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Answer all four questions. Each question consists of 5 parts, worth 5
marks each. The paper contains five sides and is accompanied by a
booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator.
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1 In second quantization two-body interactions U(z, z’) can be described by

i = [ dodo'd (@)1 @)U 2,20y 0)
(a) Which algebraic relations do the operators ¢ () satisfy for bosons
(fermions)? Which algebraic relations do the creation and annihilation
operators, a! and a,, in some orthonormal single-particle basis {p, ()}
satisfy for bosons (fermions)? How are the number operators defined?
What are their possible eigenvalues for bosons (fermions)?

(b) Consider as the single-particle basis, two orthonormal eigenfunctions of a
uniform 1D ring of length L, i.e. ¢;(x) oc €12 and py(z) o e*2%. Show that
the bosonic Hamiltonian for the interaction potential U(z,z’) = gd(x — 2’) is

~

Hie = ang(ng — 1) 4 Bng(ng — 1) + ynune (%)

where n; and ny are number operators corresponding to single-particle states
lp1) and |pq) with real-space wavefunctions ¢ (z) and @q(z), respectively.

(c) Find the ground state of (x) for a fixed total number, 7; + ny = N, and
repulsive interactions g > 0. If you have not solved (b), then find the ground
state of (x) for « = f < 0 and v = 0, and a fixed total number, n; + ny = N.

(d) How would you take into account dispersion, i.e. that the energies of the
two single-particle states o1 (z) and ¢o(z) could be different? Write down the
Hamiltonian including dispersion and its explicit matrix for N = 2 bosons.
Find the ground state of this Hamiltonian for repulsive interactions g > 0.

(e) Consider as the single-particle basis, two orthonormal eigenfunctions of
1D box potential of length L, i.e. ¢1(z) o sin kyx and ¢y(x) o sin kex. Find
the Hamiltonian for the interaction potential U(z,2') = gd(x — 2’) as in (b).
Which feature complicates your finding of the ground state similar to (c)?

Solution 1. (a) Bookwork. (b) Using the expansion ) (x) = @1 (2)i1 + @a(2)ds we
obtain the Hamiltonian ﬁim = %Zklmn Uklnmaza;aman. The non-zero elements are
U1111 = U2222 =4, U1212 = U1221 = U2112 = U2121 =g fOI' the single—particle states,
SO -[;[int = % [’fll(ﬁl — ].) + ’flg(ﬁQ - ].) + 4&1&2] (C) USiIlg ﬂQ =N — TAll we get

Hyp = £ [N? — N + 27, (N — ;)] so ground state twofold degenerate | N, 0),

0, N). Fora = < 0and y =0, Hy, = a[N? — N — 2, (N — 7y)] with the same
ground states. (d) H = Eyhy + Eyfy + Hypy which is diagonal. For N = 2, this is a
3 x 3 matrix. For Fy — E; > 0 it is |V, 0), for By — E; < 01it is [0, N). (e) The

overlap integrals can be done using 2 sin? 5 =1 — cosz and orthogonality of

cosmx. The complication is that ﬁmt is not diagonal in this basis: it contains
terms &J{&J{&ng with a coeflicient fOL dx sin? k,z sin® k,x = %(1 + %&nn)
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2 Consider the Hamiltonian of a harmonic oscillator with an external force F'
2 Mow?z2
H:;;W—k c;:[ — Fx. (%)

(a) Give the eigenstates and the eigenenergies of the Hamiltonian (x).

(b) What is the definition of the coherent state |a)? What is its position
uncertainty? Show that | is the displaced vacuum, i.e. |a) = e®@'~"@ |0),
where |0) is the ground state of the oscillator.

Hint: For [A, B] = a we have edef = eAtBe/2 = eBeden,

(c) Assuming the system is in the ground state for F' = 0 at time ¢ = 0, when
the force is suddenly switched on F' = Fj, what is the state at the time ¢ > 07

A particle with spin % is in thermal equilibrium with a thermal bath at
absolute temperature 7" and under the influence of constant magnetic field B.

(d) Write down the density operator ¢ describing the spin % in this situation.
In which limit is the state of the system pure? When is it maximally mixed?
In which situation would the notion of negative temperatures make sense?

(e) Calculate the expectation value of the spin component S, for B = Be,.
Sketch the dependence of your result as a function of (inverse) temperature.

Solution 2. (a) Completing the square H = % + MT“’Q(x — 1g)? — %, we find

Fy
mw?*

2
the eigenstates are displaced oscillator states with E, = hwn — 5 ]\I}wz and xg =

(b) Bookwork. a|a) = ar]a). (@] 22 |a) — (a| & |a)? = 22pp. () From part (a), we
know that the initial state is a coherent state [¢(t = 0)) = |ap) with ag = f2ZZE 5o
the dynamics is [¢(t)) = |e *ap). (d) 0= e and Z =trp and H = —9B - S,
Negative temperatures correspond the spin pointing in the opposite direction. (e)

(S,) =tr S’ZQ = g%, i.e. pure state T'— 0 and totally mixed T" — oo.
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(a) Show that the propagator of a one-dimensional time-independent
Hamiltonian with a complete set of energy eigenfunctions {¢,(x)} and
eigenvalues {E,} is

K(z,t|l2',t) =0t —t') Z oal) o (2 ) e~ Ealt=t)/

(b) The Hamiltonian
h2 82
= “omanz W

describes an attractive d-function potential (¢ > 0). There is a single bound
state of the form
po(z) = e,

Find s and the energy Ej of the bound state.

(c) Find the phase shifts deyen (k) and doqq(k) for scattering in the even and
odd channels at wavevector k.

(d) Show that the propagator K (0,70,0) can be written

K(0,7)0,0) = xe EoT/h +/ (% * *)

—00

* dk  k? (_ihsz)

w2+ k2 P\ 2m

(e) How does the expression (x  *) behave as T — o0?



Solution 3.
(a) The propagator is
K(x,tla',t") = 0(t —t") (z|U(t,¢")|2') .
Writing
Ut ) = M = 57 i) (] e P00

and taking matrix elements gives the answer.
(b) This is a question of subbing in

Oz po(x) = K*po(@) + 2K8(x),
from which we get k = gm/h? and Ey = h*k?/2m.

(¢) doada(k) = 0 as the odd wavefunctions vanish at the origin.
Write the even wavefunctions as

wk,even(x) = COS(k"iIZ" - 5even(k>>-
Apply the boundary condition

%w (@)|Z = —gy(0)
gives
2k
— sin (Seven = gcos 6even
m
or

tan deyen = K/k.

(d) This is a matter of substituting the results of (b) and (c) into the
formula from part (a). The odd channel doesn’t contribute. Each state in
the even channel contributes

k2
k% + k2
The correct numerical factor requires a density of states calculation.

Alternatively, the shortcut is to note that x — 0 should recover the free
particle propagator, which fixes the factor.

€082 Joyen =

(e) The best way to get at this is write the second term as

< m )3/2 /°° du u? iu?
— — exp [ —— | .
R2T o 21 K2+ mu? [ (R2T) 2

Expanding the denominator and doing the integrals yields a series (actually
an asymptotic series) in 7-™~2 for m = 1,2,.... The behaviour at long
times is thus dominated by the term re "#0T/" arising from the bound state.
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4 Consider the scattering problem in two dimensions.

(a) Show that the asymptotic form of the scattered wave in this case is

wk(r) — zkrcosO / f zkr

which defines the (dimensionless) scattering amplitude f(#) in two
dimensions.

[ Hint: You may find it helpful to know that the form of the Laplacian in |
polar coordinates (r,0) is

Vf = 10, (r0.f) + 3R

(b) Show that the total cross-section, which has the units of length, is

1 2
Azg/MU@w

(c) Show that the 2D plane wave has the expansion

o0

exp (ikr cosf) = Z I (k)€™

where J,,,(p) is the Bessel function satisfying

d2

d
deJ +,0dJ+(p —m?) Jp =0,

and a,, are some coefficients to be determined below.
(d) Given the behaviour

Jm(p) = as p— 0,

2mm!
find the coefficients a,, in the previous part.

(e) The asymptotic form of the scattered wave can be written

e Z \/ %em@mezam oS m@) CcoS (k‘T‘ — % — 1 +6 )

where €y = 2 and €, = 1. Find expressions for f(#) and A in terms of J,,.
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Solution 4.

V7.1

(a) The given asymptotic form satisfies

(V2 + k) e = \/% (@ + f"<9)) ffj?

The remainder on the RHS will be cancelled by subleading terms in the
asymptotic expansion.

(b) The non-oscillating terms in the flux

j = =5 (V% V)

e hk h|f(0)|?
Bk BIO)R
m mr

The probability / time into an angle df is o< (h/m)|f(0)|?df while the
incident flux is o« hk/m. The cross section is the ratio

_ |f(0)]7d0
d)\ — T.

Integrating over 6 gives the total cross section.

(c) We look for separable solutions of the Helmholtz equation
[V?+ K] &(r,0) =0,

where

10 0 1 02

2_10 O 1O
v ror or +T2 062"

Separable solutions are then shown to have the form &(r,0) = J,,(kr)ei™?.

The expansion of the plane wave then follows.

(d) This follows closely the 3D case. The key point is that a term (kr)™e™0
arises only from the m'" order. Using the given asymptote and comparing
coefficients then gives a,, = ™.

(e) We have
out in
. 1 — " - T
imePm cos (kr — % — % + 5m) = 5(\/ —ie*Bm L \fi(—1)me Y. (1)

The crucial part is to subtract the asymptotic form of the plane wave
expansion, which corresponds to setting d,, = 0, to leave only the outgoing
wave. The scattering amplitude f(f) can then be read off as

f(0) = E \/gemei‘s’” sin d,, cos(mf).
T
m=0



Evaluating A\ gives

4 [o.¢]
A= Emz::oemSiHQ Om.-

END OF PAPER
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