
NATURAL SCIENCES TRIPOS Part II

Wednesday 27 April 2022, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains five sides, including this one, and is accompanied
by a booklet giving values of constants and containing mathematical
formulae which you may quote without proof. (The booklet is available
for separate download.)
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1 Consider the following Hamiltonian for a spin-1 degree of freedom in a mag-
netic field:

H = B · S,

where S = (Sx, Sy, Sz) and B = B0(sin θ cosφ, sin θ sinφ, cos θ).

(a) Write the explicit Hamiltonian in terms of the spin-1 matrices Sx,y,z in the |mz〉-
basis, where mz = −1, 0, 1 for s = 1.[
Hint: Recall that for spin-s, the raising and lowering operators act as

S±|s,ms〉 =
√
s(s+ 1)−ms(ms ± 1)|s,ms〉. Note that |mz〉 ≡ |s = 1,ms〉.

]
[2]

(b) Use a ‘rotated frame’ transformation U(θ, φ) = eiφSzeiθSy ≡ U(φ)U(θ) to show
that

H = U(θ, φ)Hz(U(θ, φ))†,

in terms of Hz = B0Sz.[
Hint: Recall that eXY e−X = Y + [X, Y ] + 1

2!
[X, [X, Y ]] + 1

3!
[X, [X, [X, Y ]]] + ....

]
[8]

The eigenstates of H are thus given by |B,mz〉 = U(θ, φ)|mz〉.

(c) Show that the explicit form of the eigenstate with highest eigenvalue, |B,+1〉 =
U(θ, φ)|mz = 1〉, is given by [7]

|B,+1〉 =

 e−iφ cos2(θ/2)√
2 sin(θ/2) cos(θ/2)
eiφ sin2(θ/2)

 .

(d) Show that the Berry potential A+ = −i〈B,+1|∇|B,+1〉 is [5]

− 1

B0

cot (θ) φ̂.

(e) Writing B = B0n̂, show that the Berry curvature is given by n̂
B2

0
. What does

this expression physically mean? Predict a general relation for a spin-s degree of
freedom in a magnetic field with the same Hamiltonian as above. [3]
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Solution 1. (a) [Unseen but very similar to derivation addressed in Lecture.]
Given the eigenstates |mz〉 of Sz, Sz|mz〉 = mz|mz〉, S± act in the usual manner,

increasing or decreasing mz and annihilating the top/bottom state to zero, respectively.
Hence,

S+ =
√

2

0 1 0
0 0 1
0 0 0

 (1)

and

S− =
√

2

0 0 0
1 0 0
0 1 0

 . (2)

Consequently,

Sx =
1

2
(S+ + S−) =

1√
2

0 1 0
1 0 1
0 1 0

 (3)

and

Sy = − i
2

(S+ − S−) =
1√
2

0 −i 0
i 0 −i
0 i 0

 . (4)

The Hamiltonian is thus given as

H =
B0√

2

[
sin(θ) cos(φ)

0 1 0
1 0 1
0 1 0

 (5)

+ sin(θ) sin(φ)

0 −i 0
i 0 −i
0 i 0

+ cos(θ)

√2 0 0
0 0 0

0 0 −
√

2

] (6)

(b) We need to evalaute U(φ)U(θ)SzU(θ)†U(φ)†. We proceed via two steps.

Step 1: U(φ)SzU(θ)†U(φ). We evaluate e−iθSySze
iθSy . We use

eABe−A = B + [A,B] + 1/(2!)[A, [A,B] + 1/(3!)[A, [A, [A,B] + ..., (7)

where B = Sz and A = −iθSy. We then obtain

Sz +(−iθ)(iSx) + 1/(2!)(−iθ)2[Sy, iSz] + 1/(3!)(−iθ)3[Sy, [Sy, [Sy, Sz] + ... (8)

= Sz + (−iθ)(iSx) + 1/(2!)(−iθ)2[Sy, iSx] + 1/(3!)(−iθ)3[Sy, [Sy, [Sy, Sz] + ...

= Sz + θSx − 1/(2!)(θ)2Sz + 1/(3!)(−iθ)3[Sy, Sz] + ...

= Sz + θSx − 1/(2!)(θ)2Sz − /(3!)(θ)3Sx + ...

= Sz cos(θ) + Sx sin(θ). (9)
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Step 2: We do the same for e−iφSz(Sz cos(θ) + Sx sin(θ))eiφSz . Note that the first term
commutes with Sz and thus U(φ) can be cancelled with (U(φ))†. For e−iφSz(Sx sin(θ))eiφSz

we note that this is the same problem as above with the same commutation relations, but
with Sz replaced by Sx, Sy by Sz and Sx by Sy. Hence this term gives

sin(θ) cos(φ)Sx + sin(θ) cos(φ)Sy. (10)

In total we thus get

U(φ)U(θ)SzU(θ)†U(φ)† = sin(θ) cos(φ)Sx + sin(θ) cos(φ)Sy + cos(θ)Sz, (11)

and, upon filling in the prefactor, one finds the desired result.

(c) [Unseen.] We need to evaluate U(θ) and U(φ). Note that Sz is diagonal and hence

U(φ) =

eiφ 0 0
0 0 0
0 0 e−iφ

 . (12)

To evaluate U(θ) we exponentiate. We note that S3
y = Sy, hence we get

U(θ) = 1 + (−iθ)Sy + (−iθ)2/2S2
y + (−iθ)3/(3!)S3

y + (−iθ)4/(4!)S4
y + ... (13)

= 1 + (−iθ)Sy + (−iθ)2/2S2
y + (−iθ)3/(3!)Sy + (−iθ)4/(4!)S2

y + ...

= sinh(iθ)Sy + cos(θ)S2
y + (1− S2

y). (14)

In matrix form this gives

U(θ) =

1/2 + 1/2 cos(θ) −1/
√

2 sin(θ) 1/2− 1/2 cos(θ)

1/
√

2 sin(θ) cos(θ) −1/
√

2 sin(θ)

1/2− 1/2 cos(θ) 1/
√

2 sin(θ) 1/2 + 1/2 cos(θ)

 . (15)

Using that |mz = +1〉 = (1, 0, 0)T and the doubling formulae

1/2 + 1/2 cos(θ) = cos2(θ/2) (16)

2 sin(θ) cos(θ) = sin(2θ) (17)

1/2− 1/2 cos(θ) = sin2(θ/2) (18)

we find that, upon multiplying, |B,+1〉 = U(θ, φ)|mz = 1〉 is given by

|B,+1〉 =

 e−iφ cos2(θ/2)√
2 sin(θ/2) cos(θ/2)
eiφ sin2(θ/2)

 . (19)

(d) [Unseen.]
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We first calculate ∇|B,+1〉. We find

∇|B,+1〉 =
1

B0
∂θ|B,+1〉θ̂ +

1

B0 sin(θ)
∂θ|B,+1〉φ̂ (20)

=
1

B0

 e−iφ cos(θ/2)sin(θ/2)√
2 cos2(θ/2)− sin2(θ/2)]/2
eiφ sin(θ/2) cos(θ/2)

 θ̂ +
1

B0 sin(θ)

−ie−iφ cos2(θ/2)
0

ieiφ sin2(θ/2)

 φ̂.

As a next step we evaluate 〈B,+1|∇|B,+1〉 and find

〈B,+1|∇|B,+1〉 =
1

B0
[− cos2(θ/2)[cos(θ/2) sin(θ/2)]

+ sin(θ/2) cos(θ/2)[cos2(θ/2)− sin2(θ/2)] + sin3(θ/2) cos(θ/2)]θ̂

+ [−i cos3(θ/2) + i sin3(θ/2)]φ̂/(r sin(θ))

=
i

B0 sin(θ)
[sin4(θ/2)− cos4(θ/2)]φ̂

=
i

B0 sin(θ)
[sin2(θ/2) + cos2(θ/2)][sin2(θ/2)− cos2(θ/2)]φ̂

=
i

B0 sin(θ)
[sin2(θ/2)− cos2(θ/2)]φ̂

=
−i

B0 sin(θ)
[cos(θ)]φ̂

= − i

B0
cot(θ)φ̂. (21)

Hence, A+ = − 1
B0

cot(θ)φ̂.

(e) [Same as in lecture]
To evaluate the Berry curvature we simple take the divergence. Using B = B0n̂,

∇×A+ =
1

B0 sin (θ)
∂θ[sin(θ)(−1/B0 cot(θ))]n̂ (22)

=
n̂

B2
0

. (23)

Integrating gives twice the result in terms of solid angle as compared to spin-1/2. In other
words, we now have a monopole with twice the value. Generally the relation to spin is
given by a monopole charge of ∼ s

2B2
0
.
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2 Consider a one-dimensional potential of strength V0 > 0 of the form,

V (x) =

{
V0, |x| < a ,
0, |x| ≥ a .

A solution of the scattering problem with energy E = ~k2
2m

is a solution of the integral
equation

Ψk(x) = eikx +

∫ ∞
−∞

dx′G+
k (x, x′)V (x′)Ψk(x

′).

(a) Show that the retarded Green’s function for this system isG+
k (x, x′) = − im

~2ke
ik|x−x′|.

G+
k (x, x′) can also be written as the position matrix elements of an operator Ô. Give

an expression of Ô. [11]

(b) By writing the wave function far away from the scatterer (|x| → ∞) as

Ψk(x) ≈ eikx + eik|x|f(k, k′),

for k′ = k sgn(x), find an expression for the scattering amplitude f(k, k′) in terms
of V0 and a. [5]

(c) For waves incident from the left (x → −∞), find the incident, reflected and
transmitted waves and their respective probability currents ji, jr and jt in terms of
f(k, k′). Determine the transmission, T = jt/ji, and reflection, R = jr/ji, coeffi-
cients. Show that the scattering amplitude must satisfy

Re{f(k, k)} = −1

2
{|f(k, k)|2 + |f(k,−k)|2}

for the probability to be conserved. [5]

(d) As a limiting case, consider a delta function potential V (x) = gδ(x), of strength
g, and determine the scattering amplitude f(k). (Notice that in this case f(k)
depends on only one reciprocal wave vector.) [4]
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Solution 2. (a)[Familiar problem studied in lecture.] Lippmann-Schwinger Equation in-
serted into the Schrödinger equation,

− ~2

2m

∂2

∂2x
Ψk(x) + V (x)Ψk(x) = EkΨk(x)[
Ek +

~2

2m

∂2

∂2x

]
Ψk(x) = V (x)Ψk(x)

means that [
Ek +

~2

2m

∂2

∂2x

]
G+
k (x, x′) = δ(x− x′).

Using Fourier transform G+
k = 1

2π

∫
dqeiq(x−x

′)G̃+
k (q), we obtain

1

2π

∫
dqeiq(x−x

′)

[
Ek +

~2q2

2m

]
G̃+
k (q) =

1

2π

∫
dqeiq(x−x

′),

G̃+
k (q) =

[
~2k2

2m
+

~2q2

2m
+ iε

]−1
where +iε is added for convergence and the contour is closed correspondingly to the
boundary conditions, i.e. from top around the left pole at −k and from below around the
right pole at +k. Inserting G̃+

k (q) back for,

G+
k (x, x′) =

1

2π

∫ ∞
∞

dq
eiq(x−x

′)

~2k2
2m + ~2q2

2m + iε
(24)

=
2im

~2

[
Θ(x− x′)e

ik(x−x′)

2k
−Θ(x′ − x)

eik(x
′−x)

−2k

]
= − im

~2k
eik|x−x

′|.

By looking at this expression, one can see that the position matrix elements of the
operator Ô = 1

Ek−H0+iε
is the Green’s function (for Ek = ~2k2

2m ):

〈x| 1

Ek −H0 + iε
|x′〉 =

∫
dq〈x|q〉〈q| 1

Ek −H0 + iε
|x′〉

=

∫
dq

2π
eiq(x−x

′) 1
~2k2
2m + ~2q2

2m + iε
.

This equals the Fourier transform of the Green’s function calculated in the first part above.

(b) [Unseen but familiar from lecture.]
To approximate the retarded Green’s function for |x| → ∞, we use

|x− x′| =
√

(x− x′)2 ≈
√
x2 − 2xx′ ≈ |x| − x′ |x|

x
,

which gives

G+
k (x, x′) ≈ − im

~2k
eik|x|−ik

′x′ ,
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with k′ = k|x|/x. Lippmann-Schwinger equation takes the form

Ψk(x) ≈ eikx − im

~2k
eik|x|

∫
dx′e−ik

′x′V (x′)Ψk(x
′),

with the scattering amplitude

f(k, k′) = − im
~2k

∫
dx′e−ik

′x′V (x′)Ψk(x
′).

(c) [Unseen but builds on the calculations in the handout.]
Asymptotic wave functions take the form eikx + f(k,−k)e−ikx in the far left x� 0

and eikx + f(k, k)eikx in the far right x� 0. This means (up to normalization constants),

•The incident wave Ψ ik(x) = eikx, and the incident current ji(x) = ~k
m ,

•The reflected wave Ψ rk (x) = f(k,−k)e−ikx, and the reflected current jr(x) = −~k
m |f(k,−k)|2,

•The transmitted wave Ψ tk(x) = (1+f(k, k))eikx, and the transmitted current jt(x) =
~k
m |1 + f(k, k)|2,

where the current is calculated by using j(x) = − i~
2m [Ψ∗∂xΨ − Ψ∂xΨ∗].

This gives the transmission and reflection coefficients as,

T = |1 + f(k, k)|2, R = |f(k,−k)|2.

Since the probability is conserved, T +R = 1,

|1 + f(k, k)|2 + |f(k,−k)|2 = 1

Re{f(k, k)} = −1

2
{|f(k, k)|2 + |f(k,−k)|2}.

(d)
Scattering amplitude for the delta function potential is

f(k) = − im
~2k

∫
dx′e−ik

′x′gδ(x′)Ψk(x
′) = − img

~2k
Ψk(0).

Ψk(0) can be calculated from the Lippmann-Schwinger equation as Ψk(0) = i~2k/m
i~2k/m−g ,

which gives

f(k) =
g

i~2k/m− g
.
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3 The Helium atom has Hamiltonian H = H0 +H12, where

H0 =
1

2m

[
p2
1 + p2

2

]
− 2e2

[
1

|r1|
+

1

|r2|

]
, H12 =

e2

|r1 − r2|
.

(a) We first address the spin part. Show that the two spins can form a triplet χ1,ms

(with ms = −1, 0, 1) or singlet χ0,0 (ms = 0) wave function. Express them in the
Sz-eigenstate basis, | ↑〉 and | ↓〉. What are their symmetry properties? [3]

(b) What is the symmetry property of fermionic states? Give the form of the ground
state if H12 is ignored. You may use, without derivation, the fact that the Hydro-
gen problem has eigenfunctions ψnlm(r) with eigenenergies Enlm ∝ −e4/(2~n2), for
principal quantum number n, azimuthal quantum number l = 0, 1, ..., n − 1 and
magnetic quantum number m = −l, ...,+l.[
Hint: Consider decomposing the wave function into a spatial part and spin part.
The latter can be left implicit.

]
[5]

(c) Determine the set of degenerate eigenstates of the next energy level using the
same analysis as in (b). [6]

(d) Consider now the repulsion term H12 as a perturbation and give an expression
for the correction to the ground state energy. [6]

Hint: Use here that,

•The wave function of the Hydrogen 1s state ψ1,0,0(r) reads 1/
√
a30πe

−r/a0.
Note that a0 needs to be replaced with a0/2 to account for the atomic nucleus
in Helium.

•
∫

dφ1

∫
d(cos θ1)

∫
dφ2

∫
d(cos θ2)

1
|r1−r2| = 8π2

∫
d(cos θ) 1√

r21+r
2
2−2r1r2 cos θ

= 8π2

r1r2
(r1 + r2 + |r1 − r2|).

•
∫∞
0

dx x e−4x
∫∞
0

dy y e−4y(x+ y + |x− y|) = 5
2048

.


(e) The “classical” expression for density-density fluctuations,

Hint =
1

2

∫
dr dr′ ρ(r)U(r− r′)ρ(r′),

needs to be modified when ρ is expressed in second quantized form since the ordering
for indistinguishable particles matters. Give the correct expression of the expect-
ation value for both fermionic and bosonic product states in terms of the density
operator ρ(r) and the single particle density matrix g(r, r′), and comment on the
result. [5]
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Solution 3. (a) [Seen but builds on discussion of the Lectures.] We can start from the
maximal state |S = 1,mz = 1〉 and use S− = S1

− + S2
−. This gives the triplet

|11〉 = | ↑1〉| ↑2〉
|10〉 = 1/

√
2[| ↑1〉| ↓2〉+ | ↓1〉| ↑2〉]

|1− 1〉 = | ↓1〉| ↓2〉.

The state |S = 0,mz = 0〉 is the one that is orthogonal to |S = 1,mz = 0〉 and reads

χ0,0 = |00〉 = 1/
√

2[| ↑1〉| ↓2〉 − | ↓1〉| ↑2〉] (25)

the triplets are symmetric, the singlet is anti-symmetric.

(b) [Basic manipulation based on lecture notes.]
The fermionic nature implies that the wave function is anti-symmetric. We can use

the eigenfucntions of the Hydrogen atom as product basis. For the spin we can have a
singlet or triplet, see part (a). Now as the energy depends on n, we can minimize by
taking for the spatial part two radial functions with n = 1 and s quantum number, that
is ψ(r1, r2) = ψ1,0,0(r1)ψ1,0,0(r2). Hence, to make it anti-symmetric the spin part has to
be the singlet. We thus obtain

Ψ(r1, r2) = ψ1,0,0(r1)ψ1,0,0(r2)χ00 (26)

(c) [Basic manipulation based on lecture notes.]
We do the same analysis as (b), but now combine a ψ(1,0,0) with a 2s or 2p state.

Hence, the spatial part needs be of the form

ψ±12 =
1√
2

[ψ1,0,0(r1)ψ2,l,ml
(r2)± ψ2,l,ml

(r1)ψ1,0,0(r2)]. (27)

To make the wave function anti-symmetric, the symmetric spatial part is combined with
the singlet, whereas the anti-symmetric spatial part is combined with the triplet

Ψ+
12;0,0(r1, r2) = ψ+

12(r1, r2)χ0,0 (28)

Ψ−12;1,ms
(r1, r2) = ψ−12(r1, r2)χ1,ms . (29)

(d) [Basic algebra seen in lecture]
Taking ψ1,0,0 and substituting with a0 → a0/2, we get

∆12 = e2
∫
d3r1

∫
d3r2ψ1,0,0(r1)

1

|r1 − r2|
ψ1,0,0(r2) (30)

= (64e2)/(π2a60)

∫
r21e
−4r1/a0dr1

∫
r22e
−4r2/a0y12dr2,

where y12 =
∫
dθ1dφ1

∫
dθ2dφ2

1
|r1−r2| . Using the formulae provided we get directly ∆12 =

5e2/(4a0).
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(e) [Familiar problem]
As discussed in the course, the operator needs normal ordering to remove spurious

self correlations. The correct form is

Hint = 1/2

∫
drdr′ : ρ(r)U(r− r′)ρ(r′) : (31)

For product states, having terms as < â†αâβ â
†
γ âδ >, we can use Wick’s theorem. We get,

using the completeness relation of the wave function parts,

< ρ(r)ρ(r′) > =
∑
α,γ

ϕ∗α(r)ϕα(r)ϕ∗γ(r′)ϕγ(r′)NαNγ + (32)

+
∑
α,γ

ϕ∗α(r)ϕγ(r)ϕ∗γ(r′)ϕα(r′)Nα(1±Nγ)

= < ρ > δ(r− r′)+ < ρ(r) >< ρ(r′) > ±g(r, r′)g(r′, r).

Upon normal ordering the first term drops and

: Hint : = 1/2

∫
drdr′ < ρ(r) > U(r− r′) < ρ(r′) > (33)

± 1/2

∫
drdr′g(r, r′)U(r− r′)g(r′, r).

The first terms is the Hartree term the second term the Fock term. For bosons they
increase due to Bunching, for fermions the Fock term reduces the overall result and relates
to Pauli principle.
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4 Consider two spin-1/2 particles in the state

|Φ〉 =
1√
2

(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2) .

(a) Imagine that we perform a measurement of Sz,1 to determine the z-component
of the spin of the first particle. Comment on whether the result of a simultaneous
measurement of Sz,2 can always be predicted from the first measurement. [4]

(b) Determine the two-spin density matrix ρ corresponding to the state |Φ〉 and com-
pute the reduced density matrix for the first particle ρ1,red = tr2[ρ] by tracing out the
second spin. Then calculate the degree of entanglement, Sent = −tr[ρ1,red log ρ1,red],
between the two particles and comment on the purity of ρ and ρ1,red. [6]

(c) Now, consider the state

|Ψ〉 =
1

2
(| ↑〉1| ↑〉2 + | ↓〉1| ↑〉2 + | ↑〉1| ↓〉2 + | ↓〉1| ↓〉2) ,

and determine the reduced density matrix ρ1,red in this case. Find the degree of
entanglement. How does your result compare with the one obtained in (b)? [5]

Now, consider a single spin-1/2 particle in the state |Sz,+〉 = | ↑〉.

(d) Imagine that the particle is going through a Stern-Gerlach device oriented in
the x− z plane, n̂ = − sin θêx + cos θêz. Determine the probability of measuring the
outgoing particle in the |Sn,+〉 state (the state with eigenvalue +1

2
). [5]

(e) Consider a variable Stern-Gerlach device which can have one of three different
orientations with equal probability,

n̂1 = − sin θêx + cos θêz,

n̂2 = − sin(θ − 2π

3
)êx + cos(θ − 2π

3
)êz,

n̂3 = − sin(θ +
2π

3
)êx + cos(θ +

2π

3
)êz.

For an incoming particle in state |Sz,+〉, determine the probability of measuring
the eigenvalue +1

2
after the particle has traversed the device. [5]
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Solution 4. (a) [Seen in Lecture.]
The measurement Sz,1 on state |Φ〉 can give ±1/2 (~ = 1) with probability 1/2 each.

Measuring |Sz+〉1 means the second particle must be in | ↓〉2 state, while if we measure
−1/2 for the first particle, the second must be in | ↑〉2 state. The first measurement on
the first spin fixes the second spin since the two particles are entangled.

(b) [Familiar from lecture notes.]
The two-spin density matrix calculated via ρ = |Φ〉〈Φ| is,

ρ =


0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0


in the basis of | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉.

Tracing out the second spin gives,

ρ1,red =

(
1/2 0
0 1/2

)
which means the degree of entanglement is

Sent = −tr[ρ1,red log ρ1,red] = −2
1

2
log

1

2
= log 2.

ρ is a pure state since ρ2 = ρ and ρ1,red corresponds to a mixed state as expected since
the particles are entangled.

(c) [Unseen but familiar]
|Ψ〉 can be written as a product state as

|Ψ〉 =

[
1√
2

(| ↑〉1 + | ↓〉1)
]
⊗
[

1√
2

(| ↑〉2 + | ↓〉2)
]
,

hence the reduced density matrix

ρ1,red =
1

2

(
1 1
1 1

)
is pure and the degree of entanglement vanishes

Sent = −tr[ρ1,red log ρ1,red] = −
∑
i

λi log λi = 0,

where λi = 0, 1 are the eigenvalues of ρ1,red.
While state |Φ〉 corresponds to an entangled state, |Ψ〉 is a product state which does

not carry entanglement and hence the reduced density matrices for for the two individual
particles correspond to pure states.
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(d) [Unseen, but builds on examples in the lecture notes]
We find the eigenvalues for S · n̂|Sn,±〉 = ±1

2 |Sn,±〉 represented in matrix form(
cos θ − sin θ
− sin θ − cos θ

)(
α
β

)
= ±

(
α
β

)
as

|Sn,+〉 =

(
cos(θ/2)
− sin(θ/2)

)
, |Sn,−〉 =

(
sin(θ/2)
cos(θ/2)

)
.

The probability of measuring +1/2 for the outgoing particle is then

|〈Sz,+〉|Sn,+〉|2 = cos2(θ/2).

(e) [Unseen, but builds on examples in the lecture notes]
From the result in part (d) one can see that the probability of measuring spin

eigenvalue +1/2 for each of the Stern-Gerlach orientations n̂i is given by cos2( θ2 +φi) with
φi = {0,−2π/3, 2π/3}. The orientation n̂i is however decided with a classical probability
with equal weight. We then sum all the probabilities

P =
1

3

{
cos2(

θ

2
) + cos2(

θ

2
− π

2
) + cos2(

θ

2
+
π

2
)

}
=

1

2
.
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