<(q), where

m(q) =

{
m<(q) 0 < |q| < Λ/b,
m>(q) Λ/b < |q| < Λ.

Since the Ginzburg-Landau functional is Gaussian, the partition function is
separable in the modes and can be reexpressed in the form

Z =

∫
Dm<(q)e−βH[m<]

∫
Dm>(q)e−βH[m>].
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More precisely, the latter takes the form

Z = Z>

∫
Dm<(q) exp

[

−
∫ Λ/b

0

ddq

(2π)d

(
t + K2q

2 + Kσ|q|σ

2

)
|m<(q)|2

]

,

where Z> represents some irrelevant constant.

Rescale: The partition function for the modes m<(q) is similar to the origi-
nal, except that the upper cut-off has decreased to Λ/b, reflecting the coarse-
graining in resolution. The rescaling, x′ = x/b in real space, is equivalent to
q′ = bq in momentum space, and restores the cut-off to the original value.

Renormalise: The final step of the RG is the renormalisation of the field,
m′(x′) = m<(x′)/ζ . Alternatively, we can renormalise the Fourier modes ac-
cording to m′(q′) = m<(q′)/z, resulting in

Z = Z>

∫
Dm′(q′)e−βH′[m′(q′)],

βH ′ =

∫ Λ

0

ddq′

(2π)d
b−dz2

(
t + K2b−2q′2 + Kσb−σ|q′|σ

2

)
|m′(q′)|2.

As a result of the RG procedure the set of parameters {t, K2, Kσ} has trans-
formed from to a new set






t′ = tb−dz2,
K ′

2 = K2b−d−2z2,
K ′

σ = Kσb−d−σz2.

Setting K ′
2 = K2, the fluctuations are made scale invariant by the choice z =

b1+d/2 from which one obtains the scaling relations

{
t′ = b2t yt = 2,
K ′

σ = Kσb2−σ yσ = 2 − σ.

Thus for σ > 2, the parameter Kσ scales to zero. In this case the fixed Hamil-
tonian is simply

βH∗ =

∫
ddx

K2

2
(∇m)2

(b) For σ < 2 setting K ′
σ = Kσ, z = (σ + d)/2 and one obtains

{
t′ = bσt yt = σ,
K ′

2 = K2bσ−2 y2 = σ − 2.

In this case K2 scales to zero and the fixed Hamiltonian takes the form

βH∗ =
1

2

∫
ddx1

∫
ddx2J(x1 − x2)m(x1) · m(x2)
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——————————————–

27. Essay question: Refer to Lecture notes
——————————————–

28. According to the Lagrangian formulation of the Feynman path integral one has

〈qF |e−iĤt/!|qI〉 =

∫

q(0)=qI ,q(t)=qF

DqeiS/!,

where S denotes the classical action. For the harmonic oscillator, the classical action
is given by

S =

∫ t

0

dt′
(

m

2
q̇2 −

1

2
mω2q2

)

(a) The evaluation of the path integral is most readily performed by dividing the
functional integral into a contribution arising from the classical path and fluc-
tuations around the classical path. With the boundary conditions as specified
in the question, the classical path is parameterised by the trajectory

q(t′) = A cosωt + B sinωt

where

A = q, B = q
1 − cosωt

sinωt

Evaluating the classical action, one obtains

S = mω2

[
(A2 − B2)

sin 2ωt

4ω
+ 2AB

sin2 ωt

2ω

]

Substituting for A and B, after some algebra, one obtains the exponent shown
in the question.

To evaluate the contribution from the fluctuations, one must evaluate the part
integral with the boundary conditions q(t) = q(0) = 0. Being Gaussian in the
fields q, the integral may be performed and one obtains

〈0|e−iĤt/!|0〉 = J det
(
−∂2

t − ω2
)−1/2

where J denotes some unknown constant. However, the propagator may be
normalised by the free particle propagator. Substituting for the eigenvalues of
the operator, and normalising, one obtains

〈0|e−iĤt/!|0〉 =
∏

n>0

(

1 −
(
ωt

nπ

)2
)−1/2

Gfree(0, 0).

Making use of the formula given in the question together with the free particle
propagator, one obtains the required result.
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(b) The evaluation of the quantum partition function can be made by use of the
Feynman path integral. Making use of the identity

Z =

∫ ∞

−∞

dq〈q|e−βĤ |q〉

together with the path integral above with it/! = β, one obtains

Z =
1

2 sinh(β!ω/2)
.

This results is easily confirmed by direct evaluation of the sum

Z =
∞∑

n=0

e−β!ω(n+1/2)

——————————————–

29. (a) In the mean-field approximation, the free energy of a system close to a second
order phase transition can be shown to take a homogeneous form. According
to the scaling hypothesis, although mean-field theory becomes invalid below
the upper critical dimension, the homogeneous form of the free energy (and
therefore of any other thermodynamic quantity) is maintained. More precisely

fsing.(t, h) = t2−αgf(h/t∆)

where the actual exponents α and ∆ depend on the critical point being con-
sidered.

With this assumption, the critical exponents can be shown to be connected by
exponent identities:

(a) For example, from the free energy, one obtains the magnetisation as

m(t, h) ∼
∂f

∂h
∼ t2−α−∆gm(h/t∆).

In the limit x → 0, gm(x) is a constant, and m(t, h = 0) ∼ t2−α−∆ (i.e.
β = 2 − α − ∆). On the other hand, if x → ∞, gm(x) ∼ xp, and m(t =
0, h) ∼ t2−α−∆(h/t∆)p. Since this limit is independent of t, we must have
p∆ = 2−α−∆. Hence m(t = 0, h) ∼ h(2−α−∆)/∆ (i.e. δ = ∆/(2−α−∆) =
∆/β).

(b) From the magnetisation, one obtains the susceptibility

χ(t, h) ∼
∂m

∂h
∼ t2−α−2∆gχ(h/t∆) ⇒ χ(t, h = 0) ∼ t2−α−2∆ ⇒ γ = 2∆− 2 + α.

Now close to criticality, the correlation length ξ is solely responsible for singular
contributions to thermodynamic quantities. Since lnZ(t, h) is dimensionless
and extensive (i.e. ∝ Ld), it must take the form

lnZ =

(
L

ξ

)d

× gs +

(
L

a

)d

× ga
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where gs and ga are non-singular functions of dimensionless parameters (a is
an appropriate microscopic length). (A simple interpretation of this result is
obtained by dividing the system into units of the size of the correlation length.
Each unit is then regarded as an independent random variable, contributing
a constant factor to the critical free energy. The number of units grows as
(L/ξ)d. The singular part of the free energy comes from the first term and
behaves as

fsing.(t, h) ∼
lnZ
Ld

∼ ξ−d ∼ tdνgf (t/h
∆)

As a consequence, comparing with the homogeneous expression for the free
energy, one obtains the Josephson identity

2 − α = dν

(b) According to the Mermin-Wagner theorem, spontaneous symmetry breaking of
a continuous symmetry leads to the appearance of Goldstone modes which de-
stroy long-range order in dimensions d ≤ 2. However, in two-dimensions, there
exists a low temperature phase of quasi long-range order in which the corre-
lations decay algebraically at long-distances. This leaves open the room for
a phase transition at some intermediate temperature in which the correlation
function crosses over to exponential decay.

To understand the nature of the transition, it is necessary to take into account
the existence of topological defects, vortex configurations of the fields. The
elementary defect which has a unit charge involves a 2π twist of θ as one
encircles the defect. More formally,

∮
∇θ · d/ = 2πn =⇒ ∇θ =

n

r
êr × êz,

where êr and êz are unit vectors respectively in the plane and perpendicular
to it. This (continuum) approximation fails close to the centre (core) of the
vortex, where the lattice structure is important.

The energy cost from a single vortex of charge n has contributions from the
core region, as well as from the relatively uniform distortions away from the
centre. The distinction between regions inside and outside the core is arbitrary,
and for simplicity, we shall use a circle of radius a to distinguish the two, i.e.

βEn = βE0
n(a) +

K

2

∫

a

d2x(∇θ)2 = βE0
n(a) + πKn2 ln

(
L

a

)
.

The dominant part of the energy comes from the region outside the core and
diverges logarithmically with the system size L. The large energy cost as-
sociated with the defects prevents their spontaneous formation close to zero
temperature. The partition function for a configuration with a single vortex of
charge n is

Z1(n) ≈
(

L

a

)2

exp

[
−βE0

n(a) − πKn2 ln

(
L

a

)]
,
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where the factor of (L/a)2 results from the configurational entropy of possible
vortex locations in an area of size L2. The entropy and energy of a vortex both
grow as ln L, and the free energy is dominated by one or the other. At low
temperatures, large K, energy dominates and Z1, a measure of the weight of
configurations with a single vortex, vanishes. At high enough temperatures,
K < Kn = 2/(πn2), the entropy contribution is large enough to favour sponta-
neous formation of vortices. On increasing temperature, the first vortices that
appear correspond to n = ±1 at Kc = 2/π. Beyond this point many vortices
appear and the equation above is no longer applicable.

In fact this estimate of Kc represents only a lower bound for the stability of
the system towards the condensation of topological defects. This is because
pairs (dipoles) of defects may appear at larger couplings. Consider a pair of
charges ±1 separated by a distance d. Distortions far from the core |r| & d
can be obtained by superposing those of the individual vortices

∇θ = ∇θ+ + ∇θ− ≈ 2d ·∇
(

êr × êz

|r|

)
,

which decays as d/|r|2. Integrating this distortion leads to a finite energy, and
hence dipoles appear with the appropriate Boltzmann weight at any temper-
ature. The low temperature phase should therefore be visualised as a gas of
tightly bound dipoles, their density and size increasing with temperature. The
high temperature phase constitutes a plasma of unbound vortices.

(c) Starting from the time-dependent Schrödinger equation

i!
∂

∂t
|Ψ〉 = Ĥ|Ψ〉

the time evolution operator is defined by

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = exp

[
−

i

!
Ĥ(t′ − t)

]
.

In the real space representation

U(x′, t′; x, t) = 〈x′| exp

[
−

i

!
Ĥ(t′ − t)

]
|x〉,

According to the Feynman path integral, the quantum evolution operator is
expressed as the sum over all trajectories subject to the boundary conditions
and weighted by the classical action. In the Hamiltonian formulation,

U(x′, t′; x, t) =

∫
Dx(t)

∫
Dp(t) exp

[
i

!
S(p, x)

]
,

S(p, x) =

∫ t′

t

dt′′ [pẋ − H(p, x)] ,
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and in the Lagrangian formulation,

U(x′, t′; x, t) =

∫
D̄x(t) exp

[
i

!
S(x)

]
,

S(x) =

∫ t′

t

dt′′
[m

2
ẋ2 − V (x)

]
.

To establish an analogy with statistical mechanics we have to consider propa-
gation in imaginary or Euclidean time T . In this way, we obtain

U(x′, t′ = −iT ; x, t = 0) =

∫
Dx(τ) exp

[
−

1

!
S(x)

]
,

where

S(x) =

∫ T

0

dτ

[
m

2

(
∂x

∂τ

)2

+ V (x(τ))

]

.

Interpreting the action as a classical free energy functional, and the path in-
tegral as a classical partition function, one has the analogy: The transition
amplitude for a quantum particle for the time (-iT) is equal to the classical
partition function for a string of length T computed at the value β = 1/!.

A second analogy follows from the fact that the quantum partition function for
the particle is given by Zqu = Tr exp[−βH ] and hence,

Zqu =

∫
dx〈x|e−βH |x〉 =

∫
dxU(x, t′ = −iβ!; x, t = 0).

Therefore, in quantum statistical mechanics, the inverse temperature plays the
role of an imaginary time.

——————————————–

30. A second order phase transition is associated with the continuous development of an
order parameter. At the critical point, various correlation functions are seen to ex-
hibit singular behaviour. In particular, the correlation length, the typical scale over
which fluctuations are correlated, diverges. This fact motivates the consideration of
a coarse-grained phenomenology in which the microscopic details of the system are
surrendered.

To this end, one introduces a coarse-grained order parameter which varies on a
length scale much greater than the microscopic scales. The effective Hamiltonian,
is phenomenological depending only on the fundamental symmetries of the system.

(a) In the Landau mean-field approximation the partition function

Z =

∫
Dme−βH[m] ∼max

m e−βH[m]
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In this approximation, the integrand is maximised when the field configuration
m(x) is homogeneous and minimises the dimensionless free energy density

f =
βF

V
=

t

2
m2 + um4 − hm.

Varying f with respect to m and setting h = 0, one finds the solution

m̄ =

{√
−t
4u t < 0

0 t > 0.

Varying ∂f/∂m|m=m̄ with respect to m̄ one obtains

t + 12um̄2 −
∂h

∂m̄
= 0

From this result we obtain the susceptibility

χ−1 =
∂h

∂m̄

∣∣∣
h=0

= t + 12um̄2 =
{−2t t < 0

t t > 0.

(b) Expanding in fluctuations around the mean-field, one finds
∫

ddx

(
t

2
m2 + um4

)
= V f [m̄] +

∫
ddx

Kξ−2

2
φ2

where

ξ−2 =

{
−2t/K t < 0
t/K t > 0.

Taken together with the gradient term, we obtain the Hamiltonian as specified.

(c) In the Fourier representation, we have

〈φ(q)φ(q′)〉 = (2π)dδd(q + q′)
1

K(q2 + ξ−2)

Using the result, one finds that

〈m(x)m(0)〉 − m̄2 =

∫
ddq

(2π)d

eiq·x

K(q2 + ξ−2)
∼ e−|x|/ξ.

From this result we learn that ξ can be interpreted as the correlation length.

——————————————–

31. The divergence of the correlation length at a second order phase transition suggests
that in the vicinity of the transition, the microscopic lengths are irrelevant. The
critical behaviour is dominated by fluctuations that are statistically self-similar up
to the scale ξ. Self-similarity allows the gradual elimination of the correlated de-
grees of freedom at length scales x 1 ξ, until one is left with the relatively simple
uncorrelated degrees of freedom at scale ξ.
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(a) This is achieved through a procedure known as the Renormalisation Group
(RG), whose conceptual foundation is outlined in the three steps below:

Coarse-Grain: eliminate fluctuations at scales a < |x| < ba. Since the
Ginzburg-Landau functional is Gaussian, by setting

m(q) =

{
m<(q) 0 < |q| < Λ/b
m>(q) Λ/b < |q| < Λ

the partition function is separable in the modes and can be reexpressed in
the form

Z = Z>

∫
Dm<(q) exp

[

−
∫ Λ/b

0

ddq

(2π)d

(
t + Kq2

2

)
|m<(q)|2 + h ·m<(0)

]

,

where Z> = exp[−(nV/2)
∫ Λ

Λ/b(d
dq/(2π)d) ln(t + Kq2)]. [Full credit does

not require an evaluation of the functional integral over m>.]

Rescale: the partition function for the modes m<(q) is similar to the original,
except that the upper cut-off has decreased to Λ/b, reflecting the coarse-
graining in resolution. The rescaling, x′ = x/b in real space, is equivalent
to q′ = bq in momentum space, and restores the cut-off to the original
value.

Renormalise: the final step of the RG is the renormalisation of the field,
m′(x′) = m<(x′)/ζ . Alternatively, we can renormalise the Fourier modes
according to m′(q′) = m<(q′)/z, resulting in

Z = Z>

∫
Dm′(q′)e−βH′[m′(q′)],

βH ′[m′] =

∫ Λ

0

ddq′

(2π)d
b−dz2

(
t + Kb−2q′2

2

)
|m′(q′)|2 − zh · m′(0).

As a result of the RG procedure the set of parameters {K, t, h} has transformed
from to a new set

{
K ′ = Kb−d−2z2,
t′ = tb−dz2,
h′ = hz.

(b) The point t = h = 0 is fixed and represents the Gaussian fixed point. To
make the fluctuations scale invariant at this point, we must ensure that the
remaining parameter in the Hamiltonian K also stays fixed. This is achieved
by the choice z = b1+d/2 which implies

{
t′ = b2t yt = 2,
h′ = b1+d/2h yh = 1 + d/2.

From these equations, we can predict the scaling of the Free energy

fsing.(t, h) = b−dfsing.(b
2t, b1+d/2h), b2t = 1,

= td/2gf(h/t1/2+d/4).
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——————————————–

32. In a second order phase transition an order parameter grows continuously from zero.
The onset of order below the transition is accompanied by a spontaneous symmetry
breaking — the symmetry of the low temperature ordered phase is lower than the
symmetry of the high temperature disordered phase. An example is provided by the
classical ferromagnet where the appearance of net magnetisation breaks the symme-
try m ,→ −m. If the symmetry is continuous, the spontaneous breaking of symmetry
is accompanied by the appearance of massless Goldstone mode excitations. In the
magnet, these excitations are known as spin waves.

(a) Applying the rules of Gaussian functional integration, one finds that 〈θ(x)〉 = 0,
and the correlation function takes the form

G(x,x′) ≡ 〈θ(x)θ(0)〉 = −
Cd(x)

K̄
, ∇2Cd(x) = δd(x)

where Cd denotes the Coulomb potential for a δ-function charge distribution.
Exploiting the symmetry of the field, and employing Gauss’,

∫
dx ∇2Cd(x) =∮

dS ·∇Cd, one finds that Cd depends only on the radial coordinate x, and

dCd

dx
=

1

xd−1Sd
, Cd(x) =

x2−d

(2 − d)Sd
+ const.,

where Sd = 2πd/2/(d/2 − 1)! denotes the total d-dimensional solid angle.

(b) Using this result, one finds that

〈
[θ(x) − θ(0)]2

〉
= 2
[
〈θ(0)2〉 − 〈θ(x)θ(0)〉

] |x|>a
=

2(|x|2−d − a2−d)

K̄(2 − d)Sd
,

where the cut-off, a is of the order of the lattice spacing. (Note that the case
where d = 2, the combination |x|2−d/(2 − d) must be interpreted as ln |x|.
This result shows that the long distance behaviour changes dramatically at
d = 2. For d > 2, the phase fluctuations approach some finite constant as
|x| → ∞, while they become asymptotically large for d ≤ 2. Since the phase is
bounded by 2π, it implies that long-range order (predicted by the mean-field
theory) is destroyed.

Turning to the two-point correlation function of m, and making use of the
Gaussian functional integral, obtains

〈m(x) · m(0)〉 = m̄2Re
〈
ei[θ(x)−θ(0)]

〉
.

For Gaussian distributed variables 〈exp[αθ]〉 = exp[α2〈θ2〉/2]. We thus obtain

〈m(x) · m(0)〉 = m̄2 exp

[
−

1

2
〈[θ(x) − θ(0)]2〉

]
= m̄2 exp

[
−

(|x|2−d − a2−d)

K̄(2 − d)Sd

]
,
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implying a power-law decay of correlations in d = 2, and an exponential decay
in d < 2. From this result we find

lim
|x|→∞

〈m(x) · m(0)〉 =

{
m2

0 d > 2,
0 d ≤ 2.

(c) In the context of the XY-spin model, the perturbative analysis above represents
a spin wave expansion of the Hamiltonian. However, the spontaneous breaking
of the continuous symmetry admits the existence of topological non-trivial field
configurations which connect the degenerate minima. In the present context,
these non-perturbative configurations are vortices.

Now it is easy to show that the energy of a single vortex diverges logarithmi-
cally with the system size. At the same time, the vortex recovers a contribution
to the free energy from the entropy which also diverges logarithmically with the
system size. The trade between these factors leads to a catastrophic conden-
sation of vortices at some finite temperature which separates a phase of quasi-
LRO with power law correlations from a disordered phase — the Berezinskii-
Kosterlitz-Thouless transition.

As a matter of detail, it should be noted that the low temperature phase is
more precisely one in which pairs of oppositely charged vortices are bound in
dipole pairs whereas the high temperature phase is a free plasma of vortices.

——————————————–

33. In mean-field, the free energy can be shown to take a homogeneous form around a
second order transition. According to the scaling hypothesis, when one goes beyond
mean-field, homogeneity of the singular form of the free energy (and of any other
thermodynamic quantity) retains the homogeneous form

fsing.(t, h) = t2−αgf(h/t∆)

where the actual exponents α and ∆ depend on the critical point being considered.

(a) From the free energy, one obtains the magnetisation as

m(t, h) ∼
∂f

∂h
∼ t2−α−∆gm(h/t∆).

In the limit x → 0, gm(x) is a constant, and m(t, h = 0) ∼ t2−α−∆ (i.e.
β = 2 − α − ∆). On the other hand, if x → ∞, gm(x) ∼ xp, and m(t =
0, h) ∼ t2−α−∆(h/t∆)p. Since this limit is independent of t, we must have p∆ =
2 − α−∆. Hence m(t = 0, h) ∼ h(2−α−∆)/∆ (i.e. δ = ∆/(2 − α−∆) = ∆/β).

(b) From the magnetisation, one obtains the susceptibility

χ(t, h) ∼
∂m

∂h
∼ t2−α−2∆gχ(h/t∆) ⇒ χ(t, h = 0) ∼ t2−α−2∆ ⇒ γ = 2∆− 2 + α.
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(c) Close to criticality, the correlation length ξ is solely responsible for singular
contributions to thermodynamic quantities. Since lnZ(t, h) is dimensionless
and extensive (i.e. ∝ Ld), it must take the form

lnZ =

(
L

ξ

)d

× gs +

(
L

a

)d

× ga

where gs and ga are non-singular functions of dimensionless parameters (a is
an appropriate microscopic length). (A simple interpretation of this result is
obtained by dividing the system into units of the size of the correlation length.
Each unit is then regarded as an independent random variable, contributing
a constant factor to the critical free energy. The number of units grows as
(L/ξ)d. The singular part of the free energy comes from the first term and
behaves as

fsing.(t, h) ∼
lnZ
Ld

∼ ξ−d ∼ tdνgf (t/h
∆)

As a consequence, comparing with the homogeneous expression for the free
energy, one obtains the Josephson identity

2 − α = dν

(d) Using the correlation function one obtains the susceptibility

χ(t, h) ∼
∫

dx 〈m(x)m(0)〉

∼
∫ ξ

0

dx
xd−1

xd−2+η
∼ ξ2−η

∼ t−(2−η)νgξ

(
h

t∆

)

We thus obtain the exponent identity γ = (2 − η)ν.

——————————————–

34. (a) essay on Ginzburg-Landau theory

(b) essay on Ginzburg Criterion

(c) The divergence of the correlation length at a second order phase transition
suggests that in the vicinity of the transition, the microscopic lengths are irrel-
evant. The critical behaviour is dominated by fluctuations that are statistically
self-similar up to the scale ξ. Self-similarity allows the gradual elimination of
the correlated degrees of freedom at length scales x 1 ξ, until one is left
with the relatively simple uncorrelated degrees of freedom at scale ξ. This
is achieved through a procedure known as the Renormalisation Group (RG),
whose conceptual foundation is outlined below:
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(i) Coarse-Grain: The first step of the RG is to decrease the resolution by
changing the minimum length scale from the microscopic scale a to ba
where b > 1. The coarse-grained magnetisation is then

m̄(x) =
1

bd

∫

Cell centred at x

dy m(y).

(ii) Rescale: Due to the change in resolution, the coarse-grained “picture” is
grainier than the original. The original resolution a can be restored by
decreasing all length scales by a factor b, i.e. defining

x′ =
x

b
.

Thus, at each position x′ we have defined an average moment m̄(x′).

(iii) Renormalise: The relative size of the fluctuations of the rescaled magneti-
sation profile is in general different from the original, i.e. there is a change
in contrast between the pictures. This can be remedied by introducing a
factor ζ , and defining a renormalised magnetisation

m′(x′) =
1

ζ
m̄(x′).

The choice of ζ will be discussed later.

By following these steps, for each configuration m(x) we generate a renor-
malised configuration m′(x′). It can be regarded as a mapping of one set of
random variables to another, and can be used to construct the probability dis-
tribution. Kadanoff’s insight was to realise that since, on length scales less
than ξ, the renormalised configurations are statistically similar to the origi-
nal ones, they must be distributed by a Hamiltonian that is also close to the
original. In particular, if the original Hamiltonian βH is at a critical point,
t = h = 0, the new (βH)′ is also at criticality since no new length scale is
generated in the renormalisation procedure, i.e. t′ = h′ = 0.

However, if the Hamiltonian is originally off criticality, then the renormalisa-
tion takes us further away from criticality because ξ′ = ξ/b is smaller. The next
assumption is that since any transformation only involves changes at the short-
est length scales it can not produce singularities. The renormalised parameters
must be analytic functions, and hence expandable as

{
t(b; t, h) = A(b)t + B(b)h + O(t2, h2, th),
h(b; t, h) = C(b)t + D(b)h + O(t2, h2, th).

However, the known behaviour at t = h = 0 rules out a constant term in the
expansion, and to prevent a spontaneously broken symmetry we further require
C(b) = B(b) = 0. Finally, commutativity A(b1 × b2) = A(b1) × A(b2) implies
A(b) = byt and D(b) = byh . So, to lowest order

{
tb ≡ t(b) = bytt,
hb ≡ h(b) = byhh.
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where yt, yh > 0. As a consequence, since the statistical weight of new con-
figuration, W ′[m′] is the sum of the weights W [m] of old ones, the partition
function is preserved

Z =

∫
Dm W [m] =

∫
Dm′ W ′[m′] = Z ′.

From this is follows that the free energies density takes the form

f(t, h) = −
lnZ
V

= −
lnZ ′

V ′bd
= b−df(tb, hb) = b−df(bytt, byhh),

where we have assumed that the two free energies are obtained from the same
Hamiltonian in which only the parameters t and h have changed. The free
energy describes a homogeneous function of t and h. This is made apparent
by choosing a rescaling factor b such that bytt is a constant, say unity, i.e.
b = t−1/yt , and

f(t, h) = td/ytf(1, h/tyh/yt) ≡ td/ytgf(h/tyh/yt)

——————————————–

35. (a) Applying the Hubbard-Stratonovich transformation,

exp

[
∑

ij

Jijσiσj

]

= C

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj + 2

∑

i

σimi

]

the classical partition function Z =
∑

{σi}
e−βH[σi] is given by

Z = C

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj +

∑

i

ln (2 cosh(2mi + h))

]

.

(b) To determine [J−1]ij, we transform to Fourier space. In particular, for the
model at hand, the eigenvalues of Jij are given by

J(q) =
∞∑

n=−∞

eiqnJe−κ|n| =
J

c − b cos q

where c = cothκ and b = 1/ sinhκ. Making use of this result we obtain

[J−1]ij =

∫ π

−π

dq

2π

e−iq(ni−nj)

J(q)

=
1

J





c −b/2
−b/2 c −b/2

−b/2 c −b/2
−b/2 c −b/2

−b/2 c





Phase Transitions and Collective Phenomena



6.2. ANSWERS 149

Therefore

Z = C

∫ ∏

k

dmk exp

[

−
b

2J

∑

i

(mi − mi+1)
2 −
∑

i

U(mi)

]

where U(m) = (c−b)m2/J−ln[2 cosh(2m+h)]. In particular c−b = tanh(κ/2).

(c) For small m and h the effective free energy can be expanded as

U(m) = − ln 2 +
t

2
m2 +

4

3
m4 − 2hm + · · ·

where t/2 = tanh(κ/2)/J − 2. Evidently, at zero magnetic field, the effective
potential U(m) is quartic. For t < 0, the potential takes the form of a double
well.

The path integral for a particle in a potential well is given by

Z =

∫
Dr(t) exp

[
i

!

∫ t

0

dt′
(m

2
ṙ2 − U(r)

)]

=

∫
Dr(τ) exp

[
−

1

!

∫ T

0

dτ ′
(m

2
ṙ2 + U(r)

)]

By identifying r with m, and τ with x, the partition function of the Ising
model is seen to be equivalent to the path integral of a particle in a double
well potential where the transition time T is equalent to the length of the spin
chain L. From this analogy, the magnetic field can be seen as inducing an
asymmetry of the potential.

——————————————–

36. The upper critical dimension represents the dimensionality at and above which
mean-field theory furnishes an accurate description of the behaviour close to the
critical point.

(a) In the Landau mean-field approximation, the Free energy is assumed to be
dominated by the field configuration with the minimum Hamiltonian. Since
K > 0, this occurs when m is constant, homogeneous in space. In this case

f =
βF

V
=

min
m

[
t

2
m2 +

v

6
m6

]

Minimising, one finds tm̄ + vm̄5 = 0 from which one obtains the solution

m̄(t) =

{
0 t > 0
(−t/v)1/4 t < 0

Substituting backing to the free energy, one obtains

f =

{
0 t > 0
1
3t(−t/v)1/2 t < 0
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from which one finds the heat capacity

C =
∂2f

∂t2
=

{
0 t > 0
−1

4(1/tv)1/2 t < 0

(b) Setting m(x) = m̄+φ(x) and expanding to quadratic order in the fluctuations
φ(x), one finds

m2(x) = m̄2 + 2m̄φ(x) + φ2(x)

m6(x) = m̄6 + 6m̄5φ(x) + 15m̄4φ2(x) + · · ·

Put back into the Hamiltonian, one obtains

βH [φ(x)] = fV +

∫
ddx





(K/2)ξ−2

︷ ︸︸ ︷
(t/2 + (15/6)vm̄4) φ2 +

K

2
(∇φ)2



+ · · ·

where

ξ−2 =

{
t/K t > 0
−4t/K t < 0

To quadratic order, one obtains the correlation function

〈m(x)m(0)〉 = m̄2 + 〈φ(x)φ(0)〉

where

〈φ(x)φ(0)〉 =
1

K

∫
ddq

(2π)d

eiq·x

q2 + ξ−2

Using the result given in the question, one can see that the correlation function
decays exponentially on length scales |x| & ξ giving ξ the interpretation of the
correlation length.

(c) Using the result above, and integrating over φ, the fluctuation correction to the
free energy is given by

δ(βF ) =
1

2

∫
ddq

(2π)d
ln
[
Kq2 + Kξ−2

]

From this result, differentiating with respect to t, one obtains the fluctuation
correction to the specific heat of the form

δC =
1

2






∫
ddq

(2π)d

1

(Kq2 + t)2
t > 0

8

∫
ddq

(2π)d

1

(Kq2 − 4t)2
t < 0

In d < 4, the fluctuation contribution to the specific heat diverges on ap-
proaching the critical point as K−d/2|t|d/2−2. The latter is seen to overwhelm
the mean-field contribution in dimensions d < du = 3.
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——————————————–

37. (a) In mean-field, the free energy can be shown to take a homogeneous form around
a second order transition. According to the scaling hypothesis, when one goes
beyond mean-field, homogeneity of the singular form of the free energy (and
of any other thermodynamic quantity) retains the homogeneous form

fsing.(t, h) = t2−αgf(h/t∆)

where the actual exponents α and ∆ depend on the critical point being con-
sidered. (Additional credit for discussion of hyperscaling.)

(i) From the free energy, one obtains the magnetisation as

m(t, h) ∼
∂f

∂h
∼ t2−α−∆gm(h/t∆).

In the limit x → 0, gm(x) is a constant, and m(t, h = 0) ∼ t2−α−∆ (i.e.
β = 2 − α − ∆). On the other hand, if x → ∞, gm(x) ∼ xp, and m(t =
0, h) ∼ t2−α−∆(h/t∆)p. Since this limit is independent of t, we must have
p∆ = 2−α−∆. Hence m(t = 0, h) ∼ h(2−α−∆)/∆ (i.e. δ = ∆/(2−α−∆) =
∆/β).

(ii) From the magnetisation, one obtains the susceptibility

χ(t, h) ∼
∂m

∂h
∼ t2−α−2∆gχ(h/t∆) ⇒ χ(t, h = 0) ∼ t2−α−2∆ ⇒ γ = 2∆− 2 + α.

(iii) Close to criticality, the correlation length ξ is solely responsible for singu-
lar contributions to thermodynamic quantities. Since lnZ(t, h) is dimen-
sionless and extensive (i.e. ∝ Ld), it must take the form

lnZ =

(
L

ξ

)d

× gs +

(
L

a

)d

× ga

where gs and ga are non-singular functions of dimensionless parameters (a
is an appropriate microscopic length). (A simple interpretation of this
result is obtained by dividing the system into units of the size of the
correlation length. Each unit is then regarded as an independent random
variable, contributing a constant factor to the critical free energy. The
number of units grows as (L/ξ)d. The singular part of the free energy
comes from the first term and behaves as

fsing.(t, h) ∼
lnZ
Ld

∼ ξ−d ∼ tdνgf(t/h
∆)

As a consequence, comparing with the homogeneous expression for the free
energy, one obtains the Josephson identity

2 − α = dν
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(b) According to the Mermin-Wagner theorem, spontaneous symmetry breaking of
a continuous symmetry leads to the appearance of Goldstone modes which de-
stroy long-range order in dimensions d ≤ 2. However, in two-dimensions, there
exists a low temperature phase of quasi long-range order in which the corre-
lations decay algebraically at long-distances. This leaves open the room for
a phase transition at some intermediate temperature in which the correlation
function crosses over to exponential decay.

To understand the nature of the transition, it is necessary to take into account
the existence of topological defects, vortex configurations of the fields. The
elementary defect which has a unit charge involves a 2π twist of θ as one
encircles the defect. More formally,

∮
∇θ · d/ = 2πn =⇒ ∇θ =

n

r
êr × êz,

where êr and êz are unit vectors respectively in the plane and perpendicular
to it. This (continuum) approximation fails close to the centre (core) of the
vortex, where the lattice structure is important.

The energy cost from a single vortex of charge n has contributions from the
core region, as well as from the relatively uniform distortions away from the
centre. The distinction between regions inside and outside the core is arbitrary,
and for simplicity, we shall use a circle of radius a to distinguish the two, i.e.

βEn = βE0
n(a) +

K

2

∫

a

d2x(∇θ)2 = βE0
n(a) + πKn2 ln

(
L

a

)
.

The dominant part of the energy comes from the region outside the core and
diverges logarithmically with the system size L. The large energy cost as-
sociated with the defects prevents their spontaneous formation close to zero
temperature. The partition function for a configuration with a single vortex of
charge n is

Z1(n) ≈
(

L

a

)2

exp

[
−βE0

n(a) − πKn2 ln

(
L

a

)]
,

where the factor of (L/a)2 results from the configurational entropy of possible
vortex locations in an area of size L2. The entropy and energy of a vortex both
grow as ln L, and the free energy is dominated by one or the other. At low
temperatures, large K, energy dominates and Z1, a measure of the weight of
configurations with a single vortex, vanishes. At high enough temperatures,
K < Kn = 2/(πn2), the entropy contribution is large enough to favour sponta-
neous formation of vortices. On increasing temperature, the first vortices that
appear correspond to n = ±1 at Kc = 2/π. Beyond this point many vortices
appear and the equation above is no longer applicable.

In fact this estimate of Kc represents only a lower bound for the stability of
the system towards the condensation of topological defects. This is because
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pairs (dipoles) of defects may appear at larger couplings. Consider a pair of
charges ±1 separated by a distance d. Distortions far from the core |r| & d
can be obtained by superposing those of the individual vortices

∇θ = ∇θ+ + ∇θ− ≈ 2d ·∇
(

êr × êz

|r|

)
,

which decays as d/|r|2. Integrating this distortion leads to a finite energy, and
hence dipoles appear with the appropriate Boltzmann weight at any temper-
ature. The low temperature phase should therefore be visualised as a gas of
tightly bound dipoles, their density and size increasing with temperature. The
high temperature phase constitutes a plasma of unbound vortices.

(c) Let us begin by defining the path integral for the quantum mechanical time
evolution operator. Starting from the time-dependent Schrödinger equation
for a single particle system,

i!
∂

∂t
|Ψ〉 = Ĥ|Ψ〉

the time evolution operator is defined by

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = exp

[
−

i

!
Ĥ(t′ − t)

]
.

In the real space representation

U(x′, t′; x, t) = 〈x′| exp

[
−

i

!
Ĥ(t′ − t)

]
|x〉,

According to the Feynman path integral, the quantum evolution operator is
expressed as the sum over all trajectories subject to the boundary conditions
and weighted by the classical action. In the Hamiltonian formulation,

U(x′, t′; x, t) =

∫
Dx(t)

∫
Dp(t) exp

[
i

!
S(p, x)

]
,

S(p, x) =

∫ t′

t

dt′′ [pẋ − H(p, x)] ,

and in the Lagrangian formulation,

U(x′, t′; x, t) =

∫
D̄x(t) exp

[
i

!
S(x)

]
,

S(x) =

∫ t′

t

dt′′
[m

2
ẋ2 − V (x)

]
.

To establish an analogy with statistical mechanics we have to consider propa-
gation in imaginary or Euclidean time T . In this way, we obtain

U(x′, t′ = −iT ; x, t = 0) =

∫
Dx(τ) exp

[
−

1

!
S(x)

]
,
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where

S(x) =

∫ T

0

dτ

[
m

2

(
∂x

∂τ

)2

+ V (x(τ))

]

.

Interpreting the action as a classical free energy functional, and the path in-
tegral as a classical partition function, one has the analogy: the transition
amplitude for a quantum particle for the time (-iT) is equal to the classical
partition function for a string of length T computed at the value β = 1/!.

A second analogy follows from the fact that the quantum partition function for
the particle is given by Zqu = Tr exp[−βH ] and hence,

Zqu =

∫
dx〈x|e−βH |x〉 =

∫
dxU(x, t′ = −iβ!; x, t = 0).

Therefore, in quantum statistical mechanics, the inverse temperature plays the
role of an imaginary time. [Additional credit is given for explicit examples
in each case, e.g. the one-dimensional Ising model and quantum mechanical
tunneling in the double well.]

——————————————–

38. The Renormalisation Group is based on the assumption that close to the critical
point, the singular thermodynamic properties are controlled by fluctuations which
take place at the length scale of the correlation length ξ. No other length scale
enters the problem. By integrating over fast fluctuations, one can follow how the
phenomenological parameters which enter the Hamiltonian flow. At the critical
point, the correlation length is infinite and the system has a dilation symmetry.
In this case one can deduce that the parameters of the Hamiltonian are fixed. By
observing the landscape of parameter flows, one can identify the relevant parameters
of the theory and the fixed points.

(a) The renormalisation group procedure involves three steps. The first step in-
volves integrating over the fast fluctuations of the fields. This step is most
easily implemented in Fourier space,

βH [m(q)] =

∫
ddq

(2π)d

1

2
(t + Kq2)|m(q)|2 − h · m(q = 0)

Setting

m(q) =

{
m<(q) |q| < Λ/b
m>(q) Λ/b < |q| < Λ

and integrating over the fast fluctuations m>(q) one obtains the renormalised
Hamiltonian

βH [m<(q)] =

∫
ddq

(2π)d

1

2
(t + Kq2)|m<(q)|2 − h · m<(q = 0).
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The second step of the renormalisation procedure involves a rescaling of the
coordinates to restore the resolution. Setting q = q′/b

βH [m<(q)] =

∫
ddq′

(2π)d

b−d

2
(t + Kb−2q′2)|m<(q)|2 − h · m<(q = 0).

Finally, the third step in the renormalisation procedure involves changing the
contrast setting m′(q′) = m<(q′)/z. With this definition, the renormalised
Hamiltonian takes the form

βH ′[m′] =

∫
ddq′

(2π)d

1

2
(t′ + K ′q′2)|m′q′)|2 − h · m′(q′ = 0)

where

K ′ = Kb−d−2z2

t′ = tb−dz2

h′ = hz.

(b) The fixed Hamiltonian is obtained when t = h = 0 and K = K ′ requiring
z2 = bd+2. As a result one finds that t′ = tbyt where yt = 2 and h′ = hbyh where
yh = 1 + d/2. The corresponding free energy density scales as

f(t, h) = −
1

V
lnZ = −

1

bdV ′
lnZ ′ = b−df(t′, h′)

i.e. f(t, h) = b−df(tbyt , hbyh). Setting tbyt = 1, one finds

f(t, h) = td/ytf(h/tyh/yt) = td/2f(h/t1/2+d/4)

——————————————–

39. (a) Expanding the expression for the area we obtain the partition function

βH [h] = βσA = βσ

∫
dd−1x

[
1 +

1

2
(∇h)2 + · · ·

]
4 A0 +

βσ

2

∫
dd−1x(∇h)2

(b) Turning to the Fourier representation (and dropping the constant A0, the
Hamiltonian takes the form

βH [h] =
βσ

2

∫
(dq)q2|h(q)|2

where (dq) ≡ dd−1q/(2π)d−1. As a consequence of the breaking of the continu-
ous symmetry of h under homogeneous translations the spectrum of low-energy
fluctuations vanishes as q → 0 characteristic of Goldstone modes.
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(c) Making use of the correlator

〈h(q1)h(q2)〉 = (2π)d−1δd−1(q1 + q2)
1

βσq2
1

,

we obtain the correlator

〈
[h(x) − h(0)]2

〉
=

∫
(dq1)

∫
(dq2)

(
eiq1·x − 1

) (
eiq2·x − 1

)
〈h(q1)h(q2)〉

=
4

βσ

∫
(dq)

sin2(q · x)

q2
.

By inspection of the integrand, we see that for d ≥ 4, the integral is dominated
by |q| & 1/|x|, and

〈
[h(x) − h(0)]2

〉
∼ const.

In three dimensions, the integral is logarithmically divergent and

〈[h(x) − h(0)]〉 ∼
1

βσ
ln |x|.

Finally, in two dimensions, the integral is dominated by small q and

〈[h(x) − h(0)]〉 ∼ |x|.

This result shows that in dimensions less than 4, a surface constrained only by
its tension is unstable due to long-wavelength fluctuations.

(d) Taking into account the quadratic term in the Hamiltonian, the membrance
becomes tethered to the position h = 0. In this case the field fluctuations
acquire a mass t.

〈
[h(x) − h(0)]2

〉
=

4

β

∫
(dq)

sin2(q · x)

t + σq2
.

Qualitatively, as a consequence of the mass, the height-height correlation func-
tion decays exponentially with separation on length scales in excess of the
correlation length ξ =

√
σ/t.

——————————————–

40. The divergence of the correlation length at a second order phase transition suggests
that in the vicinity of the transition, the microscopic lengths are irrelevant. The
critical behaviour is dominated by fluctuations that are statistically self-similar up
to the scale ξ. Self-similarity allows the gradual elimination of the correlated de-
grees of freedom at length scales x 1 ξ, until one is left with the relatively simple
uncorrelated degrees of freedom at scale ξ.

Phase Transitions and Collective Phenomena



6.2. ANSWERS 157

(a) In Fourier representation the Hamiltonian takes the diagonal form

βH =
1

2

∫
ddq

(2π)d
G−1(q)|m(q)|2 − hm(q = 0),

where the anisotropic propagator is given by

G−1(q) = t + Kq2
‖ + Lq4

⊥.

(b) Course-Graining procedure: Separate the field m into components which are
slowly and rapidly varying in space.

m(q) =

{
m<(q) 0 < |q‖| < Λ/b and 0 < |q|⊥ < Λ/c,
m>(q) Λ/b < |q‖| < Λ or Λ/c < |q|⊥ < Λ.

In this parameterisation, the Hamiltonian is separable. As such, an integration
over the fast degrees of freedom can be performed explicitly.

Z = Z>

∫
Dm< exp

[

−
1

2

∫ Λ/b

0

(dq‖)

∫ Λ/c

0

(dq⊥)G−1(q)|m<(q)|2 + hm<(0)

]

,

where the constant Z> is obtained from performing the functional integral over
the fast degrees of freedom. Applying the rescaling q′‖ = bq‖, and q′

⊥ = cq⊥, the
cut-off in the domain of momentum integration is restored. Finally, applying
the renormalisation m′(q) = m<(q)/z to the Fourier components of the field,
we obtain

Z = Z>

∫
Dm′(q′)e−(βH)′[m′(q′)],

where the renormalised Hamiltonian takes the form

(βH)′ =
1

2

∫
(dq)b−1c−(d−1)z2

(
t + Kb−2q′‖

2 + Lc−4q′
⊥

4
)
|m′(q′)|2 − zhm′(0).

From the result, we obtain the renormalisation





t′ = tb−1c−(d−1)z2,
K ′ = Kb−3c−(d−1)z2,
L′ = Lb−1c−(d+3)z2,
h′ = hz.

(c) Choosing parameters c = b1/2 and z = b(d+5)/4 ensures that K ′ = K and L′ = L
and implies the scaling exponents yt = 2, yh = (d + 5)/4.

(d) From this result we obtain the renormalisation of the free energy density

fsing(t, h) = b−(d+1)/2fsing(b
2t, b(d+5)/4h).

Setting b2t = 1, we can identify the exponents 2 − α = (d + 1)/4 and ∆ =
yh/yt = (d + 5)/8.
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——————————————–

41. Essay questions
——————————————–

42. (a) Applying the Hubbard-Stratonovich transformation,

exp

[
∑

ij

Jijσiσj

]

= C

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj + 2

∑

i

σimi

]

the classical partition function Z =
∑

{σi}
e−βH[σi] is given by

Z = C

∫ N∏

k=1

dmk exp

[

−
∑

ij

mi[J
−1]ijmj +

∑

i

ln (2 cosh(2mi + h))

]

.

(b) To determine [J−1]ij, we transform to Fourier space. In particular, for the
model at hand, after some algebra, one finds that the eigenvalues of Jij are
given by

J(q) =
∞∑

n=−∞

eiqnJe−κ|n| =
J

c − b cos q

where c = cothκ and b = 1/ sinhκ. Making use of this result we obtain

[J−1]ij =

∫ π

−π

dq

2π

e−iq(ni−nj)

J(q)

=
1

J





c −b/2
−b/2 c −b/2

−b/2 c −b/2
−b/2 c −b/2

−b/2 c





Therefore

Z = C

∫ ∏

k

dmk exp

[

−
b

2J

∑

i

(mi − mi+1)
2 −
∑

i

U(mi)

]

where U(m) = (c−b)m2/J−ln[2 cosh(2m+h)]. In particular c−b = tanh(κ/2).

(c) For small m and h the effective free energy can be expanded as

U(m) = − ln 2 +
t

2
m2 +

4

3
m4 − 2hm + · · ·

where t/2 = tanh(κ/2)/J − 2. Evidently, at zero magnetic field, the effective
potential U(m) is quartic. For t < 0, the potential takes the form of a double
well.
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The path integral for a particle in a potential well is given by

Z =

∫
Dr(t) exp

[
i

!

∫ t

0

dt′
(m

2
ṙ2 − U(r)

)]

=

∫
Dr(τ) exp

[
−

1

!

∫ T

0

dτ ′
(m

2
ṙ2 + U(r)

)]

By identifying r with m, and τ with x, the partition function of the Ising model
is seen to be equivalent to the path integral of a particle in a double well po-
tential where the transition time T is equalent to the length of the spin chain
L. The inevitability of quantum mechanical tunneling in the long-time limit is
compatible with the absence of long-range order in the one-dimensional mag-
netic system. Pursuing the analogy, the presence of a magnetic field induces an
asymmetry of the potential which localises the majority of the wavefunction in
one of the two wells. This corresponds to the appearance of a net magnetisation
in the system.

In two-dimensions, the mapping involves the tunneling of an extended string
between two quantum well channels. In this case the tunneling is strongly
suppressed.

——————————————–
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