Summary of Lecture 14

- Reduced Density Operator $\rho_{\rm A} = {\rm tr_B} \left[\rho_{\rm AB} \right]$ [$\rho_{\rm A}$ can be mixed, even if $\rho_{\rm AB}$ pure]
- Entanglement entropy $S_{\rm ent} = \operatorname{tr} \left[\rho_{\rm A} \ln \rho_{\rm A} \right]$
- Thermalization and quantum damping of subsystems
 - Entropy growth
 - Decoherence

This Lecture (15)

Lie Groups

Summary of Lecture 15

• Lie group of dimension n

$$G(a_1, a_2, \dots a_n) = \exp\left(-i\sum_{j=1}^n a_j X_j\right)$$

• Lie algebra of generators $[X_j, X_k] = i \sum_{j=1}^{n} f_{jkl} X_l$

- Generators ⇒ constants of motion
- Irreducible representations ⇒ degenerate multiplets

Next Lecture (16)

Relativistic QM