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THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains five sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which you
may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 (a) For a spin in a magnetic field that is described by the Hamiltonian
H = −γB · S, find the Heisenberg equations of motion dS

dt
= i

~ [H,S] that
S(t) = eiHt/~Se−iHt/~ obeys.[

You may find useful the commutation relations [Sj, Sk] = i~εjklSl.
]

[6]

(b) For a spin-1/2 the following expression holds

exp (−iθ · S/~) = 1 cos (θ/2)− i n̂ · σ sin (θ/2) ,

where n̂ is a unit vector, θ = θn̂, and S = ~
2
σ = ~

2
(σx, σy, σz), the latter being

the Pauli matrices. Demonstrate its validity for n̂ = (1, 0, 0). [4]

(c) Consider an electron in a hydrogen atom under the influence of an homo-
geneous, pulsed electric field along the x-direction. The system is described
by the Hamiltonian,

H(t) = H0 + E x̂ τ
∞∑
n=0

δ(t− nτ) ,

where H0 is the Hamiltonian for the electron in the unperturbed hydrogen
atom, E is the electric field magnitude, and τ is the time between pulses.

Limiting the Hilbert space to the one spanned by just two hydrogenic
orbitals, |1s〉 = c†s|0〉 and |2px〉 = c†x|0〉 (where |0〉 is the vacuum state), the
Hamiltonian can be written as

H(t) = ∆(c†xcx − c†scs) + Ex0(c†xcs + c†scx) τ
∞∑
n=0

δ(t− nτ) ,

where ∆ = 〈2px|H0|2px〉 = −〈1s|H0|1s〉 and x0 = 〈2px|x̂|1s〉 = 〈1s|x̂|2px〉.
Show that the evolution operator from just before the first pulse to just

before the (N + 1)th, is given by

U(Nτ − ε,−ε) = (U∆UE)
N ,

where

U∆ =

(
eiτ∆/~ 0

0 e−iτ∆/~

)
, UE =

(
cosΦE −i sinΦE
−i sinΦE cosΦE

)
and ΦE = Ex0τ/~. [7]

(d) Apply the expression in (b) to the evolution operator in (c) for N = 1 to
find θ and n. Interpret this result in terms of position and momentum of the
electron before the second pulse.[

The matrix of the momentum operator in this basis is proportional to σy.
]

[8]
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Solution 1. (a) Bookwork (A.6 in Appendix). For H = −γB · S. [6]

d

dt
S =

i

~
[H,S] = − iγ

~
Bj [Sj , Sk]êk = − iγ

~
Bji~εjklSlêk = −γB ∧ S.

(b) We need to demonstrate that

e−iθSx = 1 cos(θ/2)− iσx sin(θ/2) ,

where Sx = 1
2σx. For that

e−iθSx = e−iσxθ/2 = 1− i(θ/2)σx −
(θ/2)2

2!
σ2x + i

(θ/2)3

3!
σ3x + · · · ,

and using σ2x = 1,

e−iθSx =

(
1− (θ/2)2

2!
+

(θ/2)4

4!
+ · · ·

)
− i

(
θ/2− (θ/2)3

3!
+

(θ/2)5

5!
· · ·
)
σx ,

which gives the sought expression. [4]
(c) The overall evolution is obtained by compounding a cycle consisting of a pulse

with evolution UE followed by an evolution with the operator U∆.
U∆ = e−iH0τ/~ = eiτ∆σz/~, and UE = e−iΦEσx , followed by computation of the matrix

exponentials, for the latter using the result of (b). [7]
(d)

U∆UE =

(
e−iτ∆/~ cosΦE −ie−iτ∆/~ sinΦE
−ieiτ∆/~ sinΦE eiτ∆/~ cosΦE

)
from which we can read off cos θ/2 = cos(τ∆/~) cosΦE and the direction vector

n̂ =
1√

1− cos2(τ∆/~) cos2 ΦE

− cos(τ∆/~) sinΦE
sin(τ∆/~) sinΦE
− sin(τ∆/~) cosΦE

 .

Interpretation: The problem in (c) maps to a problem of a precessing spin-1/2, in which
θ would be the angle of precession, and n̂ the axis around which it precesses. The +Sz
component accounts for the degree of excitation onto the 2px orbital, while the Sx and
Sy components account for the hybridisation between the 1s and the 2px states, with σx
describing the displacement of the average position of the electron w.r.t. the nucleus, while
σy describes its momentum (the momentum operator in this basis px = ~

i ∂x ∝ σy). [8]
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2 A particle of energy E = ~2k2
2m

is scattered from a localised potential V (r).

(a) Outline the essential elements of partial-wave analysis, leading to

f(θ) =
1

k

∞∑
l=0

(2l + 1) sin δle
iδlPl(cos θ) (†)

defining all quantities that appear in this expression. [7]

(b) Use (†) to derive the optical theorem for the total scattering cross-section

σtot =
4π

k
Imf(θ = 0).

You may find it useful to know that
∫ 1

−1 Pl(x)Pl′(x)dx =
2δll′
2l+1

and Pl(1) = 1. [6]

(c) Find the phase shift δ0(k) for the s-wave scattering as a function of the
wave vector k for a hard-sphere potential V (r) = ∞ for r < R, V (r) = 0 for
r > R. Determine the s-wave scattering length a0 and the s-wave scattering
amplitude f0. Sketch the s-wave scattering cross-section σ0(k), choosing the
appropriate dimensionless units, and discuss its (three) prominent features. [6]

(d) Find the scattering amplitude for delta-shell potential V (r) = V0δ(r −R)
in the first Born approximation fBorn. Discuss the dependence of the scattering
cross-section on the angle θ for small and large wave vector k. Does the first
Born approximation you obtained in this part satisfy the optical theorem? [6]

Solution 2. (a) Bookwork. Should mention: need spherically symmetric potential V (r) =
V (r), the conservation of angular momentum defining scattering channels for the differ-
ent l = 0, 1, . . . . Phase shifts δl(k) contain all information needed for the scattering

amplitude in asymptotic solution ψk(r) → eikz + f(θ) e
ikr

r for r → ∞. (b) Imf(θ = 0) =
1
k

∑
l(2l+1) sin δl sin δlPl(1) = 1

k

∑
l(2l+1) sin2 δl. On the other hand σtot =

∫
|f(θ)|2dΩ =

2π
k2

∫ +1
−1 dx

∑
l,l′(2l+ 1)(2l′ + 1) sin δl sin δl′Pl(x)P ′l (x) = 4π

k2
∑

l(2l+ 1) sin2 δl. (c) Matching
at r = R for u0(R) = A sin(kR + δ0) = 0 gives δ0 = −kR which implies a0 = −δ0/k = R

and σ0 = 4πR2

(kR)2
sin2 kR. Mention features: maximum σ0 = 4πR2 for kR = 0, unit-

arity for kR = π/2, transparency for kR = π. (d) f(θ) = − m
2π~2

∫
dreiq·rV (r) =

− 2m
~2q
∫∞
0 drV (r) sin qr = −2mV0R sin qR

~2q . Say f(θ) is a function of q2 = 2k2(1− cos θ) only,

small q is f(θ) = −2mV0R2

~2 independent of θ (s-wave scattering), large q is f(θ)→ 0, f(θ)
is real, optical theorem does not hold.
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3 (a) State the algebraic relations that creation and annihilation operators
satisfy for bosons (fermions). Write down the number operators for bosons
(fermions) and their possible eigenvalues for bosons (fermions). [5]

Consider the following Hamiltonian describing two interacting spins 1/2

H = −J (σ̂x1 σ̂
x
2 + σ̂y1 σ̂

y
2)− h (σ̂z1 + σ̂z2) (?)

where σ̂αj with α = x, y, z and j = 1, 2 are the standard Pauli matrices.

(b) Given the raising (σ̂+
j ) and lowering (σ̂−j ) operators, σ̂±j = σ̂xj ± iσ̂

y
j , find

the eigenvalues and eigenvectors of the Hamiltonian (?). [4]

In one dimension one can rewrite spins in terms of fermionic operators

σ̂−1 = f̂1, σ̂−2 = eiπf̂
†
1 f̂1 f̂2, σ̂zj = 2f̂ †j f̂j − 1

where f̂j with j = 1, 2 are the standard fermionic annihilation operators.

(c) Use algebraic relations for fermionic operators to obtain the commutators[
σ̂−1 , σ̂

+
1

]
, [σ̂z1, σ̂

z
2] ,

[
σ̂−1 , σ̂

−
2

]
,

[
σ̂−2 , σ̂

+
2

]
,

and show that they are consistent with the spin angular momentum algebra. [8]

(d) Now rewrite the Hamiltonian (?) in terms of fermionic operators and find
the eigenvalues and eigenstates by diagonalising this bilinear Hamiltonian. [8]

Solution 3. (b) With σ̂±j = σ̂xj ± iσ̂
y
j get H = −J

2

(
σ̂−1 σ̂

+
2 + σ̂+1 σ̂

−
2

)
− h (σ̂z1 + σ̂z2). Total

magnetisation is conserved [σ̂z1 + σ̂z2 , H] = 0. Eigenvalues −2h for | ↓↓〉, ∓J
2 for |↓↑〉±|↓↑〉√

2
,

+2h for | ↑↑〉. (a) Bookwork. [âi, âj ]∓ = 0 = [â†i , â
†
j ]∓ and [âi, â

†
j ]∓ = δij n̂j = â†j âj

with nj = 0, 1 fermions and nj = 0, 1, 2, . . . bosons. (d) As f̂ †1e
iπf̂†1 f̂1 = f̂ †1 we get H =

−J
2

(
f̂ †1 f̂2 + f̂ †2 f̂1

)
−2h

(
f̂ †1 f̂1 + f̂ †2 f̂2

)
+2h. Using ĉ± = f̂1±f̂2

2 we getH =
(
−2h− J

2

)
ĉ†1ĉ1+(

−2h+ J
2

)
ĉ†2ĉ2 + 2h. Eigenvalues +2h for |0, 0〉, J

2 for |1, 0〉, −J
2 for |0, 1〉, −2h for |0, 0〉.

As expected, we get the same spectrum as in part (a). (c) Use fermionic anti-commutation

relations, f̂1e
iπf̂†1 f̂1 = −f̂1, and eiπf̂

†
1 f̂1 f̂1 = +f̂1.
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4 (a) Define the density operator ρ̂ of a quantum system that has prob-
ability pi to be in each of the normalised states |ψi〉. Explain the distinction
between mixed and pure states of a quantum system, and how this distinction
is reflected in the density matrix. [4]

(b) Experimentalist A prepares a stream of atoms such that each atom is in
state |ψA〉 = 1√

2
(| ↑〉 + | ↓〉). Experimentalist B prepares a stream of atoms

which is a mixture: half the atoms are in state | ↑〉 and half are in state | ↓〉.
In the basis {| ↑〉, | ↓〉} determine the density matrices ρA and ρB. [6]

(c) Show that streams A and B cannot be distinguished by making a meas-
urement of σz, but that they can be told apart by measuring σx. [3]

(d) Experimentalist C prepares a stream which is an equal mixture of atoms
in the two states 1√

2
(| ↑〉+ | ↓〉) and 1√

2
(| ↑〉 − | ↓〉). Can this be distinguished

from streams A and B, and, if so, how? [3]

(e) Experimentalist D produces two streams of atoms flying in opposite direc-
tions, in such away that each atom flying to the left is entangled with another
flying to the right, both forming a singlet of wavefunction

|ψD〉 =
1√
2

(| ↑L↓R〉 − | ↓L↑R〉) ,

in an experiment analogous to the one proposed by Einstein, Podolsky and
Rosen in 1935. In the basis {|↑L↑R〉, |↑L↓R〉, |↓L↑R〉, |↓L↓R〉}: (i) compute the
density matrix and check it corresponds to a pure state. (ii) Extract from it
the reduced density matrix for measurements on the right stream, and (iii)
calculate its entanglement entropy. [6]

(f) A stream prepared by experimentalist E is thermally equilibrated in a
magnetic field B = (0, 0, Bz) at temperature T . The atoms have magnetic
moment µ. Determine the density matrix ρE. [3]

Solution 4. (a) The density operator is defined by ρ =
∑

i pi|ψi〉〈ψi| where pi is the
probability of the system being in state |ψi〉. [2]

The maximum information which can be obtained on a system consists of the eigen-
values of the complete set of commuting observables. The states of maximum knowledge
are called pure states. If a quantum mechanical system is in a pure state, it can be char-
acterised by a single state vector, i.e. pi = 1 for one value of i in the above equation, and
pi = 0 for all other states. In a mixed state, the system cannot be characterised by a
single state vector, but may be described as having certain probabilities pi < 1 of being
in each of the pure states |ψi〉. The density matrix would show tr ρ2 = 1 for pure states
and tr ρ2 < 1 for mixed states. [2]
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(b)

ρA =
1√
2

(| ↑〉+ | ↓〉) 1√
2

(〈↑ +〈↓ |) =

(
1√
2
1√
2

)(
1√
2

1√
2

)
=

1

2

(
1 1
1 1

)
ρB =

1

2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ | = 1

2

(
1
0

)(
1 0

)
+

1

2

(
0
1

)(
0 1

)
=

1

2

(
1 0
0 1

)
[6]

(c) For stream A

〈σAz 〉 = tr[ρAσz] =
1

2

(
1 1
1 1

)(
1 0
0 −1

)
= 0 ,

〈σAx 〉 = tr[ρAσx] =
1

2

(
1 1
1 1

)(
0 1
1 0

)
= 1 ,

For stream B, ρB ∝ 1 and the Pauli matrices have zero trace, so 〈σBz 〉 = 〈σBx 〉 = 0.
Therefore, streams A and B can be distinguished by measuring 〈σx〉, but not 〈σz〉. [3]

(d) ρC = 1
2

(
1 0
0 1

)
= ρB. Therefore, C cannot be distinguished from B by any

measurement, but can be told apart from A by measuring 〈σx〉. [3]
(e)

ρ =
1

2
(| ↑L↓R〉 − | ↓L↑R〉)(〈↑L↓R | − 〈↓L↑R |) =

1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0



ρ2 =
1

4


0 0 0 0
0 2 −2 0
0 −2 2 0
0 0 0 0

 = ρ

and, therefore, tr ρ2 = 1, as it should for a pure state.
The reduced density matrix is

ρredR =
1

2

(
1 0
0 1

)
and the entanglement entropy S = −k

∑
n pn log pn = −2k(12 log 1

2) = k log 2. [6]
(f) At thermal equilibrium with β = 1/kT [3]

ρE =
1

2 cosh (βµBz)

(
eβµBz 0

0 e−βµBz

)
.

in the basis of eigenstates of Sz.

END OF PAPER
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