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Summary: Tensor network algorithms

Structure
Variational 

ansatz

iterative optimization 
of individual tensors 

(energy minimization)
imaginary time 

evolution

Contraction of the 
tensor network

exact / approximate

Find the best 
(ground) state

|�̃�

Compute 
observables
��̃|O|�̃⇥

MPS
PEPS

2D MERA

1D MERA

TODAY

✓



Outline, part II

‣ Optimization of tensor networks
✦ Variational optimization 

✦ Imaginary-time evolution

‣ Contraction of tensor networks 
✦ Basics

✦ Approximate contraction of PEPS/iPEPS 

‣ Outlook & Summary



1. Select one of the PEPS tensors T

Variational optimization for PEPS

E =
h |H| i
h | i

tensor T reshaped as a vector

environment including 
all Hamiltonian terms environment from norm term

3. Take the next tensor (leave others fixed)

4. Repeat 2-3 iteratively until convergence is reached 

2. Optimize tensor T (leaving all the others fixed) by minimizing the energy:

F x = E G x

solve generalized eigenvalue problem

minimize

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)



Variational Optimization for MPSs

min[h |Ĥ| i � �h | i]
minimize Energy E, enforcing normalization with a Lagrange multiplier λ
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minimize with respect to tensor T: 
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h |

| i
h |

@

@T lr
�

⇤ ( % ) = 0

Variational Optimization for MPS’s

| i
T T

T* removed

= 0

T* removed

read as matrix equation in linearized composite index 

a b
�

�0
a0 b0

a0 b0

� = �0

µ = (a b�)

Fµ0µTµ = �Gµ0µTµ

F, G: remainders of tensor networks with both T and T* cut out

☛ solve for smallest eigenvalue λ0 and -vector T = new optimized tensor

(Gµ0µ / ���0)where

in pictures:



Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

exp(�⌧ ˆHb)

• At each step: apply a two-site operator to a bond and truncate bond back to D

Keep D largest 
singular values

U
p
s̃

p
s̃V

SVD s
U V †

Time Evolving Block Decimation (TEBD) algorithm

Note: Here I simplified. MPS needs to be in canonical form
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Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

• However, SVD update is not optimal (because of loops in PEPS)! 

simple update (SVD) 

★ “local” update like in TEBD

★ Cheap, but not optimal
(e.g. overestimates magnetization 
in S=1/2 Heisenberg model)

full update 

★ Take the full wave function into 
account for truncation

★ optimal, but computationally more 
expensive

Cluster update Wang, Verstraete, arXiv:1110.4362 (2011)

• 2D: same idea: apply a two-site operator to a 
bond and truncate bond back to D at each step

exp(�⌧ ˆHb)

⌧ = �/n

exp(�� ˆH) = exp(��
X
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Contracting tensor networks



Contracting a tensor network

contract tensors pairwise



Pairwise contractions...



Pairwise contractions...



Pairwise contractions...



Pairwise contractions...



Pairwise contractions...



Pairwise contractions...

done!

the order of contraction matters for the 
computational cost!!!



Contracting a tensor network

★ Reshape tensors into matrices and multiply them with optimized routines (BLAS)

i

j

u

v
A B w =

u

v

wT

= wT(uv)

dimension D

★ Computational cost: multiply the dimensions of all legs (connected legs only once)

cost D5

B w(uv) A
(ij)

dimension D2



Contracting an MPS
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= Good!



Relation to Transfer Matrix
h 

| 
i

hvl|

d=D2 vector D2 x D2 matrix

⇥hv0l|

=

=

Norm

Correlation functions for two sites

hvl|

�z
i

. . .

�z
j

| {z }
Tn

each rung acts as a 
transfer matrix T !



MERA: Properties

��|

Let’s compute ��|O|�⇥ O : two-site operator

|��

O two-site operator



Causal cone

MERA: Contraction
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Isometries 
are isometric

= I
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Disentanglers 
are unitary



MERA: Contraction
��

|O
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Causal cone

Efficient computation of expectation values of observables!

Isometries 
are isometric

= I

u

u†

= I

w

w†

Disentanglers 
are unitary



Contracting the PEPS
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reduced tensors

D2



Contracting the PEPS

Problem: how do we contract this??

no matter how we contract, 
we will get intermediate 

tensors with O(L) legs

number of coefficients DL 

Exponentially increasing with L!

NOT EFFICIENT

dimension D2



Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based 
approach

Corner transfer 
matrix method 

TRG 
Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07
Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)
Levin, Nave, PRL99 (2007)
Xie et al. PRL 103, (2009)

★Accuracy of the approximate contraction is controlled by 
“boundary dimension” �

★Convergence in     needs to be carefully checked�

★Overall cost:                     with O(D10...12) � ⇠ D2



Contracting the PEPS

★Convergence in     needs to be carefully checked�

★Overall cost:                     with O(D10...12) � ⇠ D2
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Example: 2D Heisenberg model

★Accuracy of the approximate contraction is controlled by 
“boundary dimension” �



Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based 
approach

Corner transfer 
matrix method 

TRG 
Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07
Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)
Levin, Nave, PRL99 (2007)
Xie et al. PRL 103, (2009)

★Convergence in     needs to be carefully checked�

★Overall cost:                     with O(D10...12) � ⇠ D2

★Accuracy of the approximate contraction is controlled by 
“boundary dimension” �



this is an MPO (matrix product operator)

this is an MPS

Contracting the PEPS using an MPS
dimension D2

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)



Contracting the PEPS using an MPS

this is an MPS with bond dimension D2 xD2

dimension D2xD2

truncate the bonds to  �

there are different techniques for the 
efficient MPO-MPS multiplication 
(SVD, variational optimization, zip-up 
algorithm...)
Schollwöck, Annals of Physics 326, 96 (2011)
Stoudenmire, White, New J. of Phys. 12, 055026 (2010).

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)



Contracting the PEPS using an MPS

dimension �

proceed... 

★ We can do this from several directions
★ Similar procedure when computing an expectation value

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)



Compute expectation values

Figure taken from Corboz, Orús, Bauer, Vidal, PRB 81, 165104 (2010)

environment

compute environment approximately 

Connect two-body operator

Contract this network!



Contracting the iPEPS using the corner transfer matrix 

A A A AA A

A A A AA A

A A A AA A

A A A A AA

A A A A AA

A A A A AA

iPEPS
infinite projected entangled-pair state

open boundaries, but “infinitely” far away



figure taken from Orus, Vidal, PRB 80 (2009) 

Contracting the iPEPS using the corner transfer matrix 
Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

★ Let the system grow in all 
directions.  

★ Repeat until convergence 
is reached

★ The boundary tensors 
form the environment

★ Can be generalized to 
arbitrary unit cell sizes

Corboz, et al., PRB 84 (2011) 

dimension �



Contracting the PEPS/iPEPS using TRG Gu, Levin, Wen, B78, (2008)
Levin, Nave, PRL99 (2007)
Xie et al. PRL 103, (2009)

★ Contract PEPS with periodic boundary conditions
★ Finite or infinite systems
★ Related schemes: SRG, HOTRG, HOSRG, ...

Tensor Renormalization Group

SVD dimension �
sublattice A:

SVD
sublattice B:



Contracting the PEPS

★ Exact contraction of an PEPS is exponentially hard!

need approximate contraction scheme

MPS-based 
approach

Corner transfer 
matrix method 

TRG 
Tensor Renormalization Group

Murg,Verstraete,Cirac, PRA75 ’07
Jordan,et al. PRL79 (2008)

Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

Gu, Levin, Wen, B78, (2008)
Levin, Nave, PRL99 (2007)
Xie et al. PRL 103, (2009)

★Convergence in     needs to be carefully checked�

★Overall cost:                     with O(D10...12) � ⇠ D2

�
★Accuracy of the approximate contraction is controlled by 

“boundary dimension” �



Ĥ
| i

Expressing the Hamiltonian as a MPO



Summary: Tensor network algorithms
MPS

Structure
Variational 

ansatz

iterative optimization 
of individual tensors 

(energy minimization)
imaginary time 

evolution

Contraction of the 
tensor network

exact / approximate

Find the best 
(ground) state

|�̃�

Compute 
observables
��̃|O|�̃⇥

PEPS
2D MERA

1D MERA

✓
✓✓
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QMC from Ms2

QMC from C(L/2,L/2)
QMC extrap.
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iPEPS
QMC extrap.
linear fits
quadratic fits

Heisenberg model: Comparison QMC vs iPEPS

Energy: QMC (extrap.): 

iPEPS (D=10): rel. error < 10-4

strong finite D effects

how to extrapolate?
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QMC from Ms2

QMC from C(L/2,L/2)
QMC extrap.
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iPEPS
QMC extrap.
linear fits
quadratic fits

strong finite size effects

accurate extrapolation

m = 0.30743(1)

m ⇡ 0.295� 0.314
rel. error ~ 2%

-0.66939J

-0.669437(5)J

QMC study:  Sandvik & Evertz, PRB82, 024407 (2010): system sizes up to 256x256

A. Sandvik, PRB56, 11678 (1997)

A Benchmark: Heisenberg model



H = J
�

�i,j⇥A

SiSj +
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SiSj

. . .

. . .. . .

. . .

J
0

Wenzel, Janke, PRB 79 (2009)

1

Phase 
diagram

Distinguish between ordered / disordered phase?
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Distinguish between ordered / disordered phase?

★ Extrapolations in D are important to distinguish between 
ordered phase and a disordered one!

★A better understanding how to accurately extrapolate in D 
would be very useful



Fermionic tensor networks



Breakthrough in 2009: Fermions with 2D tensor networks

How to take fermionic 
statistics into account?

P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, Phys. Rev. A 81, 010303(R) (2010)
C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, Phys. Rev. A 81, 052338 (2010)
C. Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303(R) (2010)
P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009)
T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009)
Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, arXiv:0907.5520 
P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010)
I. Pizorn, F. Verstraete, Phys. Rev. B 81, 245110 (2010)
Z.-C. Gu, F. Verstraete, X.-G. Wen. arXiv:1004.2563

Different formulations:

fermionic operators anticommute

ĉiĉj = �ĉj ĉi



Bosons    vs    Fermions

�B(x1, x2) = �B(x2, x1)

symmetric!

�F (x1, x2) = ��F (x2, x1)

antisymmetric!

+ --Crossings 
in a tensor 
network

ignore crossings take care!

--=+

operators anticommute
b̂ib̂j = b̂j b̂i

operators commute

ĉiĉj = �ĉj ĉi

3x3 PEPS

€ 

Ψ

€ 

Ψ†��
|�

⇥



The swap tensor

RULE:

# Fermions

+

even even

+

evenodd

--
oddodd

+

oddeven Parity

(even parity), even number of fermions
Parity    of a state: P

(odd parity), odd number of fermions

P = +1

P = �1{
Replace crossing by swap tensor 

i1 i2

j2 j1

B

S(P (i1), P (i2)) =
�
�1
+1

if P (i1) = P (i2) = �1
otherwise

Bi1i2
j2j1

= �i1,j1�i2,j2S(P (i1), P (i2))

Use parity preserving tensors: Ti1i2...iM = 0 if P (i1)P (i2) . . . P (iM ) �= 1



Example
Bosonic tensor network Fermionic tensor network

Simple rules!
Same computational cost!



Outlook



Improvements of tensor networks methods

Tensor networks

Monte Carlo sampling

Fixed-node Monte CarloNew tensor networks
combine w. variational WF

Symmetries

Parallelization

Better optimization  
algorithms



‣ Variational ansatz where the accuracy can be systematically controlled 

‣ Simulate bosonic, (frustrated) spin and fermionic systems

Conclusion:Tensor network algorithms

✓ 1D: State-of-the-art (MPS, DMRG)

✓ 2D:A lot of progress in recent years!
★ iPEPS can outperform state-of-the-art variational methods!

★ cMPS (not discussed) evolving as state of the art for fractional QHE

Tensor networks yield promising routes to
solve challenging open problems in 2D


