
NATURAL SCIENCES TRIPOS Part II

25 April 2018, 9.00 to 11.00

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains five sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which
you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 Consider the following Hamiltonian where ĉ1 and ĉ2 are (spinless) fermions

H = �
h
t

⇣
ĉ
†
1ĉ2 + ĉ

†
2ĉ1

⌘
+�

⇣
ĉ
†
1ĉ

†
2 + ĉ2ĉ1

⌘i
.

(a) Which algebraic relations do creation and annihilation operators satisfy
for bosons (fermions)? How are number operators defined? What are their
possible eigenvalues for bosons (fermions)? [5]

(b) Find the anti-commutation relations for the Majorana operators j = 1, 2

�
A
j = ĉj + ĉ

†
j �

B
j = �i(ĉj � ĉ

†
j).

Discuss if it is possible to define occupation numbers for Majorana fermions. [5]

(c) For t = � 6= 0 show that the Hamiltonian given above can be written as

H = it�
B
1 �

A
2 .

Find the time dependence (in the Heisenberg picture) for the two Majorana
operators that are not featured in this Hamiltonian, i.e. �A1 (t) and �

B
2 (t). [5]

(d) Verify the following operators have fermionic anti-commutation relations [4]

f̂1 =
1
2

�
�
A
1 + i�

B
2

�
f̂2 =

1
2

�
�
B
1 + i�

A
2

�
.

(e) For t = � 6= 0 rewrite the Hamiltonian in (c) in terms of the operators f̂1
and f̂2. Determine the eigenvalues of the Hamiltonian and their degeneracy. [6]

Solution 1. (a) Bookwork. (b)
�
�
a
j , �

b
k

 
= 2�ij�ab. (c) and (d) are straightforward.

�
A
1 (t) = �

A
1 (0) and �

B
2 (t) = �

B
2 (0). (e) H = t

⇣
2f̂ †

2 f̂2 � 1
⌘
. All the eigenenergies �t

and t are doubly degenerate (f̂1 is a zero mode).
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2 Consider scattering from a so-called delta-shell potential V (r) = V0�(r �R).

(a) Write down the asymptotic solution to the 3D scattering problem. What
is the scattering amplitude, the di↵erential and total scattering cross section?
In what sense is this an asymptotic solution rather than an exact solution? [5]

(b) Calculate the scattering amplitude for the delta-shell potential as given
above in the first Born approximation. [5]

(c) Starting from the di↵erential equation with boundary condition u0(0) = 0

u
00
0(r) + k

2
u0(r) =

2m

~2 V (r)u0(r),

find the phase shift �0(k) for s-wave scattering as a function of wave vector k

k cot(kR + �0)� k cot kR =
2mV0

~2

for a particle with mass m. [5]

(d) Determine from the result in (c) the scattering length a0 as a function of
V0. Sketch the function a0(V0), choosing the appropriate dimensionless units,
both in the repulsive and attractive case, and discuss its prominent features. [5]

(e) Compare the scattering amplitude obtained in the Born approximation
in (b) and in partial wave analysis in (c) and (d), which are given also here,

fBorn = �2mV0R sin qR

~2q fs-wave = �
2mV0R

~2 R

1 + 2mV0R
~2

.

In which aspects do they di↵er? In which limit do you expect them to agree?
Show that they indeed lead to the same expression in that limit. [5]

Solution 2. (a) Bookwork. (b) Starting f(✓) = � m
2⇡~2

R
dre�iq·r

V (r), performing
the integration over angles f(✓) = � 2m

~2q
R
drrV (r) sin qr = �2mV0R

~2q sin qR. (c) Use
ansatz u0(r) = rR0(r) = A sin kr for r < R and u0(r) = B sin (kr + �0) for r > R,
matching u0(r) at r = R and with ✏ > 0 have u

0
0(R + ✏)� u

0
0(R� ✏) = 2mV0

~2 u(R).

(d) Use tan kR ⇡ kR and a0 = � limk!0
�0
k to get a0

R = �
1+� with � = 2mV0R

~2 , discuss
hard sphere, zero scattering, resonance. (e) fBorn is anisotropic, perturbative in V0.
We need to take the limit kR ⌧ 1. fs-wave is isotropic and non-perturbative in V0,
so we need to expand in powers of V0. The two expressions give f(✓) = �2mV0R2

~2 .
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(a) Define the density matrix ⇢. Show that ⇢ is hermitian and that tr[⇢] = 1.
State the condition on tr[⇢2] for pure and mixed states. [5]

(b) Consider the following Hamiltonian

H = �t

⇣
ĉ
†
1ĉ2 + ĉ

†
2ĉ1

⌘

describing spinless fermions that can move between two sites, where ĉ
†
1, ĉ1,

ĉ
†
2, and ĉ2 are the creation and annihilation operators for the sites 1 and 2.

For N = ĉ
†
1ĉ1 + ĉ

†
2ĉ2 = 1 determine the density matrix describing this

system in equilibrium with a thermal reservoir at temperature T . [5]

Obtain the T = 0 and T ! 1 limits and check the properties stated in
part (a). [3]

Obtain the von Neumann entropy of the system at any temperature and
the low and high temperature limits. [2]

(c) Consider now that the one spinless fermion in the system above (C) is
coupled to another similar fermion in another two-state system (called B)
described by operators b†1, b1, b

†
2, and b2. If the state of the global system is

| i =
✓
1

2
b
†
1c

†
1 +

1p
2
b
†
1c

†
2 +

1

2
b
†
2c

†
2

◆
|0i,

where |0i is the vacuum state, obtain the global density matrix. [5]

Compute the reduced density matrix for system C, and indicate how you
would compute its entanglement entropy. (This calculation is not required.) [5]

Solution 3. (a) Bookwork. tr[⇢2] = 1 for pure, tr[⇢2] < 1 for mixed.

(b) Hamiltonian eigenstates are

|gi = 1p
2
(|1i+ |2i)

|ui = 1p
2
(|1i � |2i)

with eigenvalues ✏g = �t and ✏u = +t. The density matrix in the eigenstate
basis is

⇢ =
1

Z

✓
e
�t 0
0 e

��t

◆

or ⇢ =
�
|gie�thg|+ |uie��thu|

�
/Z, where Z = e

�t + e
��t = 2 cosh(�t).

Introducing the above expressions for |gi and |ui,

⇢ =
e
�t

2Z (|1ih1|+ |1ih2|+ |2ih1|+ |2ih2|) + e
��t

2Z (|1ih1|� |1ih2|� |2ih1|+ |2ih2|)

=
1

Z {cosh(�t) (|1ih1|+ |2ih2|) + sinh(�t) (|1ih2|+ |2ih1|)}
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⇢ =
1

2 cosh(�t)

✓
cosh(�t) sinh(�t)
sinh(�t) cosh(�t)

◆
=

1

2

✓
1 tanh(�t)

tanh(�t) 1

◆

T ! 0 ⇢ =
1

2

✓
1 1
1 1

◆
; T ! 1 ⇢ =

1

2

✓
1 0
0 1

◆
.

both being hermitian and of trace = 1. The trace of ⇢2 is 1 for T = 0 (a pure
state) and 1/2 for T ! 1, a mixed state.

The von Neumann entropy

S/k = � tr(⇢ ln ⇢) = �
X

n

Pn lnPn = �
⇢
e
�t

Z (�t� logZ) +
e
��t

Z (��t� logZ)

�

= � 1

2 cosh �t

�
�t(e�t � e

��t)� (e�t + e
��t) logZ

 
= logZ � �t tanh �t ,

with S/k ! 0 for T ! 0, and S/k ! log 2 for T ! 1.

(c) For

| i =
⇣
↵11b

†
1c

†
1 + ↵12b

†
1c

†
2 + ↵21b

†
2c

†
1 + ↵22b

†
2c

†
2

⌘
|0i,

the density matrix of the total system

⇢t =

0

BB@

|↵11|2 ↵11↵
⇤
12 ↵11↵

⇤
21 ↵11↵

⇤
22

↵12↵
⇤
11 |↵12|2 ↵12↵

⇤
21 ↵12↵

⇤
22

↵21↵
⇤
11 ↵21↵

⇤
12 |↵21|2 ↵21↵

⇤
22

↵22↵
⇤
11 ↵22↵

⇤
12 ↵22↵

⇤
21 |↵22|2

1

CCA .

The reduced density matrix of the c system

(⇢redc )µ⌫ =
X

i

hiµ|⇢̂|i⌫i

where i runs over states in system B, and µ, ⌫ over the ones in system C, or

⇢
red
c =

✓
|↵11|2 + |↵21|2 ↵11↵

⇤
12 + ↵21↵

⇤
22

↵12↵
⇤
11 + ↵22↵

⇤
21 |↵12|2 + |↵22|2

◆
.

In the case above

⇢
red
c =

✓
1/4 1/

p
8

1/
p
8 3/4

◆
,

impure (tr(⇢2) < 1).

The entanglement entropy for system C would be

S
ent
c = � tr{⇢redc log ⇢redc } = �

X

n

P
c
n logP

c
n,

where P
c
n are the eigenvalues of the reduced density matrix for the system C,

⇢
red
c . The procedure would then involve diagonalising ⇢redc and computing the

entropy from the eigenvalues.

A

V7.1 (TURN OVER



6

4 Given a harmonic oscillator with associated Hamiltonian

H0 =
p
2

2m
+

1

2
m!

2
x
2
,

where m is the mass of the oscillator and ! its angular frequency, and where x and
p are the position and linear-momentum operators.

(a) State the equations of motion for the operators x(t) and p(t) in the
Heisenberg picture and write down their general solution. Define the ladder
operators, a and a

† (annihilation and creation operators), and obtain their
time dependence in the Heisenberg picture. [5]

(b) Consider that the Hamiltonian is suddenly modified at t = 0 to

H = H0 + �x

i.e. displacing both the rest position of the oscillator and the minimum value
of the harmonic potential. If the oscillator was in its ground state |0i prior
to the change, compute the expectation value of the energy after the change
with respect to the new potential energy minimum. Stating the expectation
values of the position (with respect to the new minimum) and momentum
operators just after the change. Using the solutions for x(t) and p(t) of part
(a), write down hx(t)i and hp(t)i. [5]

(c) Using the fact that the Hamiltonian eigenstates after the displacement
relate to the old ones through a translation operator, |n0i = e

�ipx0/~|ni, and
using the following relation,

e
A
e
B = e

A+B
e
[A,B]/2

,

derive the following expansion of the initial state | (0)i = |0i in terms of
new |n0i states just after the displacement [10]

| i =
X

n0

1p
n!

✓
m!x

2
0

2~

◆n/2

e
�m!x20

4~ |n0i.

(d) Show that | i is an eigenstate of the annihilation operator for the
displaced oscillator,

a
0| i = ↵| i

and that it is so for any time t > 0. State the eigenvalue ↵. [5]

Solution 4. Displaced oscillator.

(a) Bookwork, Eq. 1.15 and 1.18 of the lecture notes.

Equations of motion and solutions for x(t) and p(t):

A
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@tx(t) = p/m and @tp(t) = �m!
2
x; then,

x(t) = cos(!t)x(0) + sin(!t)p(0)m! , p(t) = cos(!t)p(0)�m! sin(!t)x(0).

For the ladder operators: a =
p

m!
2~
�
x+ i

p
m!

�
and a

† =
p

m!
2~
�
x� i

p
m!

�
,

the Heisenberg time evolution is: a(t) = e
�i!t

a(0) and a
†(t) = e

i!t
a
†(0).

(b) hHi = h0|H0|0i+ �h0|x|0i = ~!/2 +
q

~
2m! h0|(a+ a

†)|0i. The last term

is zero, and therefore the sudden change in potential has not changed the
total energy on average.

Displaced oscillator: new V (x) = 1
2m!

2(x� x0)2 � 1
2x

2
0, with x0 = � �

m!2 .
Just after the quench (t = 0) and with respect to the new potential energy
minimum, hx(0)i = x0 and hp(0)i = 0, and therefore, hx(t)i = x0 cos(!t) and
hp(t)i = �x0m! sin(!t).

(c) p = i

q
m!~
2 (a� a

†), and then e
�ipx0/~ = e

�✓(a�a†), with ✓ =
q

m!
2~ x

2
0 .

Using the relation o↵ered in the question, e�✓(a�a†) = e
�✓a

e
✓a†

e
✓2/2 .

Now, the coe�cients of the expansion hn0|0i = hn|e�✓a
e
✓a†

e
✓2/2|0i, i.e.,

hn0|0i = 1p
n!
h0|e�✓a

e
✓a† |0ie✓2/2

=
1p
n!

X

m

h0|an+m(a†)n+m|0i
(n+m)!

(�✓)m✓n+m
e
✓2/2

=
1p
n!
✓
n
e
�✓2/2

and | (0)i = |0i =
P

n0 |n0i hn0|0i gives the sought result.

(d)

a
0| i = a

0

 
X

n0

e
�✓2/2

p
n0!

✓
n0 |n0i

!
=
X

n0

e
�✓2/2

p
n0!

✓
n0
a
0|n0i =

X

n0

e
�✓2/2

p
n0!

✓
n0p

n0|n0 � 1i

= ✓

X

n0

e
�✓2/2

p
(n0 � 1)!

✓
n0�1|n0 � 1i = ✓| i.

Therefore, ↵ = ✓ =
p

m!
2~ x0 . It can be seen that | (t)i remains an eigenstate

of a0 at any future time, a0| (t)i = ↵(t)| (t)i: turning to the Heisenberg
picture, a0(t)| (0)i = ↵(t)| (0)i, and remembering that a0(t) = a

0
e
�i!t (and

therefore ↵(t) = ✓e
�i!t).

END OF PAPER
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