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Overview

• Background: Topology and interactions in tight-binding models

• FCI beyond Chern number one: composite fermion theory 

• Numerical Results for the Hofstadter model

confirmation of series of states:
⌫ =

r

r|Ck|+ 1

• The role of band geometry for stability of FCI: Single Mode 
Approximation to quantum Hall liquids / fractional Chern insulators

Part I

Part II
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2D electron gas

‣ a macroscopic quantum phenomenon: magnetoresistance in 2D electron gases

‣ many different phases: different order at each Hall plateau 
‣ no local order parameter for any of these phases!

Quantum Hall Effect: Blueprint of Topological Order 

Where?!
‣ in semiconductor hetero-
structures with clean two-
dimensional electron gases 
!
‣ at low temperatures (~0.1K) 
and in strong magnetic fields 

kBT ⌧ ~!c = ~eB/me

What?!
‣ plateaus in Hall conductance 
!
!
!
‣ simultaneously: (near) zero 
longitudinal resistance

�
xy

= ⌫
e2

h
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Integer Quantum Hall Effect

‣ single-particle eigenstates (=bands) in a homogeneous 
magnetic field: degenerate Landau levels with spacing ~!c

!c = eB/me

‣ degeneracy per surface area: 

cyclotron frequency

‣ fill a number of bands = integer filling factor

dLL = eB/h

h ω

. . .

E

⇒ large gap Δ for single particle excitations: 

naively, we should have a band insulator

⌫ = n/dLL

H =
(~p+ e ~A)2

2m

~

A = Bx~ey

‣ There must be something special about Landau-levels!
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Semiclassical picture: skipping orbits

cyclotron motion produces no net 
current in bulk of sample

at edge of sample, ‘skipping orbits’ 
contribute a uni-directional current

picture for quantum transport: !
absence of backscattering!

⇒ dissipationless current 
⇒ no voltage drop along lead!

�
xy

= ⌫
e2

h

J

J

E

several LLs!
filled:

low-energy or ‘gapless’ 
excitations present 

near boundary
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Fractional Quantum Hall Effect (FQHE)

‣ plateaus seen also for non-integer ν!
‣ not filled bands - but similar phenomenology as integer filling:

h ω

E

∆=?

�e �e

‣ nature of interactions determines how the system behaves:

V (r) =
e2

4⇡✏0|r|

H =
X

i

1

2m
(~pi � e ~Ai)

2 +
X

i<j

V (|~ri � ~rj |)

within Landau-level: !
Kinetic Energy=constant

interactions determine 
quantum state

⇒ FQHE is an inherently many-body phenomenon

r

‣ each Hall plateau represents a kind of topological order
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Why is the fractional quantum Hall effect important?

Some quantum #

E Δ

source of very unusual physics, for example:!
‣ quasi-particles with fractional electronic charge 

e.g., q = e/3

‣ manipulations of quasiparticles could provide 
the basis for a quantum computer that is 
protected from errors!

topological 
degeneracy of low-
lying states

‣ quantum operations by braiding quasiparticles
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Quantum Hall effect without magnetic fields

‣ both bosons and fermions!
‣ highly tuneable: density, interactions, tunnelling strengths, (effective) mass, ...!
‣ different types of experimental probes: local density, velocity distribution, correlations

Opportunities for creating novel types of quantum Hall systems

The fractional quantum Hall effect is observed under extreme conditions

‣ strong magnetic fields of several Tesla!

‣ very low temperatures!

‣ clean / high mobility semiconductor samples

1. Cold Atomic Gases

2. Novel classes of materials

‣ strained graphene / 2D crystals!
‣ materials with strong spin orbit coupling, such as topological insulators!

3. Photons

…
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Strategies for simulating magnetic fields

‣ Simulate a physical effect that a magnetic field B exerts particle of charge q 

Signature Simulated by

Lorentz Force FL = q ~v ⇥ ~B Coriolis Force in Rotating System

~⌦

Aharonov-Bohm!
Effect

�
� �

��

�

Complex Hopping Amplitudes A in Optical Lattices

X

⇤
A↵� = 2⇡n�

 / exp

⇢
i
q

~

Z
~A · d~̀

�

Berry Curvature!
of Landau levels

Same physics seen in reciprocal space…
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Landau-levels as a topological band-structure

‣ Can we see in which way Landau-levels are special, just by looking at the wavefunctions?

Start with an analogy: Recipe for calculating the 
twist in this Möbius band:

‣ choose a closed path around the 
surface

‣ construct normal vector to the 
surface at points along the curve

‣ add up the twist angle while moving 
along this contour
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Calculating the Berry phase

k
x

ky

C

t=0 t=T

|u~k(t)i
t

Calculate how wavefunction evolves while moving 
adiabatically through curve C : k(t), t=0...T

Local basis H̃|u~ki = ✏~k|u~ki

|U(t)i = exp

⇢
� i

~

Z t

0
✏~k(t0)dt

0
�
exp {i�(t)} |u~k(t)i

Phase evolution has two components: 

Michael Berry (1984)

dynamical time  
evolution ‘twist’

BZ
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Berry curvature and Chern number

k
x

ky

C S

Geometrical phase analogous to Aharonov-Bohm effect

Using Stokes’ theorem:

�(C) = i

Z

C
hu~k|

d

d~k
|u~kid~k ⌘

Z

C
~A(~k)d~k

�(C) =
Z

C
~A(~k)d~k =

Z

S
~rk ⇥ ~A(~k)d~�

C = @S

~B = ~rk ⇥ ~A(~k)Berry curvature:

C = 1
2⇡

R
BZ d2kB(k)Chern number:

is a property of the band eigenfunctions, only!

Effective ‘vector potential’ called Berry connection

takes only integer values!

~A(~k) = i

Z

UC
u~k(~r)

⇤~rku~k(~r) d
2r

• Chern number provides classification of all possible single-particle bands (class A)
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Quantum Hall Effect in Periodic Potentials

• quantized Hall response in filled bands:

E

n�

1
2

-1
-2

• the Hofstadter spectrum provides bands of all Chern numbers

• filled bands in this spectrum yield a quantized Hall response

figure: Avron et al. (2003)

• Chern-number for periodic systems 

Thouless, Kohmoto, Nightingale, de Nijs 1982

�
xy

=
e2

h

X

filled bands

C
n

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

�
� �

��

�

X

⇤
A↵� = 2⇡n�

• Harper-Azbel-Hofstadter model:  
tight-binding model for electrons in magnetic 
field ⇒ bands with finite Chern number 

C = 1
2⇡

R
BZ d2kB(k)
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Fractional Quantum Hall Effect in Periodic Potentials

• quantized Hall response in partially filled bands?

• THEORY: Kol & Read (1993)

• Confirmations for such states?

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵+
X

Vij n̂in̂j
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Fractional Quantum Hall on lattices: Numerical Evidence

• interest in cold atom community 2000’s:  

• realisations of tight-binding models with complex hopping from light-matter coupling:

B

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

• bosons with onsite U: many-body gap in the half-filled  
“synthetic Landau-level” persists to large flux density
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Fractional Quantum Hall on lattices with higher Chern-# bands

• bands of the Hofstadter model go beyond the continuum limit and support new classes of 
quantum Hall states

n
many-body gap predicted by CF theory �

n�

n = 1/7: O = |h CF|GSi|2 ' 0.56

n = 1/9: O = |h CF|GSi|2 ' 0.46

(N=5 particles)

numerical verification !
for what we would now  
call FCI states with ν=1!
• C=2 band!
• hardcore bosons
E

k
x

ky

C = �2
GM & NR Cooper, PRL 2009

theory:!
bosonic Hall states!
on the lattice
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Φ>0
Φ<0

Chern bands in more general tight binding models

• 2011: FQHE expected in models with spin-orbit coupling + interactions

Numerical confirmation:  D. Sheng; C. Chamon; N. Regnault & A. Bernevig, …

T. Neupert et al. K. Sun et al. E. Tang et al.

• Original proposal for IQHE without magnetic fields: Haldane (1988)

Chern numbers
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Fractional Quantum Hall Effect in Topological Band Models

‣ Analogy for topological order of many-body states:

‣ Topological order is invariant under continuous / adiabatic deformations!

‣ Approach: Continuously deform a fractional quantum Hall state into a 
fractional Chern insulator without closing the gap.

C=1
+  Interactions  = FQHE ?

‣ Question: quantum Hall effect in general lattice models?



Gunnar Möller Cargèse, September 2015

Adiabatic Continuation of QH liquids in different systems

• use Hilbert spaces with the same overall structure (based on Wannier states) to study the 
low-lying spectrum numerically (exact diagonalization)

• adiabatically deform many-body Hamiltonian of FQHE to a fractionally filled Chern band:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

H(x) =
�FCI

�FQHE
(1� x)HFQHE + xHFCI

FQHE of Bosons at
⌫ = 1/2

x = 0 x = 1

Laughlin state
Same topological phase!

Half filled band of the 
(flattened) Haldane-model

B

• E.g.: half-filled band for bosons & contact repulsion

0
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Chern numbers |C|>1 in the Hofstadter Problem

‣ Harper / Hofstadter: systems with Magnetic Field and periodic potentials

B n��0 B

‣ twisted graphene bilayers: Kim et al. (2013) ‣ optical flux lattices: MIT / Munich (2014)

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

=
e2

h

X

n

Cn
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New Universality classes of FQH states

0 0.2 0.4 0.6 0.8 1
nV

-4

-2

0

2

4

E

n �

single-particle spectrum Simple Heuristics: Composite Fermions

n� = ±n + n⇤
� B F+ =

first numerical evidence: GM & N.Cooper Phys. Rev. Lett. 103, 105303 (2009)

‣ higher Chern number bands yield new series of Abelian quantum Hall states!

n�

many-body gap predicted by CF theory



Energy Gaps in the Butterfly: Wannier Diagram 

0 1 

1 

H 
/W

 

n0: # of state per unit cell  
I : magnetic flux in unit cell 
n : electron density  

1/2 1/3 1/4 

1/2 1/3 1/4 1/5 

Hofstadter’s  Energy  Spectrum 
Tracing Gaps in I and n 

0 1 

1 

Wannier, Phys. Status Solidi. 88, 757 (1978) 

Diophantine equation for gaps 

t : slope,  s : offset 
 

Density of filled bands in the Butterfly: Wannier Diagram

n�n�

E
/W n

En
er
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D
en
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ty

C D

n = Cn� +D, C,D 2 Z

Density of filled bands
Flux density

n
n�
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�
xy

=
e

�0

@n

@n
�

= C
e2

h
.

Streda & Thouless: Quantization of Hall conductivity

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

n = Cn� +D, C,D 2 Z

Streda:

Wannier:

C =
X

filled bands

Cn

Thouless:

�
xy

=
e2

2⇡h

X

filled bands n

Z
d2kF12(k)
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The Composite Fermion Approach

Account for repulsive interactions U >0 by “flux-attachment” (Fradkin 1988, Jain 1989)

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

Continuum Landau-level for 
fermions at filling 1/3:!
three flux per particle

Composite fermions = 
electron + 2 flux quanta!
!
!
!
!
Bosons:  
1 flux per composite particledrawings: K. Park

 /
Y

i<j

(zi � zj)
2 CF
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Composite Fermions in the Hofstadter Spectrum

1. Flux attachment for bosonic atoms: n⇤
� = n� ⌥ n

2. Effective spectrum at flux        is again a Hofstadter problem

⇒ transformation of statistics! B /
Y

i<j

(zi � zj) CF

n⇤
�

0 0.1 0.2 0.3 0.4 0.5
nV

-4

-2

0

2

4

E
n⇤
�

⇒ weakly interacting CF will fill bands, so obtain density n 

by counting bands using fractal structure

3. Construct Composite Fermion wavefunction

⇒ linear relation of flux and density for bands under a gap

 B({ri}) / PLLL

Y

i<j

(zi � zj)

| {z }

 CF({ri})

Vandermonde / Slater determinant of LLL states

continuum:

B F+ =
�0

lattice:  B({ri}) /  
(�

x

,�
y

)
J ({ri})| {z }

 
(��

x

,��
y

)
CF ({ri})

GM & N. R. Cooper, PRL 2009
Slater determinant of Hofstadter 
orbitals at flux density n0

� = n

n = Cn� +D, C,D 2 Z
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Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance Simple Heuristics: Composite Fermions

n� = + n⇤
� F+ =kn

k�0

n� = 10

E

E

k
x

ky

C = �2

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

n

n�

[ k odd (even) for bosons (fermions) ]



on the blackboard...
n� = kn+ n⇤

�

Composite fermions filling integer # bands, so can  
use the Diophantine equation for the CF gap:

n = n⇤
s = C⇤n⇤

� +D⇤

useful to replace flux density by number 
of states in relevant low-energy manifold

ns = Cn� +D

ns

C
� D

C
= n

✓
kC⇤ + 1

C⇤

◆
� D⇤

C⇤⇒

Hence, a constant filling factor is defined only if              — but that is indeed a representative  
case: as n small, the CF band structure looks similar to the original one, but CF may fill r bands. 
Then, we have              and the filling factors are 

D

C
=

D⇤

C⇤

C⇤ = rC

⌫ =
r

kCr + 1
, r 2 Z
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Exact Diagonalization vs Theory Predictions:

H = PLB

X

i

n̂i(n̂i � 1)PLB

Bosons with contact interactions, in lowest band E

k
x

ky

Check predictions for incompressible states: 

⌫ =
r

r|Ck|+ 1
filling:

GS degeneracy:

Chern number of GS’s:

dGS = |rCk|+ sgn(r)

CMB = C⇤ = rC

GM & NR Cooper, PRL (2015), arXiv:1504.06623
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Exact Diagonalization: Spectra for new candidates
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⌫ =
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r|Ck|+ 1GM & NR Cooper, arXiv:1504.06623
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Exact Diagonalization: Spectra for new candidates
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Example spectra for states with ‘negative flux attachment’: r=-2

⌫ =
r

r|Ck|+ 1

C = 2 C = 3

GM & NR Cooper, arXiv:1504.06623
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Exact Diagonalization: Spectral flow

Evolution of the ground states under “threading flux”

⌫ =
r

r|Ck|+ 1GM & NR Cooper, arXiv:1504.06623
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Exact Diagonalization: Finite Size Scaling of Gaps

0 0.05 0.1 0.15

N-1
0

0.005

0.01

∆

C=-2, ν=1/3
C=-2, ν=2/5
C=-2, ν=2/3
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∆

 C=3, ν=1/4
 C=3, ν=2/7
 C=3, ν=2/5

⇒ data suggests the composite fermion states are incompressible 
in the thermodynamic limit

C = 2 C = 3

Ascertain that GS degeneracy with finite gap is found consistently for different Ns

GM & NR Cooper, PRL (2015), arXiv:1504.06623
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Exact Diagonalization: Particle Entanglement Spectra

⇒ smaller entanglement energies; differences in detail 
⇒ overall features similar

Compare PES of a C=2 system to a known C=1 spectrum: ν=2/3

C = 1
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Ruby lattice, C=1Hofstadter, n
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(30)

C = 2

GM & NR Cooper, PRL (2015), arXiv:1504.06623
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⇒ flux attachment provides candidate states for all Chern bands

Universality of Predictions

‣ Again, argue with adiabatic deformations:

E

k
x

ky

‣ Hofstadter generates bands 
of any Chern #

�
� �

��

�

➀
➁

➂
➃

➄

➅a2

a1

t̃1

t4
t̃

‣ adiabatic connection for 
single bands as long as

C1 = C2

‣ can deform to any other 
model…

⌫ =
r

r|Ck|+ 1
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A Special case - Bosonic IQHE in C=2 bands

GM & NR Cooper, PRL (2009) & PRL (2015), arXiv:1504.06623; Hormozi et al. PRL 2012

Bosons in a C=2 band with negative flux attachment (r=-1) ⇒ ν=1

• quasiparticles are fermions - not fractionalized
⇒ only symmetry protected topological phase [Senthil & Levin, PRL (2013)]

• first evidence in Hofstadter model GM & NR Cooper, PRL (2009)

n
�

n�

alternative realisations:

• Quantum Hall Bilayers 
[Regnault & Senthil 
2013]  

• Honeycomb with 
correlated hopping 
[He et al. 2015] 

• Optical Flux Lattices 
[Sterdyniak et al 2015]

from: GM & NR Cooper, PRL (2009)
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A Special case - Bosonic IQHE in C=2 bands

GM & NR Cooper, PRL (2009) & arXiv:1504.06623; Hormozi et al. PRL 2012

Many-body gap: finite-size scaling at fixed flux density

0 0.05 0.1 0.15 0.2
N-1

0

0.005

0.01

0.015

0.02

0.025

0.03

C=2, ν=1, (n
φ
=7/15)

C=2, min |r-1|
C=2, ν=1 (n

φ
=12/25)

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

0.025

0.03
∆

 [U
]

• significant geometry-dependency - but less so for flatter bands.
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Tuning band flatness in the Hofstadter spectrum

GM & NR Cooper, arXiv:1504.06623; Bauer, Jackson & Roy arxiv:1504.07185

Berry curvature exponentially flat in proximity to 

• can tune flatness of band geometry while keeping same physics

n� = 1/|C|

n� =
p

|C|p� sgn(C)
, p 2 N

0 5 10 15 20p
10-8

10-6

10-4

10-2

1

102

∆
Β

 [q
a2 /2

π]
C=2: maxBZ|∆B|
C=2: minBZ|∆B|
C=3: maxBZ|∆B|
C=3: minBZ|∆B|
C=4: maxBZ|∆B|
C=4: minBZ|∆B|

flatbumpy

e.g., n� = 4/9

general case for single bands:
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Part II: Band Geometry & Stability of Fractional Chern Insulators

• single-particle dispersion - want flat bands

• band geometry - ideally want even Berry curvature

• shape of interactions - clear hierarchy of two-body energies desirable “Pseudopotentials”

• Full story: all three aspects contribute

many groups

finite size matter a lot - success by iDMRG A. Grushin et al.

Regnault, Bernevig; Dobardzic, Milovanovic, … 

Läuchli, Liu, Bergholtz, Moessner + other proposals

systematic study of geometric measures beyond Berry curvature This Talk!

How to decide which lattice models have stable fractional Chern Insulators?
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Which Berry Curvature?

Gauge invariance of the Bloch functions: one arbitrary U(1) phase for each k-point

|u↵
ki ! ei�↵(k)|u↵

ki

Hbc(k) =
NX

↵=1

E↵(k)u
↵⇤
b (k)u↵

c (k)

The above manifestly leaves H invariant:

u↵
a (k) ! eu↵

b (k) = eirb·ku↵
b (k)

However, sublattice dependent phases are not gauges:

eB
↵

(k)�B
↵

(k) =
NX

b=1

r
b,y

@

@k
x

|u↵

b

(k)|2 � r
b,x

@

@k
y

|u↵

b

(k)|2

as this substitution yields a modified Berry curvature:

There is a unique choice such that the polarisation reduces to the correct semi-classical expression 

see, e.g. Zak PRL (1989) 
R̂µ ! �i

@

@kµ
and canonical position operator
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Example single particle properties

an example: Hofstadter spectrum in magnetic unit cell of 7x1,n = 1/7, n� = 3/7

k
x

ky

B = r⇥A

Curvature for Fourier transform with 
respect to unit cell position

Magnetic unit cell
�

7

�

7

�

7

�

7

�

7

�

7
�6�

7

k
x

ky

B = r⇥A

Curvature for canonical Fourier transform

~ ~

net flux defined only mod !0



Gunnar Möller Cargèse, September 2015

GMP Algebra: Generating low-lying excitations

[⇢LLL(q),⇢LLL(q
0
)] =

2i sin
�
1
2q ^ q0`2B

�
exp

�
1
2q · q0`2B

�
⇢LLL(q+ q0

)

GMP algebra (w/LLL form factor):

S. M. GIRVIN, A. H. MacDONALD, AND P. M. PLATZMAN 33

wave vector, but exhibits a deep minimum at finite k.
This magneto-roton minimum is caused by a peak in s(k)
and is, in this sense, quite analogous to the roton
minimum in helium. ' We interpret the deepening of the
minimum in going from v= —,

' to v= —,
' to be a precursor

of the collapse of the gap which occurs at the critical den-
sity v, for Wigner crystallization. From Fig. 3 we see
that the minimum gap is very small for v& —,. This is
consistent with a recent estimate of the critical density,
v, =1/(6.5+0.5). Within mean-field theory, the Wigner
crystal transition is weakly first order and hence occurs
slightly before the roton mode goes completely soft. Fur-
ther evidence in favor of this interpretation of the roton
minimum is provided by the fact that the magnitude of
the primitive reciprocal-lattice vector for the crystal lies
close to the position of the magneto-roton minimum, as
indicated by the arrows in Fig. 3.
These ideas suggest the physical picture that the liquid

is most susceptible to perturbations whose wavelength
matches the crystal lattice vector. This will be illustrated
in more detail in Sec. XI.
Having provided a physical interpretation of the gap

dispersion and the magneto-roton minimum, we now ex-
amine how accurate the SMA is. Figure 4 shows the ex-
cellent agreement between the SMA prediction for the gap
and exact numerical results for small (%=6,7}systems re-
cently obtained by Haldane and Rezayi. Those authors
have found by direct computation that the single-mode
approximation is quite accurate, particularly near the ro-
ton minimum, where the lowest excitation absorbs 98% of
the oscillator strength. This means that the overlap be-
tween our variational state and the exact lowest excited
eigenstate exceeds 0.98. We believe this agreement con-
firms the validity of the SMA and the use of the
Laughlin-state static structure factor.
Near k =0 there is a small (-20%) discrepancy be-

tween b,sMA(0) and the numerical calculations. It is in-

v=1/3

L"S

Q. 10

0.05

VII. BACKFLOW CORRECTIONS

It is apparent from Fig. 4 that the SMA works extreme-
ly well—better, in fact, than it does for helium. '9 Why is
this so'? Recall that, for the case of helium, the
Feynman-Bijl formula overestimates the roton energy by
about a factor of 2. Feynman traces this problem to the
fact that a roton wave packet made up from the trial wave
functions violates the continuity equation

V (J)=0.
To see how this happens, consider a wave packet

P(ri, . . . , rpg)= I d2k g(k)pkP(r„. . . , r~),
(7.1)

(7.2)

where g(k) is some function (say a Gaussian) sharply
peaked at a wave vector k located in the roton minimum.
It is important to note that this wave packet is quasista-
tionary because the roton group velocity dhldk vanishes
at the roton minimum. Evaluation of the current density
gives the result schematically illustrated in Fig. 5(a). The
current has a fixed direction and is nonzero only in the re-
gion localized around the wave packet. This violates the
continuity equation (7.1} since the density is (approxi-
mately) time independent for the quasistationary packet.
The modified variational wave function of Feynman and
Cohen includes the backflow shown in Fig. 5(b}. This
gives good agreement with the experimental roton energy
and shows that the roton can be viewed as a smoke ring
(closed vortex loop).
A rather different result is obtained for the case of the

quantum Hall effect. The current density operator is

eA(rj }

teresting to speculate that the lack of dispersion near the
roton minimum may combine with residual interactions
to produce a strong pairing of rotons of opposite momen-
ta leading to a two-roton bound state of small total
momentum. This is known to occur in helium. For the
present case b, i~3(0) happens to be approximately twice
the minimum roton energy. Hence the two-roton bound
state which has zero oscillator strength could lie slightly
below the one-phonon state which absorbs all of the oscil-
lator strength. For v & —, the two-roton state will definite-
ly be the lowest-energy state at k =0. It would be in-
teresting to compare the numerical excitation spectrum
with a multiphonon continuum computed using the
dispersion curves obtained from the SMA.

0.00
O.Q 0.5 1.0 1.5 2.0 + p)+

eA(rj ) z5 (R—rj) (7.3)

FIG. 4. Comparison of SMA prediction of collective mode
energy for v= 3, 5, 7 with numerical results of Haldane and
Rezayi (Ref. 20) for v= —,. Circles are from a seven-particle
spherical system. Horizontal error bars indicate the uncertainty
in converting angular momentum on the sphere to linear
momentum. Triangles are from a six-particle system with a
hexagonal unit cell. Arrows have same meaning as in Fig. 3.

&+ I
J(R)

I
+)=—-vx(e I M(R) I

+)
where

M(R) =p(R)R,

(7.4)

(7.5)

Taking P and P to be any two members of the Hilbert
space of analytic functions described in Sec. IV, it is
straightforward to show that

Girvin, MacDonald and Platzman, PRB 
33, 2481 (1986).

| SMA
k i = ⇢̂k| 0i

• single mode approximation captures low-lying 
 neutral excitations in quantum Hall systems:

Repellin, Neupert, Papić, Regnault, Phys. Rev. B 90 (2014)SMA carries over to Chern bands: 

⇢̂k =
X

q

�̂†
k+q�̂qfor sp density operators
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Chern bands: generalised GMP algebra

e⇢q ⌘ P↵e
iq·brP↵ =

X

k

NX

b=1

u↵⇤
b (k+ q/2)u↵

b (k� q/2)�↵†
k+q/2�

↵
k�q/2

• consider band-projected density operators for general Chern bands:

• in general, the algebra of density operators does not close, i.e. 

[e⇢q, e⇢k] 6= F (k,q)e⇢k+q

• intuitive consequences for FQH states:

e⇢q ⌘ P↵e
iq·brP↵ =

X

k

NX

b=1

u↵⇤
b (k+ q/2)u↵

b (k� q/2)�↵†
k+q/2�

↵
k�q/2can generate many distinct eigenstates 

‣ no finite, closed set of low-energy excitations corresponding to the GMP single mode states

‣ 

‣ strong violation of the algebra should signal an unstable, gapless phase
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Conditions for closure of the generalised GMP algebra I

�c ⌘
r

A2
BZ

4⇡2
hB2i � c21

• conditions for closure can be derived in long-wavelength expansion

O(k2) :

O(k3) :

ds2 = h� |� i � h� | ih |� i

Pullback of Hilbert space metric constant over BZ

gµ⌫ + i
2

Fµ⌫

=
X

↵2occ

tr
�

@
@kµ

P↵

�
(1� P↵)

�
@

@k⌫
P↵

�

�g ⌘
s

1

2

X

µ,⌫

hgµ⌫g⌫µi � hgµ⌫ihg⌫µi

flatness of Berry curvature

devia&ons

i)

ii)
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Conditions for closure of the generalised GMP algebra II

• single condition in terms of metric g:

T (k) ⌘ tr g↵(k)� |B↵(k)| = 0;

• Now: test how violations of the closure constraints correlate with gap

R. Roy, arxiv:1208.2055 (PRB 2014); Parameswaran, Roy, Sondhi C. R. Physique (2013)

‣ algebra of projected density operators reduces exactly to the GMP algebra
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Target models to examine

• Hamiltonian: bosonic states with on-site interactions — defined independent of specific lattice

2,body/contact 3,body/contact

⌫ =
1

2
Laughlin ⌫ = 1Moore,Read

• lattice geometries:

Haldane/model Kagomé/model Ruby/la?ce/model

➁
➀

t2e
i�

t1a2

a1

N = 2

a2

a1

➁➀

➂t2 + i�2

t1 + i�1

N = 3

➀
➁

➂
➃

➄

➅a2

a1

t̃1

t4
t̃

N = 6

other models, see: T. Jackson, GM, R. Roy, Nature Comm. (2015); arxiv:1408.0843



• Parameters yielding max gap are always in lower-left corner 
• Demonstrates relevance of both band-geometric quantities

Model Comparison: Gaps vs. RMS B and trace inequality

Haldane/model Kagomé/model Ruby/la?ce/model
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An Advert: Role of band geometry beyond Berry curvature

• Systematic correlation of many-body gap and trace of metric tensor
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T (k) ⌘ tr g↵(k)� |B↵(k)| = 0;Influence of metric tensor g via “trace”:

T. Jackson, GM, R. Roy, Nature Comm. (2015); arxiv:1408.0843
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Conclusions

• Composite fermion theory predicts filling factors of stable 
incompressible phases in general Chern bands at

• Numerical evidence matches the predictions (bosons, contact int.): !
‣ correct GS degeneracy

• Outlook: expect interesting physics for CF Fermi liquids at |C|>1

⌫ =
r

r|Ck|+ 1
[ k odd (even) for bosons (fermions) ]

lim
r!1

⌫C
⇤=rC =

1

kC

GM & NR Cooper, PRL, arXiv:1504.06623;  T. Jackson, GM, R. Roy Nat. Comm, arxiv:1408.0843

• Series includes a Bosonic Integer QHE in C=2 bands

‣ robust gap

• Though sub-leading to Berry curvature, flatness of Fubini Study 
metric correlates with magnitude of many-body gap of FCI


