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Overview

Introduction & Motivation

The Bonderson-Slingerland hierarchy construction
(a quick reminder – for details: see Parsa’s talk on Monday)
Special case considered: ν = 12/5

Numerical verification of the BS state at ν = 12/5

Search for an incompressible state at the shift of BS
Analysis of two-point correlation functions of BS
Overlaps of the BS and exact ground states
Competition between RR, HH, and BS states at ν = 12/5

Conclusions
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Motivation
New trial states from the Bonderson-Slingerland hierarchy construction I

Extend Halperin-Haldane hierarchy construction to the 2nd LL

Hierarchy construction in LLL:

Concept: ‘Condensation’ of
quasiparticles above a mother QH
state

Statistics of qp’s determines the
Laughlin-like wavefunctions
suitable to describe correlations
between quasiparticles

Quasiparticles

Iterating condensation of qp’s on subsequent quantum liquids
yields states of the HH-hierarchy

Haldane 1983, Halperin 1984
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Motivation
New trial states from the Bonderson-Slingerland hierarchy construction II

Additional feature in 2nd LL: non-abelian statistics of qh in the
mother-state!

energies for nearby quasiparticles will be
split between fusion-channels

Assume: all pairs of qh’s prefer the
vaccuum ‘1’-channel.

Corresponding quasihole
wavefunction is known for the
Moore-Read Pfaffian state:
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P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).
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Motivation
New trial states from the Bonderson-Slingerland hierarchy construction III

Specialize to case of ν = 12/5:

semionic Laughlin qp’s of Pfaffian
may form liquid state with

Φ1({uα}) =
∏
α<β

(uα − uβ)
5
2

Quasiparticles

N  = N  / 2 + 1
01

This yields the hierarchy state
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5
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P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).
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Motivation
Properties of the Bonderson-Slingerland hierarchy states

The physics predicted by the BS hierarchy is fundamentally
different from that predicted by other models

For condensation in charge sector, all states inherit the
statistics of the underlying mother-state, i.e., they realize
Majorana Fermions described by the Ising CFT.

In particular, for ν = 12/5, this implies the competition of three
states with different shift S on sphere [Nφ = ν−1N − S ]

the RR state, shift S = −2, ⇒ parafermions

the BS state, shift S = +2, ⇒ Majorana fermions

the HH/CF state, shift S = +4, ⇒ abelian

⇒ Crucial to understand competition
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Numerical search for a BS state at ν = 12/5 - I
Charge gap as a function of the shift on sphere

Exact diagonalization / DMRG on sphere

[Data from DMRG for the Coulomb Hamiltonian in a thin layer, Ne = 14]

clearly visible gap ∆(Nφ) = ENφ+1 + ENφ−1 − 2ENφ
at the

shift of the RR and BS states

small local maximum for HH/CF state.

P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
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Numerical search for a BS state at ν = 12/5 - II
Perturbation of the interaction around Coulomb

Simplest parametrization of interaction: V Coulomb
1 → V1 + δV1

Both BS and RR have a clear gap in region around Coulomb
point, shown here for N = 14.

Bonderson, Feiguin, Möller and Slingerland, arXiv:0901.4965.
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Numerical search for a BS state at ν = 12/5 - III
Parametrization of general interactions

Neutral gap for general interactions U varying (V1,V3,V5)
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[courtesy: A. Wójs]

Gap for general U reveals island of stability for the BS state
very similar to that of its MR mother-state, and centered
around the 2nd LL like potential.

A. Wójs, arXiv:0811.4072.
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Numerical search for a BS state at ν = 12/5 - IV
Correlations in the tentative BS state

Pair-correlation function 〈Ψ†(~R)Ψ(0)〉 on the sphere
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Shoulder at small r, typical of

[non−abelian] paired states

large r, typical of liquid states

Rapidly decaying oscillations at 

Correlation function indicative of incompressible state with
pairing nature

Also, angular momentum L2 = 0 for N = 6, . . . , 18.

Bonderson, Feiguin, Möller and Slingerland, arXiv:0901.4965.
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Numerical search for a BS state at ν = 12/5 - V
Overlap of the BS state with the exact grondstate

Integrate O =
∫

d(z1, . . . , zN)Ψ∗BSΨexact by Monte-Carlo sampling
in position space

Overlap large: up to 0.82 for N = 14 [DLz=0 ∼ 1.9× 107].

However, knowing that BS derives from the weak-pairing
phase at ν = 5/2, could this be improved?
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Digression: weakly paired states
The Moore-Read state: one of many representatives in the weakly paired phase

Moore-Read:
ΨMR = Pf

[
1

zi−zj

]∏
i<j(zi − zj)

2

want explicit expression for general paired
state in same universality class!
(see Read & Green, PRB 2000)

start from BCS state: |BCS〉 =
∏′

k(uk + vkc†kc†−k)|0〉
[variational parameters uk , vk → gk = vk/uk ]

in position space: 〈{ri}|BCS〉 = Pf
[∑

k gke
ik·(rl−rm)

]
Composite-fermionize BCS: [φ̃(zi ) = J−1

i PLLLJiφ(zi )]

ΨCF-BCS = Pf
[∑

k gk φ̃k(zi ) φ̃−k(zj)
]∏

i<j(zi − zj)
2.

G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
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Digression: weakly paired states
Apply concept of general pair wavefunctions to BS wavefunction

Bonderderson-Slingerland states derive from the weakly paired
states at ν = 5/2 ⇒ make use of variational degrees of
freedom in its pair wavefunction

previously: Ψ
(BS)
2
5

= Pf
[

1
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]∏
i<j(zi − zj)Ψ

(CF)
2
3

with generalized pair wavefunction:

⇒ Ψ
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[gk ] = Pf
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3

,

with the projected CF orbitals φ̃(zi ) = J−1
i PLLLJiφ(zi ),

and with Ψ
(CF)
2
3

generated from CF in negative flux.

P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
G. Möller and S. H. Simon, Phys. Rev. B 72, 045344 (2005).
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Numerical search for a BS state at ν = 12/5 continued
More overlaps for the BS states with general pairing

Overlaps in Monte-Carlo simulations, with optimization of {gk}

Overlaps further increased: up to 0.92 for N = 14.

Number of variational parameters on sphere small (≤ 5)
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Competition of different trial states at ν = 12/5

Having established the ν = 12/5 state with shift S = 2 as a BS
state: ⇒ now study competition between different candidate states
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Competition of different trial states at ν = 12/5 – discussion

0.00 0.02 0.04 0.06 0.08 0.10 0.12

1/N
e

-0.37

-0.36

-0.35

-0.34
E

/N
e
  
[e

2
/l

0
’]

S=4 (HH)

S=2 (BS)

S=-2 (RR)

Recapitulate

eHH = −0.3416(5)

eBS = −0.342(3)

eRR = −0.3421(5)

Estimate of energies, including their order, susceptible to
details of extrapolation (linear/quadratic, system sizes, etc.)
Additional physical effects as Landau-level mixing and finite
width likely to determine state that champions competition
Torus data mostly supports RR, but also indicates proximity
of BS state

Both RR and BS can potentially be realized at ν = 12/5,
depending on details of sample geometry

P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
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Conclusions

The Bonderson-Slingerland hierarchy construction predicts a
ν = 12/5 state with shift S = +2 on the sphere

Multiple pieces of evidence establish this state as a robust
incompressible state described by the BS wavefunction:

Clear neutral and charge gap for N = 6, . . . , 18
‘Nice’ correlations and 〈L2〉 = 0 for all states of the series
Large overlap with the BS trial wavefunction

Extent of the BS state in interaction space similar to that of
the ν = 5/2 state from which it derives.

General pair-wavefunctions further increase overlaps

Energetically competitive with RR (and HH), outcome may
depend on finer experimental details:

P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
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Experimental signatures of competing trial states at ν = 12/5

Summary of possible experimental probes:
RR BS HH

qp charge e
5

e
5

2e
5

weak tunnelling ∆qp = 1
5 ∆qp = 9

80 ∆qp = 1
5

(I ∼ V 4∆qp−1)

strong tunnelling ∆e = 2 ∆e = 3
2 ∆e = 3

2
(G ∼ T 4∆e−2)

braiding Z3 parafermions Ising abelian

Distinguishing tunnelling exponents for edge states difficult

Interferometry could clearly distinguish braiding statistics

W. Bishara, G. A. Fiete, C. Nayak, Phys. Rev. B 77, 241306(R) (2008).
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
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