Numerical evidence for a Bonderson-Slingerland non-abelian hierarchy state at $\nu=12/5$

7th Symposium on Topological Quantum Computing
Paris March 30th – April 1st

Gunnar Möller

Cavendish Laboratory, University of Cambridge

Parsa Bonderson, Adrian Feiguin Microsoft Station Q. Santa Barbara

Joost Slingerland
Dias, Dublin

[further contributions by Arkadiusz Wójs, Univ. Cambridge]

Overview Introduction Numerical analysis General pairing More results Conclusio

Overview

- Introduction & Motivation
 - The Bonderson-Slingerland hierarchy construction (a quick reminder – for details: see Parsa's talk on Monday)
 - Special case considered: $\nu = 12/5$
- ullet Numerical verification of the BS state at u=12/5
 - Search for an incompressible state at the shift of BS
 - Analysis of two-point correlation functions of BS
 - Overlaps of the BS and exact ground states
 - ullet Competition between RR, HH, and BS states at u=12/5
- Conclusions

Overview Introduction Numerical analysis General pairing More results Conclusion

Motivation

New trial states from the Bonderson-Slingerland hierarchy construction I

Extend Halperin-Haldane hierarchy construction to the 2nd LL

Hierarchy construction in LLL:

- Concept: 'Condensation' of quasiparticles above a mother QH state
- Statistics of qp's determines the Laughlin-like wavefunctions suitable to describe correlations between quasiparticles

 Iterating condensation of qp's on subsequent quantum liquids yields states of the HH-hierarchy

New trial states from the Bonderson-Slingerland hierarchy construction II

Additional feature in 2nd LL: non-abelian statistics of qh in the mother-state!

energies for nearby quasiparticles will be split between fusion-channels

- Assume: all pairs of qh's prefer the vaccuum '1'-channel.
- Corresponding quasihole wavefunction is known for the Moore-Read Pfaffian state:

$$\Psi_0(\lbrace w_\alpha \rbrace) = \prod_{\alpha < \beta} (w_\alpha - w_\beta)^{\frac{1}{2}} \prod_{\alpha}^M \prod_{k}^N (z_k - w_\alpha) \prod_{i < j} (z_i - z_j)^2 \mathsf{Pf} \frac{1}{z_i - z_j}$$

P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).

Overview

New trial states from the Bonderson-Slingerland hierarchy construction III

Specialize to case of $\nu = 12/5$:

 semionic Laughlin qp's of Pfaffian may form liquid state with

$$\Phi_1(\{u_\alpha\}) = \prod_{\alpha < \beta} (u_\alpha - u_\beta)^{\frac{5}{2}}$$

This yields the hierarchy state

$$\Psi_{\nu=\frac{12}{5}}(\{z_i\}) = \int du_1 \dots du_{N_1} \Phi_1^*(u_\alpha) \Psi_0(z_i; u_\alpha)$$

$$\simeq \Psi_{\nu=1}^{(MR)} \times \Psi_{\nu=\frac{2}{5}}^{(CF)}$$

P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).

MotivationProperties of the Bonderson-Slingerland hierarchy states

Overview

- The physics predicted by the BS hierarchy is fundamentally different from that predicted by other models
- For condensation in charge sector, all states inherit the statistics of the underlying mother-state, i.e., they realize Majorana Fermions described by the Ising CFT.

In particular, for $\nu=12/5$, this implies the competition of three states with different shift S on sphere $[N_{\phi}=\nu^{-1}N-S]$

- the \overline{RR} state, shift S=-2, \Rightarrow parafermions
- the BS state, shift S = +2, \Rightarrow Majorana fermions
- the HH/CF state, shift S = +4, \Rightarrow abelian
- ⇒ Crucial to understand competition

Exact diagonalization / DMRG on sphere

[Data from DMRG for the Coulomb Hamiltonian in a thin layer, $N_e=14$]

- clearly visible gap $\Delta(N_{\phi}) = E_{N_{\phi}+1} + E_{N_{\phi}-1} 2E_{N_{\phi}}$ at the shift of the \overline{RR} and BS states
- small local maximum for HH/CF state.

Simplest parametrization of interaction: $V_1^{\text{Coulomb}} \rightarrow V_1 + \delta V_1$

• Both BS and RR have a clear gap in region around Coulomb point, shown here for N=14.

Numerical search for a BS state at $\nu=12/5$ - III Parametrization of general interactions

Neutral gap for general interactions U varying (V_1, V_3, V_5)

[courtesy: A. Wójs]

 Gap for general U reveals island of stability for the BS state very similar to that of its MR mother-state, and centered around the 2nd LL like potential.

A. Wójs, arXiv:0811.4072.

Numerical search for a BS state at $\nu=12/5$ - IV Correlations in the tentative BS state

Pair-correlation function $\langle \Psi^{\dagger}(\vec{R})\Psi(0)\rangle$ on the sphere

- Correlation function indicative of incompressible state with pairing nature
- Also, angular momentum $L^2 = 0$ for N = 6, ..., 18.

Overview

Numerical search for a BS state at $\nu=12/5$ - V Overlap of the BS state with the exact grondstate

Integrate $\mathcal{O} = \int d(z_1, \dots, z_N) \Psi_{\mathrm{BS}}^* \Psi_{\mathrm{exact}}$ by Monte-Carlo sampling in position space

- Overlap large: up to 0.82 for $N = 14 [D_{L_2=0} \sim 1.9 \times 10^7]$.
- However, knowing that BS derives from the weak-pairing phase at $\nu=5/2$, could this be improved?

Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

Moore-Read:

$$\Psi_{\mathrm{MR}} = \mathsf{Pf}\left[\frac{1}{z_i - z_j}\right] \prod_{i < j} (z_i - z_j)^2$$

- want explicit expression for general paired state in same universality class! (see Read & Green, PRB 2000)
 - start from BCS state: $|BCS\rangle = \prod_{\mathbf{k}}' (u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}) |0\rangle$ [variational parameters u_k , $v_k \to g_k = v_k/u_k$]
 - in position space: $\langle \{\mathbf{r}_i\} | \mathsf{BCS} \rangle = \mathsf{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i\mathbf{k}\cdot(\mathbf{r}_i \mathbf{r}_m)} \right]$
 - Composite-fermionize BCS: $[\tilde{\phi}(z_i) = J_i^{-1} \mathcal{P}_{\text{LLL}} J_i \phi(z_i)]$

$$\Psi^{\text{CF-BCS}} = \text{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} \, \widetilde{\phi}_{\mathbf{k}}(z_i) \, \widetilde{\phi}_{-\mathbf{k}}(z_j)\right] \prod_{i < j} (z_i - z_j)^2.$$

Overview

The Moore-Read state: one of many representatives in the weakly paired phase

• Moore-Read:

$$\Psi_{\mathrm{MR}} = \mathsf{Pf}\left[\frac{1}{z_i - z_j}\right] \prod_{i < j} (z_i - z_j)^2$$

- want explicit expression for general paired state in same universality class! (see Read & Green, PRB 2000)
 - start from BCS state: $|BCS\rangle = \prod_{\mathbf{k}}' (u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}) |0\rangle$ [variational parameters $u_{\mathbf{k}}$, $v_{\mathbf{k}} \rightarrow g_{\mathbf{k}} = v_{\mathbf{k}}/u_{\mathbf{k}}$]
 - in position space: $\langle \{\mathbf{r}_i\} | \mathsf{BCS} \rangle = \mathsf{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i\mathbf{k}\cdot(\mathbf{r}_i \mathbf{r}_m)} \right]$
 - Composite-fermionize BCS: $[\tilde{\phi}(z_i) = J_i^{-1} \mathcal{P}_{\text{LLL}} J_i \phi(z_i)]$

$$\Psi^{\text{CF-BCS}} = \text{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} \, \widetilde{\phi}_{\mathbf{k}}(z_i) \, \widetilde{\phi}_{-\mathbf{k}}(z_j) \right] \prod_{i < j} (z_i - z_j)^2$$

Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

• Moore-Read:

$$\Psi_{\mathrm{MR}} = \mathsf{Pf}\left[\frac{1}{z_i - z_j}\right] \prod_{i < j} (z_i - z_j)^2$$

 want explicit expression for general paired state in same universality class! (see Read & Green, PRB 2000)

- start from BCS state: $|BCS\rangle = \prod_{k}' (u_k + v_k c_k^{\dagger} c_{-k}^{\dagger}) |0\rangle$ [variational parameters u_k , $v_k \to g_k = v_k/u_k$]
- in position space: $\langle \{\mathbf{r}_i\} | \mathsf{BCS} \rangle = \mathsf{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i\mathbf{k} \cdot (\mathbf{r}_i \mathbf{r}_m)} \right]$
- Composite-fermionize BCS: $[\tilde{\phi}(z_i) = J_i^{-1} \mathcal{P}_{\text{LLL}} J_i \phi(z_i)]$

$$\Psi^{\text{CF-BCS}} = \text{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} \, \widetilde{\phi}_{\mathbf{k}}(z_i) \, \widetilde{\phi}_{-\mathbf{k}}(z_j) \right] \prod_{i < j} (z_i - z_j)^2$$

Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

Moore-Read:

$$\Psi_{\mathrm{MR}} = \mathsf{Pf}\left[\frac{1}{z_i - z_j}\right] \prod_{i < j} (z_i - z_j)^2$$

 want explicit expression for general paired state in same universality class! (see Read & Green, PRB 2000)

- start from BCS state: $|BCS\rangle = \prod_{\mathbf{k}}' (u_k + v_k c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}) |0\rangle$ [variational parameters u_k , $v_k \to g_k = v_k/u_k$]
- in position space: $\langle \{\mathbf{r}_i\} | \mathsf{BCS} \rangle = \mathsf{Pf} \left[\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i\mathbf{k} \cdot (\mathbf{r}_i \mathbf{r}_m)} \right]$
- Composite-fermionize BCS: $[\tilde{\phi}(z_i) = J_i^{-1} \mathcal{P}_{\text{LLL}} J_i \phi(z_i)]$

$$\Psi^{\text{CF-BCS}} = \mathsf{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} \, \tilde{\phi}_{\mathbf{k}}(z_i) \, \tilde{\phi}_{-\mathbf{k}}(z_j)
ight] \prod_{i < j} (z_i - z_j)^2.$$

Overview

Digression: weakly paired states Apply concept of general pair wavefunctions to BS wavefunction

• Bonderderson-Slingerland states derive from the weakly paired states at $\nu=5/2\Rightarrow$ make use of variational degrees of freedom in its pair wavefunction

previously:
$$\Psi_{\frac{2}{5}}^{(BS)} = \text{Pf}\left[\frac{1}{z_i - z_j}\right] \prod_{i < j} (z_i - z_j) \Psi_{\frac{2}{3}}^{(CF)}$$

with generalized pair wavefunction:

$$\Rightarrow \Psi_{\frac{2}{5}}^{(BS)}[g_k] = \text{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} \, \tilde{\phi}_{\mathbf{k}}(z_i) \, \tilde{\phi}_{-\mathbf{k}}(z_j)\right] \prod_{i < j} (z_i - z_j) \Psi_{\frac{2}{3}}^{(CF)},$$
 with the projected CF orbitals $\tilde{\phi}(z_i) = J_i^{-1} \mathcal{P}_{\text{LLL}} J_i \phi(z_i)$, and with $\Psi_{\frac{2}{3}}^{(CF)}$ generated from CF in negative flux.

- P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
 - G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
 - G. Möller and S. H. Simon, Phys. Rev. B 72, 045344 (2005).

More results

Numerical search for a BS state at $\nu = 12/5$ continued More overlaps for the BS states with general pairing

Overlaps in Monte-Carlo simulations, with optimization of $\{g_k\}$

- Overlaps further increased: up to 0.92 for N = 14.
- Number of variational parameters on sphere small (≤ 5)

Competition of different trial states at $\nu = 12/5$

Having established the $\nu=12/5$ state with shift S=2 as a BS state: \Rightarrow now study competition between different candidate states

- find $E/N_e = -0.3416(5)$, -0.342(3), and -0.3421(5) for S = HH, BS, and \overline{RR} using $N \ge 12$.
- ⇒ very close competition, cannot confidently distinguish states

Recapitulate

- $e_{HH} = -0.3416(5)$
- $e_{BS} = -0.342(3)$
- $e_{RR} = -0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports RR, but also indicates proximity of BS state

Both \overline{RR} and BS can potentially be realized at $\nu=12/5$, depending on details of sample geometry

Recapitulate

- $e_{HH} = -0.3416(5)$
- $e_{BS} = -0.342(3)$
- $e_{RR} = -0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports \overline{RR} , but also indicates proximity of BS state

Both \overline{RR} and BS can potentially be realized at $\nu=12/5$, depending on details of sample geometry

Recapitulate

- $e_{HH} = -0.3416(5)$
- $e_{BS} = -0.342(3)$
- $e_{RR} = -0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports RR, but also indicates proximity of BS state

Both \overline{RR} and BS can potentially be realized at $\nu=12/5$, depending on details of sample geometry

Recapitulate

- $e_{HH} = -0.3416(5)$
- $e_{BS} = -0.342(3)$
- $e_{RR} = -0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports \overline{RR} , but also indicates proximity of BS state

Both \overline{RR} and BS can potentially be realized at $\nu=12/5$, depending on details of sample geometry

Recapitulate

- $e_{HH} = -0.3416(5)$
- $e_{BS} = -0.342(3)$
- $e_{RR} = -0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports \overline{RR} , but also indicates proximity of BS state

Both \overline{RR} and BS can potentially be realized at $\nu=12/5$, depending on details of sample geometry

Conclusions

Overview

- The Bonderson-Slingerland hierarchy construction predicts a $\nu = 12/5$ state with shift S = +2 on the sphere
- Multiple pieces of evidence establish this state as a robust incompressible state described by the BS wavefunction:
 - Clear neutral and charge gap for N = 6, ..., 18
 - ullet 'Nice' correlations and $\langle L^2
 angle = 0$ for all states of the series
 - Large overlap with the BS trial wavefunction
- Extent of the BS state in interaction space similar to that of the $\nu = 5/2$ state from which it derives.
- General pair-wavefunctions further increase overlaps
- Energetically competitive with RR (and HH), outcome may depend on finer experimental details:
- P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).
- P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

Summary of possible experimental probes:

	RR	BS	HH
qp charge	<u>e</u> 5	<u>e</u> 5	<u>2e</u> 5
weak tunnelling $(I \sim V^{4\Delta_{qp}-1})$	$\Delta_{qp}=rac{1}{5}$	$\Delta_{qp}=rac{9}{80}$	$\Delta_{qp}=rac{1}{5}$
strong tunnelling $(G \sim T^{4\Delta_e-2})$	$\Delta_e=2$	$\Delta_e=rac{3}{2}$	$\Delta_e=rac{3}{2}$
braiding	Z_3 parafermions	Ising	abelian

- Distinguishing tunnelling exponents for edge states difficult
- Interferometry could clearly distinguish braiding statistics

W. Bishara, G. A. Fiete, C. Nayak, Phys. Rev. B 77, 241306(R) (2008). P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

Experimental signatures of competing trial states at $\nu=12/5$

Summary of possible experimental probes:

, ,	RR	BS	HH
qp charge	<u>e</u> 5	<u>e</u> 5	<u>2e</u> 5
weak tunnelling $(I \sim V^{4\Delta_{qp}-1})$	$\Delta_{qp}=rac{1}{5}$	$\Delta_{qp}=rac{9}{80}$	$\Delta_{qp}=rac{1}{5}$
strong tunnelling $(G \sim T^{4\Delta_e-2})$	$\Delta_{e}=2$	$\Delta_e=rac{3}{2}$	$\Delta_e=rac{3}{2}$
braiding	Z_3 parafermions	Ising	abelian

- Distinguishing tunnelling exponents for edge states difficult
- Interferometry could clearly distinguish braiding statistics

W. Bishara, G. A. Fiete, C. Nayak, Phys. Rev. B 77, 241306(R) (2008). P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.