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Analytical Dvnamics

‘29935 Landau and Lifshitz Brief but many useful examples. Will use as basic
text for these lectures, Several brief books in Rayleigh Library
ieech-.élassical Mechanics
Ter Haaxy Hamillionian Mechanics
Tréatises are by E.T. Whittaker (C.U.P.) dwhich iz good value as paperback)
and by L. Pars which has many gocd examples but is rather long.

Several good intermediate sized books e.g. Goldstein.

Lectures to cover

1) Review
?) Invariants from Lagrange's Eguations, virial theorem
3) Small oscillations; Jdamping, resonance.
. 4) Friction, Rayleighan function |
5} Angular motion
6) Gyroscopes, teops etc., Coriolis' forces
7) Constraints, holonomic and non holonomic systems
8) Least constraint;Gibbs-Appell equations
9) Hamiltonians, Licuville's eguation

10) 'Hamilton-Jacobi theory; canonical transformations

11) Continuous systems

Analytical Dynamics Concerns itself with the ezpression of the laws of

physics. Although hist@rically the dynamics of particles and rigid bodies
came first, the subject embraces the e(uations of wave motion ané of gquantum
mechanical phenomena. One can regard physics as the investigation of nature
which leads teo powerful and succinct laws in which huge amounts of information
are reduced to brief principles and eguations,

Classical mechanics has reached this point in formulation (the last
great work of formulation came in 1900) but there are still surprises appearing
in the solution of the eguations of mocion,

To illustrate the fact that there are difference approaches ve write

down a brief preview of the formulations:
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Lagrange's Equations : are the heir to Newton's equations and are differential
equations for the coordinates or other descriptive variables.

' 3 : . .
Usually Lagranges eguations are second order differential equations for

say k dynamical variables: o, fr(...q..‘) i .

’ 3
Another method is to use Hamiltons equations where the equations appear

in pairs for coordinate g and momentum p

. %P 3N

3t~ %p_ Y5t T da_

where H(gp) is the energy writtenin terms of p, g when it is called the Hamiltonian.
The Hamiltonian form emphasizes an essential aspéct of physical laws:
they are Causal i.e. the future is determined by the past. (Note that Causality
is not the same concept as determinism, Causai eéuations say that if we know
a set of variables say p, g of Hamilteonian at time t, we can calculate them at a
later time. Or given a wave function Y (r} at time t we can calculate it later.
Determinism says that experimental measurement at time t permits the prediction
of the results of experimental measurements at a later time. Classical physics
is cauwsal and deterministic’quantum physics is causal but not deterministic).
Both Lagrange's and Hamilton's equations give time dependent functions
as their sclutions which directly describe the system e.g. a particle has a
éoordinate X{t). An alternative is to ask for the prchability of finding the
particle at x, P(x,t) say. If a particle moves on a definite trajectoxry P is

just §(§ -~ X{t)), and if % = F(x))P satisfies the equation

3 3 ) N
_[EE 1 EE'F(X)J ?(X.t) = 0

or more generally for say the Hamiltonian variables

9 9 9 an

--—+I""h—""'-—‘" a ) P(-.--q---p--clt).=o.
[Bt op aqr ﬂqr op

r

This is Liouville's equation and js the foundation of the statistical mechanics
: : 5 A '
of any physical system. We start by studying Lagranges formulation of mechanics

(1788). The usual cartesian variables labelling a particle, or the part of a
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rigid body is called x, (x, y, z), (x_, Y,.r but these are often not
3 Dim Several of them

the best variables, for one likes to have a variable g such that all values of
g correspond to all states of the system and unless it is totally unconstrained,
the simple ca;tesians won't do this.
Lagrange showed that Newton's (and subsequently all other conservative)
equations of motion could be derived from a Lagrangian
L(x, ﬁ, ; «s+ss) (usually only up to i} .
or in terms of our dynamical variables g

L(...qa iasE &a s

by the calculus of variations i.e, if we considar

JLdt = g 88 = 0 for the actual “motion

S is called Hamiltoniaﬁs principal function, and its numericéi value is called

the Action. (Sometimes S is called the action, but I prefer to think of action
as the numerical value cf 8 in erg-seconds or Jaule -hours Or whatever, just as

the Hamiltonian is a function, but its value is the energy measured in units

of energy.) Rather confusingly the basic equaticn is refered to as Hamilton's

principle: ‘

8 J Ldt =0 or 65 =0
If L = L(q,é) let us vary g to g(t) + Sq(t}

6L + L = L(g + §q, & + 6&}

. 3L

= L + &g 3%- + &q 34 + O(Gq)

but Gé(t) = gg 6g(t), so if 65 = O
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aa
o.—..-Jdt[Gq(t) 3-% + 5q~5-§-]

B 8L . 4 oL Integrate by
- J dt[ﬁq(t} ag * 3 9 aq} parts
end effects which
& ‘.a!i'i_.a_l:. =
= J dtoq(t,[aq 3t BQJ 5 O for paths starting

and ending at same points

Hence

a 3L 3L _
dt 3§ g i

d gL dL

- )

[ =~ L] ——
or for several q's 3 SE: 3q

One integratiocn is possible, for multiply by ér and sum

L i ... - "
 |GE 33 3q q, 0 but we can write
: X % .
g4 8L
dt aqr
d ¢ 3L 9L oL
L8y zo |8 g v | = § jome g o cme
dt r q, qu ;g aqr i
- f ,
a + AL
== (L g —5— =1L
dt r eq,
So that
oL e, :
E QI-EE— - L = h a constant, called Jacobi's 1ntegratlon,the energy.
¥

1f the energy can be split into a kinetic energy T and a potential energy V

- h ( or often written as E)

=
+
<
]

then T -V =1
e.g. for particle in a potential g is just x)L =k miz - v[x).
Y

In elementary mechanics a great advantage of Lagranges approach compared

to working directly from Newton's Laws is that the various reaction forces

a -

which come into N's equations and have then to be eliminated, just don't appear

in Lagrange's equations so that one goes straight from T - V to the equation of

motion.
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Examples A light rod has two heavy rings at its ends which enclose a rigid wire.

What are the eguations of motion when 1) the wire is a circle in a vertical
. ’A”‘m
plane, <;-h
m
-
m. .
2

2) a vertical right helix z = bo
¥ = asinf
y = acosb

3) A double pendulum is

Show that

22
L = B(ml+m2)21¢l

: 2‘2 [ » .
*hama Lottt Lo d,c0s (0 -¢ )

+(ml+m2)g£lcos¢l ¥ m2922305¢2.

4) Sliding pendulum

§
=)
n

%(n:l-l;:nz) ;:2

¥
+

’5m2(£2¢2 + 20x$cosd)

! , : + m

2 glcosd.

Derive the equations of motion in these problems 1 - 4 (and try to do

it using Newton's laws for comparison) .
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5) 1f one changes variables xa = fa(ql...qs)

a=11,.. 8

then L = L % ma(:_'gz) - U

becomes L = % I aih(q)qiqh - Ul{qg).

If one studies such an L with a general an show that

T |
" Jk . = — 3U
Faj; 9y ** [LJ ™
da, . da. . da,
where [j}:.] = [aa&u + 5 - - 5 Ak
y qu U 9

(This is called a Christoffel symbcl.)
A note on functional differentiation.

We got Lagrangés Equation by putting g(t) =+ q(t) + §g but this is a
bit pedestrian, for if we had §(x), then by putting f(x + dx) = £(x) + g(x)dx
explicitly we can find f'(x) = g(x), but normally one uses the rules of the
calculus, and does not prove theorems like - x2 = 2x from scratch everytime.

ax

So there should be an extensicon of the calculus to cover

g&Xt) F ([ql]) directly. It is this:
ox 3x2 Bxi
I think of § set of variables xl, xz «a0e then 3;;-= %)3;1-= O or briefly 3;; = Qij'
. : 8A )
In particulaxr if A= a,x, = +— Id,x, =L a.f .= a
3 8 ﬁxi - i i

If we consider A -» J a(j)x(j)a , x - x + 8x gives
J
Ja(j)x(j) + Ja(j)éx(j)dj and

2a _ S
7% = @; ought to go over to Sily = a(i).

The appropriate form is gﬁ%%%-= 5(il_ i)
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The analogue is then

Bxl _ s =k i=3
— ij
3xj ij
= i%3
83 (i) . §(i-3) =0 i %3
s e kI
S%(3) (i-1)

but in such a way that
§(i-3ya = 1.
Jewne,

Our previous gdefinition of L's equation now becomes

§
ey Jo e

, 3L, [8q(x) 3L
= JG(t*T) 3G + faq{t) 34

GétT) 8L
ég(t) &g

.. 2 2
Sg(r) _ _d $dg(r) _ _d _
Sq(t) T g2 da(x) T 2 BB = Th

The rule with § functions is always to convert any integral into

J §(t - T)¢(T) At = ¢(t)

and one does this (as before) by integration by parts Jé(T-t) %%-: -J 5(t"T)g€ %%
::-g-—.g&
dt 29

So that L's equations are

3L _d 3L, g
dq _dt oy 29 .
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Example: a dynamical system has
u2 n
L = {q7)"¢(q)
what are its equations of motion.

Conservation Laws For most examples L is not a function of time, and if we are

discussing some basic physical system this says that the law of physics involved

is the same whenever we study it.

dL BL m BL e
o 8q, 4y * B'ciiji:

I
alm
[

e
-
wiw
K ;t“
L

.. L @ %% - L = constant)the Jaccki integral, as above.

The invariance under time displacement of the equations of motion implies

conservation of energy.

The result is general: any invariance leads to a conservation. The simple

cases are time, above, displacement in space 7T =+ r + ¢

frw L L prwp g B
ar ar

But if laws are invariant for any €, we must have

aL . d oL 7
e = e == L = writing V for r
= r o dat g AV @ 4
a a
aL ;
..- P = L v—— 1is conserved
aOV
a
For particles P = L mv, conservation of mcmentum.

a

If the whole system is moved with a velocity gh Va = Vé + V amounts to a

moving frame of reference. Then
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P =1 mv
=L mv' + VIm
P = P' 4+ VM M= Im
P ]
oL oY o= ﬁ in a frame where P' = 0

i.e. system has its centre of mass at rest vwhere centre of mass R = Zmara/Ema

5L m,v2 + U
a a

Energy

H]

2
1]
LT ma(va + V) + U
=LEimv g

'+ Y Imv 4+ U
a a a a .

E* + V-P' + U,

t
]

A related theorem is ¥Konig Theorem: the kinetic energy of a body can be
separated into the kinetic energy which would obtain if all the mass were
concentrated at the centre of mass, and the kinetic energy which would obtain

if the centre of mass were fixed and the body rotated about it.

Angular momentum Conservation law followsfrom the isotropy of space i.e. laws

of nature are invariant on rotation.

consider a rotation §¢, also considered

as a vector §¢ . O arbitrary origin
6x = 8¢ x x_
(8]
so that dv = 6% x v
] dL " o 2
6L = L [+— 6r 4+ —— ¢ §v = 0 if laws invariant
a ar ~a oV —R
—a —a
.« e ; % <+ . =
E(Ea Gga Xxxr +p. 6 x va) o]

M is Angular momentum,
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Change of origin M = M' + a x p.

L. X

c i i M=Imr xv_=Imn v!
In frame of reference moving with V, La 5 mor, xyv,

+ I my %XV
—a—a —a

M=M +uUR xVorMs= M+ RxP in the case where one system
has its C.M. at rest i.e.
M = Intrinsic ang.mom + ang.mom due to motion as whole,
In a central field cne can take the centre of the field as origin when
o2 2. . 2 0@ 222
L=2%1I ma(ra + r, sin ea¢a + raea) pX U(ra}

and M is conserved along any axis thro that centre.
Examples 1) a homogeneous field exists in the z directlonxprove that Mz is conserved

‘irrespective of origin)

2) wWhat are components of M in cylindrical coordinates

Mx = m(rz - zr) siné¢ - mrzdcos¢
My = -n(rz-zr) cos¢ - mz¢singd
Mz = mr2¢

2 m2r2¢2(r2 + 25y & ulep = i)

=
It

3) In polar coordinates

» »>
Mx = ~mr2(esin¢ + ¢sinBcosbBcosd)
My = mr2(9c05¢ - ¢sinbcosbsing)
M = i
w nr ¢sin 6

2w o6 & omdntE)

=
1

Virial Theorem: Scaling

A scaling argument is based on the idea that in certain physical situatiocons
a change r »+ ar for all coordinates can be absorbed by a redefinition of the
constants in an equation in a non trivial way.

There are many scaling hypotheses in physics, but in mechanics the process

is applied as a rigorous result for some specially simplé cases.
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k
Suppose U(arl, ax, . arn) =a U(rl...rn)
and change t + Bt. Then

2
L"'E—z‘T-—akV
B

= constant x L provided that

2
8ok o g s ghRI2
g2

Now consider a closed system of particles (in box say 4in thermal
equilibrium (but not necessarily so)) with such a potential and consider the

time average of any guantity £(t)

- 1 T
f=1lim = ] f(t)dat
1 T oo — :

QE, this does not contribute provided F is bounded

If £ contain t
ains a term I

because ] 3-E-dt = F(1)=F(0) and Lim A-J a + « + 0, 2Aapply this to T.
T

dt o dt
5 8 B pw. = ok £ - B E
= %PV T3t “ Pafa a Pa

i) is replaced by - BU/BJéand lst term qave no contributionby ourresult above, hence

2T =5 r 29 or |27 = k0 vi ial theorem
a or
a a
Since T+U0U=E=E U = 2E/(k+2)
T =kE/(k+2)

This seems at first sight a great theorem, but in practice there is always
a reason for it being useless.

~Textbooks of mechanics normally contain chapterson special cases e.gq.
planetary theory, and on scattering theory, and on small oscillations. Analytical
dynamics contributes very little to these which can all be solved by elementary

methods,
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We just note that for small oscillations, L can be expanded as a

p ) oL _ i -
guadratic about a point where 5q = 0 and leaves 5 Z(anm 4,9, + bnm qnqm)
so that ad =bg
if one vrites the eigenvalues of the matrix - Q-lg aStui, and uses the eigenvectors
: b i # 2 2
as coordinate system q, = -“Jaqa i.e. frequencies areuw =W

Interest centres on the degeneraciesof theula, and this is best resolved in highly
symmetric systems (with high degeneracy) by group theory. A few simple examples
are set:

Examples Small oscillations

1) Study the small oscillations of the hinged pendulum and the double pendulum

’,

gxs  3,4) (L and 1)

2) A ligﬁt string of length 4 a is stretched under tension between fixed end points.

. 4m g
Particles of masses m, 3~ ¢ D are attached to points distant a, 2a, 3a, 4a from

one end.

Find the normal modes

and solve the motion.

) A heavy réd AB of mass M hangs in a horizontal position from two supports to
w hich it is attéched by vertical light strings each of length a attached to A
and B. A particle C, mass m, hangs from ﬁ by a light string of length a and a
sinilar particle D from B. Equilibrium is disturbed in the vertical plane.

Solve the motion and use it to illustrate the fact that two pendulum
clocks hanging in the same way transfer their amplitudes so that one'amglitude is
large when the other is small, which situation reverses and is periodic., (Pars ChlX).
4) Solve the small oscillations of a triangular molecule HZO where the pbtential is

a function of the HO distances and HOH alone.

X/ W W (Land L)



Lecture notes from Sgryidwards' 1985 course on Analytical Dynamics'delivered
to second year ungraduates in Cambridge. Uploaded by Ben Simons, who took the course!

Friction produces irreversible terms in the equatiorsof motion e.g. a damped
oscillator
. . 2 )
vx+x+w0xﬂ0 .
has the term vk which + -'vX under the operation t -+ -t, as is physically to be
expected. To incorporate friction into the Lagrangian formulism one can
generalise to Rayleigh's dissipation function, or the Rayleighan. In the example

above one writes x in vx as . v and notes that

2. k5 we ey
av i
Thus formally, if one writes
R=L+F
L = L(x,%)
F=Fi)
d 2 - » 2 2 2
the equation is recovered from R = % mx" - hmu"x
+ ‘zmw‘2
2. Eﬁ = g? + g§'= o} At this point one puts v = X,

but not before.
This procedure seems quite arbitrary at this stage, but Rayleigh showed it to
be guite systematic, allowing v to be a function of x (but not of ).

For if we look at the rate of loss of energy

£ . 8 [}:5: LR --L]

dt dt i 9%,
b
d L aL

=1 k].[dt [ax{l - 5’?]

i
— o aF —— ) _'
= b X, 3% z X, yij(m)xj

i

= -2F

where we have generalised our example to several degrees of freedom and to a

il .

3 3

general frictional force on-xi‘of b) vi
3
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Brownian dynamics

An important case at a molecular level arises when frictional lossges
are balanced by a random force. The classic case is of a small sphere
radius a in a viscous liquid buffeted by molecular collisions:

mf_+ 6nanr = £(t)
Let us be a bit more general and addthagmonic ferce, and look at it in one
dimension to ease the algebra
5 2
}t+\;x +u_)ox = f(t)

The force f£(t) fluctuates in such a way that <f(t)> = 0 where < > means average

i‘el
1 T
Lim = J £(t)dt = 0
e Jo
but <£(t)£(0)> (=<£(t + 1) £(1)>)

= ¥ h(t)
One expects h(t) to be a decreasing function $f ti and-in the.limit of a very
fast decrease
h(t) = ha(t).
the force f(t) is called white noise.
| If one foﬁrief transforms
<f(t + 1)E(1)> = kh(t)

b s - !
one finds <fwfw'> A hw S(w + w')

where h(t) = %F J hw@menlwt

and for white noise h = h a constant, all freguencies equally present.
w "

Then fourier transforming the whole equation

2 ' ,
(-0 + We + iywlx = £
w w

(]
hw S(w + w')

2 2.2 2
(w - ”b) + 7w

“xx o=k
w w
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This enables us to work out the average behaviour of the buffeted oscillator

<{x(t) - x(O))2>

S —_ I(eiwt _ eiwo) 2 (eim't - elu'e
(21‘[)2 @ . ')xm,dﬁl )

1 thﬁ(w+m')

= =~ s “‘
(2m 2 J (wz-mg) 2028
hw(l_— coswt) dw

e T Y L R

1
N 51 .2 3 2 2
R I
ol N
Special cases: (a) w. = O h =nh
0 [

(x(t) - x(0))° st

h " f sin> (wt/2) aiy
? )
w (W + g )

_2np? J sin‘(@e/2) J simlwt/2)
Ton 8 T 2, 2

2
- vh(v [t _ % (1 = e-ut)]

(2m) 2
_ 4ﬂv2
. : ; 2
N (b) if inertia is small then mz;ln mz = w, can be ignored and

(x(t) - x(0))° = —P J () = ooAWE)

2 4 2 2
(27) w o + v W
B |
S . SR [l - e_-——*tj
w v(2m) 4
4¢ v



Lecture notes frqnfam Edwards' 1985 course on Analytical Dynamics delivered
to second year ungraduates in Cambridge. Uploaded by Ben Simons, who took the course!,

: 2
In case (a) one has the Brownian random walk, (x(t) - x(0)) ~ t

in case (. a buffeted oscillator where there is a constant average displacement

of the oscillator.

Although the foundation of physics is the Lagrangian and Hamiltonian

formalism of analytic dynamics, the random dynamics briefly alluded to above has
f&; greater application in classical physics.

Rotations Analytical dynamics cén offer something new in the study of

spinning and rolling, but first we give a revision of that subject using the

Lagrangian forma lism. Consider the rotation of a rigid body, c¢.m. is O
' P 3ot
z \

A = dR + d¢xr
T 7
dn’ _ R
ac - Yrae - Y
L ae
ac -8
v=> ¥ +axx
X
If we change origin by r = r' + a
YV=y¥+liixa
Q' = @, so there is an 'angular velccity' independent of

the coordinate system.

p I m(V+Q x v)2

]

2

v? + % I m (2% - (n?d)

v = L m, cross term vanishes. Define the inertia tensor

-
Lo =& mix, Gy « xox.}

T

]

2 P
Luv® + BIiinnk -U

Principal axes of I - HEIiQf = Trot,
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Angular momentum (L and L Ch VI)

M=L mrx (2 x x)
- 2 i
=zm[x®a- o]
senl g : M =1Q, in prim axes Mi = Iiﬂi.

Special cases: sphere M = constant, Q = constantRotato.r(Ii = 12. I =0)

ﬂ = Ig 2 1 to axis of rotator

Hence free rotation of rotator is uniform motion in plane about an axis ] to the

plane.

Symmetrical body Il = 12 # IB' One can chose X X, axes arbitrarily . .
take x, 4 to plane containing constant M and instantaneous Xq axis. M, = O and

2, = 0 thus M,Q and axis of symmetry are always in one plane i.e. V = Q x r

.

velocity of every point on the axis of the bedy is L to that plane i.e. axis

rotates uniformly about M in circular oone: regular precession.

Q. = M3/I3 = cos 6,Q prec sind = Q,

M_
3 I3

! precession = M/Il.

Equations of motion of rigid body

By summing e.g. motion of parts of body, the total momentum P = uV

u total mass, V vel. of c¢. mass

ar
s F = tatal force Lf
au "
" 3R U potential energy, R c.m.

)
This result comes also directly from Lagranges egs.

dMm

ac - K

Similarly

where M = Lxr x p and K = X; b4 f

r x £ is moment of force and K the torque.
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Eulérlan angles Look at a rotation taking spherical triangle XYZ into ABC. The

=

rotation is specified by three angles
8, ¢, v.
&, ¢ wusual polar coordinate angles,

and Yy the rotation about the pelar axis.

The moving plane xiXZ intersects
the fixel plane XY in ON the line

of nodes,

Collecting components of angular velocity Q along the moving axes

& sin 6 sin Yy + 6 cos P

Ql =
92 = $ sin 6 cos Y + € sin ¢
93 = ¢ cos 0 + @

If 0, ¢ are zeros Y is spin of body.

; ; _ 2
Kinetic energy ?%ot'_ Lk Iini
~nd for symmetrical body Il S 12
x $sin% + b2 + 4 I (hcoso + 912
ror © %Il(¢ sin“® + 67) + 13(¢cos + U
Since x

1t X, axes are arbitrary for symmetric body take X to be ON line

of nodes i.e. Yy = O, then

91 = 8 92 = ¢ sinb 93 = ¢ cosb +



Lecture notes from S dwards' 1985 course on Analytical Dynamics delivered
to second year ungraduates in ridge. Uploaded by Ben Simons, who took the course!

Euler's Equations

Simplest form of eguaticns comes when one uses a moving coordinate
system whose axes are principal axes of inertia. If A is a vector which

does not change in the moving system , only the rotation changes it

A Q@ x A

at = =

in general one will have to add the change dueto the moving system

an_am o,
dt dt - -
dar da'M _
ac + QxP F 3t + 0 x M=K
. d\’i o o
or u-a'E—+(QxV)i =Fi

Using X XXy along principal axes Ml = ;191 etc.

-

Il i + (I, - I )9203 = K. etc.

3 2

and in free rotation

dQl
EE—" + (1’3 - 12)9293/11 = 0 etc.
Examples:; Il = 12 93 =0 93 = constant
Ql = -w‘Qz 92 = le w = 93(13 - Il)/Il
ﬂl = A cos wt 92 = A sin pt; leading to Y = 93(1 - 13/11).

Acsymmetrical top

> >
Suppose 13 12 i B

Then L I.Q? = 2E
i

£ 1202 = M
i1
:
or L —— = 2E Ellipsoid
R ¢
i
L Mf = M2 Sphere
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Then vector M lies on line of intersectionof these two surfaces

When M ~ M. or M v M, the intersectionis a small closed curve giving the

L 3

precessing locus and is stable. When near MZ not stable and the axis wanders

around.,

)
One can eliminate say Ql and 93 from Eulers equation to give

g 2 _— 211 2 L _ 2
2, =/ {E2EI3 M%) - I,(1, 12)92] [(M - 2E1))-(I,(1, Ile:J}
x/1,/(1 1) :

fe. @, = Jie? - 3292) (9% = azngy

i _ 2 :
or if ©t =t / (13 - 12) (M 2E:Il),’f211213)

L

. , 2
and s = 92 JQI2(13 - 12)/(213’1‘3 - M)

and k2 = (I, - Il)(2EI

2 2
2 -M))/(I3—12)(M —2E11)

3
(<1)

3 ds i B
T“I 2 372
1 - 8% - k8% . -

s = snt, Jacobian Elliptic functions.
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Examples Rotation: Tops

1) A heavy symmetric top spins about a fixed point. Solve the motion in terms

of the integral

t=| de
= '
Y2 (E U, (6)) /13
2
where I' = Il + 4 1
M§ (M2 - M3 cosB)2
E' = E - T Hgl Ue = 5 - ugl(l - cosB)
i 21! sin’©

1

2) Find the kinetic energy of a cylinder rolling on a plane,
3) A cylinder rolling inside another cylinder
4) A omone rolling on a plane
5) A rod moves on a smooth plane which rotates about a horizontal line with
constant ang. vel. .

Show that the problem is separable when expressed in terms of {§,n)
the ¢'.g. G of the rod and 8 the angle between thé rod and 0f. On is inclined
at wt below the horizontal.

2.2 2 .

22 Lo RnSy & N KOUES % ety

L = ‘:(Ez + 1
+ gn simwt
where Mk2 is the moment of inertia about an axis through G L to the rod.
Solve the motion.
6) A penn} rolls on a table making o with plane with its centre travelling in
a circle radius b with speed bw. Show that {(2k + 1) b + kacosu}w2 = g cot a

[ ]
where kMa2 is value of 2 prin.Jman..inertia, 2kMag an.
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Dynamics with Constraints

Suppose there is a restriction e.g. rolling condition. It does no work
and acts on q, & only (not explicitly on §). Say it is

g Brs q, = 0 A = A{q)

.
Then Lagranges/Euler's method is to introduce multipliers X

S = j Ldt + L Ar Ars(q)qs

8 =0
-
0=.8 9L 3L P .
dt 3C1r -3 » o aqr s
N TaE kA Pag (e
But S OFR = BN % Ok 2D G
- dat = : agq -
cancel

S e R 2 ik ik SR FLlk

So if we write A = £ one ha

n

d 3dL L
dt a:‘;r - dq, * Bl OJ

The £ are now determined as in the ¢alculus of variations by the constraints
EA& = 0. You will find many examples of the use of these equations in the text
. boocks. . But you will see that £ comes in and then goes out again and is like the

)
. reactions of Newtonian mechanics (indeed £'s are reactions, keeping the system

fdllowing the constraints.) It is natural to ask if there is a method of going

directly to the equations of motion, doing to the Lagrange - Euler ecuation what
Lagrange did to Newton. This can be dene in the Gauss-Hertz principle of Least
Curvature, and (grandest of all analytic dynamical equations) the Gibbs-Appell

ecuations. This is not done by Landau and Lips. but is _in whittaker, and Pars. 1

follow Pars.
Consider a simple (indeed trivial since it is soluble i.e, .intejrable

i.e. "holonomic") constraint ax + by = O for a particle on a line in a plane,
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The simple kinematics of a particle in a plane allows any values for éi' §i and

for & in unconstrained motion. We can consider a displacement dxi called a

17 yi
virtual displacement which satisfies thé_constraint (and therefore does no work)
but is a deviation from the true motion:
Now look at the equations of motion derived earlier

m ﬁr = xi + x;

where xr are forces present and x; comes from the constraint

' =
xr * gap‘ur

(]

o FOr & virtual displacement er, by its definition it satisfies EAISGX =0
. o : g

(xs are the q'é of the initial development)
Hence IX! 8x_=0
, 2 x
and I (m ¥ _ - X }éx_ = 0O
r T r' Tx
s o
Another version of the eguation IZAdx = O comes when we consider the
system with a Air difference in velocity from the true velocity
" (8x = (AX)t ( some time)
I A _Ax_ =0
rs s

and I(m % - X) Ax = 0.

ol = X r

One can extend this argument to accelerations for if EArsis = 0, by differentiating

(A % +

rs s at xs) =Q
a d i "
T EYER

i
Now consider two motions with different accelerations but the same velocity. For

this to be possible

dArs
3t xs) = 0

E(Ars(xs + ARS)+

. LA A% =0
rs s

and I(m X - X )AR = 0.
r'r X r :
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" Now consider the 'Curvature' to use Hertz' term (though the priﬁciple was

introduced by Gauss)

>

e U j et s SR Gk R 5 0 oH vk e BEaiennyg
C = Im - — ' thr st
4 r(xr = }
r
and consider a variation in the acceleration alone _ .

AC =3 I m (AR)2 +‘Z (m% -~ x)AR

o _ 0

AC > O

and 6C = O for the true solution of the motion.

Example Atwood's machine i e 9 # -agc =+ g{ acc f up

f

c=}% { M(£-g)

£ down

5 _ g;avity

=g

+ m{—f-g)2

M=mcC=k {(mm)f - ag-m)g}z

equally from %%—= 0.

Example  Atwood's monkey

4

2

+ 2Mmg

monkey mass M

climbs up string
i ;

at rate ¢ along string
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¢(0) = é(o) =0 <. 2 = ht of monkey

L = ht of M

C=% {m(2 + g)2 + M(T + q)z} B B B »
‘'z 4+ =4 Find - okt : .
. = 2 ol . 2
e C=Yk{M(z +g)" + M($ -2 +qg)})
ac
38~ °

M +m)2 =Mp + (M - m)g

M 2
z—-m¢a+lt(M—m)gt

ng

A

-————¥—> wedge acc.

particle : : with £

Example: Particle on wedge all sliding smoothly

7oL

acc. with £' relative to wedge

C= ’:Mf2 + m{f'cos a-f)2 + (f'sina-g)z}

oc _ 2 _

2f ~ agr - ©

f _ f' _ _gsina g
m cosa  M+m

These 3 problems are tiresome otherwise.

Gibbs-Appell Equations . : S F R TV Y.

are a generalisation cf Gauss-Hertz. Consiaer a system of particles masses mk
cartesian coordinates Xy - Consider the system usefully described by n coordinates
qi which are constrained by
v 2 Ars 9g = o .

Define the Gibbsian G = X L, R: since the q are related to the x in scme formula
(wvhich if explicit g = g(x) then q is called a Lagrangian ccordinate, but if it
involves é x and is not integrable to ¢ = g(x) is called a quasi coordinate), cne
can write G interms of q oo and t e é's and a's. The constraint allows us

to write m of the velocities éi ie élin terms of the others., Let these others

be called 2: &, ... & ; SO now E ...& can be writtenin terms of
2 2 n-m 2 n
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1.1- LY

va;iables pi, pi. qj. *,

Now consider the work done by the external forces'in a virtual displacement

O | and g

2n—m' 1 n-m 1

s+ Qs SO G can be written in terms of these

(note the constraint reactions X' do no work,but the X's will).
In terms of the 2‘5, the work done will be
z:'fj:'r 62'1: (%2 xr dﬁn)
but different no. of r's
Consider
A(G - L rlr)

=%Tm (% + A% )2 - %Em %2
sETE r r X

- 3L AL
s s
=% Em(AR)2 + (L mRax - Il AQ)

-4 L m(m'{')2
and I m¥A¥ - IL AE = 0 as we now prove.
fhe result follows from the fact that if the £ are functions of the x in virtual
displacement the equation I(mX - X)AX = O
impiies L m¥{AR = ixAx"= L AE
for the two terms on right are both rates of doingy work by the external forces
[Differentiate L midk = Ixpx = L AL]

Hence A G = AL 2 gy i ; By . o3 _ £

Y]
(>}

]

é . Gibbs Appell egs.

L x

Qr
ror
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Examples motion in polar coordinates in plane. Convenient coordinates are

r2 = x2 + y2 and df = xdy - ydx

] rzde

After straightforward algebra

: s )

Wy 2 iy

A L
G—‘jm{i‘-;}-] +—2.

1f radial and transverse forces are R , S the work done in virtual dispiacement

is
- #
RSO + = 52

Gibbs-Appell eq. are

—B..E = R E—C:‘ = §-
oF L r - B
4 .2 ~
mi¥ - EE- = R ¥ - r92 = R/m ;
L3 r . 3 O L ] =3 ~
z ' i d 2. S
mg = rS vy (xr78) = rsh} - ~.
the weil known result.
Example (set earlier by L. equation)
Cylinder rolls inside another cylinder & &
-/""‘_"'-_"'"'-.‘ ‘
Acceleration of c. cof g.

is £

T ——

\Z -
2 I dm(r282 + r284)

only the ™ terms matter iné%)and these are
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Ve g SE Pt @ C;I Mfz ee 11 1.9.2 . § 5 s L s : : 2 g

a(é + ¢) = be ap = C6 " e=b=-a

.9 =y M(czgz - czéd) + H(kMazlaz
' +

drop as no ..

Mc292

|

Work done by virtual displacement is

Mg 6(c cosf) = - Mg c sinB 6 ©

. .
58 Mg ¢ sin

2
0=-3

o

sin8. Pendulum. _ .

)
Example Physicists roulette

table rotates with Q(t)

sphere rolls on table

c.g. is G (X,Y)

Let W be angular velocity of sphere P mermng b tew oyl

Rolling means X = Aw, = Qy
¥ + aw = (x

Use coordinates X, Y, 21,'£ . 23

(these 1's are quasl coordinates, one can't iptegrate them out)

.I2 I'2 IA2 -.2 ..2
2@ = M(X" + Y°) + A(R] + 2, + 23)

which must be written in terms of the correct number of degrees of freedom = 3;

usex, y,za.
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a22

il

X + QY + QY

anl = -y + ax + éx

2@ =M£;2 +Y2) +%(§+9§+6Y)2

-a
A LR & - 2 .-2
+ 75 (Y - X - aX) + AL,
a
work done in a virtual displacement
8%, = - 8¥/a 2, = 6%/a

1 2

-¢ +

Suppose force on centre of sphere ig X, Y, Z and couple (P, Q, R) then

Xéx + YOy + PM.l + Q6£2 + RGLB

=k D _E
= (X + a)Gx + (Y a)6y

+ R6£3

Thus G-A eq. give

M$E+§-:?-('§+Q§r+gy)=x+g
a . a
NPT N

MYy + =5 (y - & - 2x) =Y - =
a

AL, = R.

A special case is @ = constant when force is M, Mn, M:Sthro centre_g3 = £3

Ma2€

It

(A + MaZsE + ARy

h
=
)
(&
>

(A + Ma2)y - AQx

Solid sphere has A = %—Ma2 and

2.8 &
k+7ﬂy—?\‘;
2 B
9-:}'{?)(-77‘1'\. .

If turntable is at a to horizontal, £ is down-hill coord

>

£ o= (R -- g —_2... =5
E=gsina : if K = 5 o A 7{

constant
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put x + iy = 2

z =2z <+ E*-(A + ikw ) (1 - eikt;
0 2 -0 . ;
K B :
+ é%—(kt).
k

A trochoid.

Roulette in a storm

4
5]

Let the plane now rotate with velocity Q about vertical but be at an angle
¢ to vertical. A sphere rolls on the plane under gravity. Solve the motion,
‘Solution given on page 209 of Pars §13.6.)

For supermen only A rough ellipsoid rolls and spins on a perfectly rcugh table.

Obtain criteria for the stability of its spinniné from the Gibbs Appell equations
for its general motion. (Pars §13.15)

For geniuses Obtain criteria for the stability of a bicycle(Whipple Q.J. P and A

maths 30 1899 312-48)

The Hamiltonian Fermalism

:
Starting with Lagranges equations we introduce

p = %g-and write H = Epé-— L

is L(qé) but g can be replaced by q,p in the eguations by solving p = BL/Bé. Then

M _ s, 3 _ 333
one has 3p q+p 3p 3p 3%
o

aq 39 g
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The time derivative of H gives

@M _ 3 3g 3H _ 9p 3H
dt at 9t 3g It 2p
0

L y i r 2 ’ 3
So if H is indepedent of time 3H/3t = O and g% =0 H = E conserv of energy

The rate of change of any functicn Z{p,q) is

3 =92 23p , 3z 3q
dp dt o0g ot

- -3z 3 22 3H
Jdp 3g ag 3dp

This is often written

= [H, 2], Poisson bracket.
Liouville's equatibn is conveniently expressed thus: let probability of finding
P, q be

P(p, g, t) = 8(p - P(t)}6(q -Q(t))

where P(t), Q0 (t) are solutions of Ham.'s eq.

aP

ok [BH, P] = O where H is now written in terms of phase

space coordinates p, g

5 M H  oH 3 ~
[at i dp oq  3q ap} FER

which is the familiar

3 _,.¥ _E2_ »
[at * ar m BIJ Rlrant g
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' 3 r.*

Relativistic Formulation

One needs this to handle the e-m field. One way of making sure a theory is
in accordance with (special) relativity is to make it covariant. This formalism
recognises that in a general space one has to acknowledge the existence of two

kinds of vector, the coﬁtrava;iant and covariant. (For full detalls see text

books of relativity.) Write the vector

(x, ct) = x¥ w=1l, 2, 3; 4

and the vector (r, - ct) = xu

~ . - it

A scalar quantity has no free index, the central quantity d52 = dxudxIJ

g B

is an example, I one writes ds2 = gurdxudx?

{1
i guv = ll I
’ -1
2 2 s . ' :
ds” is . {arc length)” and guv is already familiar in 3D e.g. in polar
coordinates iR it W . R : r3 H PR o
2 2 2
= yv"sin 8. But in 3D alone cone does nct have

931 = 13955 = T, 933
to bother with the difference between x" and xu.

The metric tensor guv raises and lowers suffices xu = gﬁvxv

and g itself can have raised suffices:

va' !
Yy B §

kronecker delta.
We just quote these results and also just gquote the Lagrangian of the
electramagnetic interaction.

Firstly take fixed field and ask for its L. Hamilton's prin. function has to be

a scalar J b mﬁzdt ts not. Make it so by considering
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2 .
{ o f Lo
- [ imc ds = - J mcz‘ -c2 1 cat

2
= = I mc2 1 - !5 dt
c

2
c

e I mczdt + 4 J mvzdt + O[E—)
Next e.m. potential eJ@(r}dtd3r gives the force eE and

I A.x dat éBI gives g-(v X H)
From this follow Maxwell's equations and the full Lagrangian is
L I mc? 1 - Y- at ..,-___a-ZeJ saat

.particles .
e L
+E = fA.rdt

1
4

I H(Ez - Hz)dardt.

The Hamiltonian is interesting for one finds that for a particle in a field

L _ e
P=3g~™r-~ c
and H=X mv2
e
(p c A)2
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H = ‘smv2 reflects fact that még.field does no work, but you can't get H's

equations unless you write H in term of p.
H for the E. M field is %;—IE (E2 + Hz)d3r.

where H = curl A

g A .
Just as (dx, cdt) is a four vector, one has (;—, ¢) is a four vector,

One can compress both the E and vxH terms into S-f Audxu

(Example: work out in detail that

d JL oL _ vxH
at or  ar e(§1+ g ;
when L is J ads" (=e J ¢d3rdt+q{ B r a’rat) -

There remains L for the field itself. One can combine E, and H into a 4 x 4

antisymmetric tensor with

H being F,, F,y Fo)

E being F

14 Foq F3q

F,..=93d A -3 A
Hv Hov v

and the scalar is FUV Y R =

Tease this cut and show it equals

l 2 2 3 4 “ B Y R, oEE
'8? J(E -~ H 14 yit. =

PYit gl
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»

Centinuous fields

We have taken it that there is no problem in varying a field as against
a particle, but it is worth spelling it out.

If one has a particle x(t) in a field ¢(x(t)) thelagpéngian contains

J¢(xtt))dt

: 3
and Lagranges equations + 33
x = x(t).
A way to write this is to introduce a density function p (x,t) = &§(x - x(t))

£ _ ; 3
and write J ¢(r)p(xxdx or in 3D, g(r)p(xr}d'r
p naturally generalizes to the 4 current vector ju = (j_ j. j_ cp)

where jx = x{t)d(x -~ X(t))S8{y ~ Y(£)b(z - 2(t))

ju = (j, cp). The Lagrangian term is j Apjud4x

uv

Now consider the part of va P containing ¢ alone. It is

.-2
B
2
c

{ 2. 3 :
J [-(v$)© + ] d°xdt + e [$(xt)p(r,t)

¢ + ¢ + 8¢ gives

4an 2

4 2 :
S +5 + J §¢(r,t) f—%—a-—“i’- - v2¢ d3rdt
i o a3t

.--ep
so that L's eguation is
2
V2¢ = - 4mp + l~”§J£
2 3.2
c 3t

and similarly for all the other Maxwell equations. Get clear in your mind the differencs
between the coordinate of a charge r(t), and a point in-spéce where one Measuresa field
$(r in t) Equally if we studied say.sound waves, writing in terms of a density (or

eQally pressure) fluctuation
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2

L 22.v%-0 o = plr,t)
c ot
3 2] 3
cemes from I L dt = constant x J i (Vp) d rdt
c

Linear wave equations can be regarded as assemblies of harmonic oscillators.

Suppose we study ¢(r,t) in a box, then

mNX Tmy Tz
+ E cos cos cos
¢0 iy B L L L ¢n,m,2,
2

&rtr.t) =

if we use a cosine fourier series. It is often useful to use cyclic conditions

when one can employ the complex notaticn

271
e DY

¢(rrt) = ¢ + z e
n L

(o] $¢n

(The space is now based on 27 rather than w and the number of physical states will

be the same.) In the limit of a large box

2ri nir

dlxt) -+ ¢ +Jd ne ¢ (n)

e -

1
0O as ;J@
sy [ a3y olikr o |
(2m)
3
2 dn 3
where ¢, = ¢ (n) (&) L3 =dk
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The Lagrangian

o2
1 2 _¢_ :
am J (Vg) c2 a :dt

becomes
3 ( 2
Lo Ly J k2 -y lg, % a’xaw
(2m) (2w =
2 1 . 3
or J(k ¢k§k -5 ¢ g yd k 4t
¢ L™

It is often useful to recognize that with ¢(x,t) real, Qk is ¢k

e.g.:
for radiation with ‘ "g

H=curl A
- .1 9
and Ew=2 5%

if one writes [see Landau and Lif schitz Q. theory of fields Chapter 4; but

_ beware they simplify some things]

M * -3 . : - F P
A = S(akelkr i ak o 1kr) ‘ s
k
1 . ol g SO
E = - E’Z (k akelkr k a )
X i
s .
H=iZ(kxakelkr—kyak akz,
- k
If one writes Q = : (a, + a*)
k 4nc2 k Xk
o P v »
Pk = =-3ick 5 (ak -a )

4rnc
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The Hamiltonian becomes

2 2
H=L %s(Pk + Qk)
3H _ 3H _
and 30 - P 35- Q
“a 2 2 :
is Qk -ck Qk = 0 the wave equation.

s
1
N
;1\=:|

L ck (Qk sin k.r + Pk cos kr)

k]
1
N
1

w

{ck(kak) sin kr

+ (kx?y) coskr}.

Thus wave moticn = assembly of harmonic oscillateors

The quantum mechanics stemming from a wave Hamiltonian therefore has integer

energy levels and corresponds to an assembly of photods,,phonons, electronSy .

—

Cal
mesqﬁns etc. etc.

Hamilton-Jacobi Theory (Following La&L §&43)

t
S = J L 4t proceed as we did in the beginning
0

by parts, two terms

2 v
§s = [——L— Gq-]t + Jt [BL - 8. Q-I'-'J agt
3g 1o & 3q dt 3q)
+— O by L's egs —
§s = I plg
3as
or — =p
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Directly one has 53

dt
so g§.= %%_+ 5 %g_ . .
i.e, ds = Ipdq - HAt

If one now writes £ = J(Epdq - HAt), 85 = O
gives Hamilton's equations.

Since §§-+ H(p, q, t) =0

It
and p = %%- one gets
s 3s s L
Bt + H(ql - = qu aql . e . aqsf l-] — O

The whole of analytic dynamics is here expressed as a partial differential equation,
and it is employed in various complicated orbit problems. SchrSdiﬁger had this

equation in mind when he introduced his equation.

Jism 3y ias

PUE v = 9q 4 3g v
W _ _i 3,
at A 23
= 3 Lo, 30,
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This is the classical version of Schrodinger's eq.;ﬁ is only a scale parameter,
and this equation is of course nothing but a manépulation of H~J eq.

Quantum mechanics has

%%-z i/A H(q, iX %E-)¢ which really is different.

Schradingefs equation

2

o =
5 YO

3. .

the Hamiltonian version of qu , mech. There is a Lagrangian version, noted by

~irac and exploited by Feymnman which says that

(6a) ¢(q',t*)

il J N -is/

where (dg) means integrate over zll paths starting at gq',t' ending at g,t, weighted

iS - S5
with el /?*h now non trivial.

To prove this is equivalent to the Sch. eq. Solve the Schradinger equation
for a very short time interval. We can do this by saying over small time interval

q is almost a constant, so if we fourier transform %E-by taking
= U
vig,t) ! G(g g, tt)) ¥(qt)) dq;
t~t '
3 =1
q+q1 Q“ql
2 & 2 ¢

G is equally G( t tl)
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and one can approximate

qtq,  9-q

by putting 3 -~ q and fourier transform on q - ql
-G 7
qtq q-q :
1 1 ip( )
G({ P }: '_2“_"'7 t"‘tl-)"'-'- [ d?e P'q.-ql
™~ .q
fg+q,?

1

G(-é-— ¢ P t-tl)
( - H{g,p)) Gl(gp t-t.) = &(t-¢t )
1 ! 1

B
-
e

G = (t=t ) H(ED,9) |

Break up tt' into a large number of little intervals tlt2 .+++ at each stage

have qlq2 e PyPy oo and drift this into g(t) p(t)

vigq,t) = Jﬂ dg,dq, .. W dp‘ldp2 el 5 v 2

SN

e I H(pi,qi)(ti—t )

i+l
i

MR A TR TFERE

=
+ |d path i .
I path = 4 %f (pq - H)at
d path inp e g
uj(q't')
2

In particular if H is'gav+ U(g) one can 'complete the sguare' to integrate out p
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QAL

i
- i 2
é A JI-EPE} - P——zm) + U(q)tldt
1 L

=3

‘ é 2 1 m.2
. J(p—; -,gfc%-—-u(qn.

p+p+ é/m drops out since J dp no longer contains the motion

-

! L{qg)dt
vig,t) = j e T g v(q't) (6q)

-

all paths from g't' to gt.

This discussion is far to brief to be understandable on its owﬁ; further
details in modern g.m books or Feyman and Hibbs, The important point is that

Q. Mech. also has both Hamiltonian %%-= (1,v]

I

and Lagrangian %%T 'elsﬁﬁ
formulations.

Manpertius principle is known as principle of least time. I have never found

this useful and so put it in cnly for completeness
6s = ~-H S t

but H = E for conservative system

.
.
.
(=]
1]
L]

- Eét

0]
I

t -
Jz p g dt - Et
o

+ sometimes called action, scmetimes abbreviated action

->

Since 85 = -Eft

GJZp:_]_dt=O N

"Now p = %E-L(qé) and E(q,é) = E constant. Hence if we write dt in temms of

q and é, one has p in terms of q and dgq, with E as parameter and a new variational

principle. For example if
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L*ES.

L=k m&z - Ula) p = mq

Y

E=Y%mng’ +U at =

I
NT]
m
1 e
=
o
<

L -2
£pq=g—-

. [
j Ipg dt = v 2(E-U) dgq

)
ie. 8 V2m(E-U) dq = O.
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