
NATURAL SCIENCES TRIPOS Part II

20 April 2016, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions. Each question consists of 5 parts, worth 5
marks each. The paper contains seven sides and is accompanied by
a booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 The time-dependent Hamiltonian

H = −~2

2I

d2

dθ2
− ~η cos(θ)

∞∑
n=−∞

δ(t− nT )

describes the free motion of a particle of mass M on a ring of radius R, where
I = MR2 is the moment of inertia, interrupted by ‘kicks’ at times
t = 0,±T,±2T, . . ..

(a) Show that the evolution operator from a time 0+ (that is, infinitesimally
after time t = 0) to a time NT+ may be written as

U(0+→ NT+) = (UηUT )N , (1)

where

UT = exp

(
i~T
2I

d2

dθ2

)
, Uη = exp (iη cos θ) . (2)

(b) By interpreting the function

exp (ikr cos θ) (3)

as a plane wave in 2D polar coordinates, show that it has the expansion

exp (ikr cos θ) =
∞∑

m=−∞

amJm(kr)eimθ, (4)

where Jm(ρ) is the Bessel function satisfying

ρ2
d2

dρ2
Jm + ρ

d

dρ
Jm +

(
ρ2 −m2

)
Jm = 0, (5)

and am are some coefficients to be determined below.

(c) Given the behaviour

Jm(ρ)→ ρm

2mm!
as ρ→ 0, (6)

find the coefficients am in the previous part.

(d) Find the expression for the action of UηUT on the Fourier components cm
of the wavefunction

ψ(θ, t) =
∞∑

m=−∞

cm(t)eimθ (7)

(e) Show that if
~T
2I

= 2π, (8)

then UT has no effect on the time evolution. In this case, find the
expectation value of the kinetic energy of the particle after N steps,
assuming it starts in the m = 0 ground state.
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Solution 1. (a) This is just a question of evaluating U = T exp
(
− i

~

∫ NT+
0+

H(t)dt
)

carefully. (b) We look for separable solutions of the Helmholtz equation[
∇2 + k2

]
Φ(r, θ) = 0, (9)

where

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
.

Separable solutions are then shown to have the form Φ(r, θ) = Jm(kr)eimθ. The
expansion of the plane wave then follows.

(c) This follows closely the 3D case. The key point is that a term (kr)meimθ

arises only from the mth order. Using the given asymptote and comparing
coefficients then gives am = im

(d) Applying UηUT to the given expansion

UηUTψ(θ, t) = Uη
∑
m

cm exp

(
imθ − i~Tm2

2I

)
=

∞∑
m′=−∞

im
′
Jm′(kr)e

im′θ
∑
m

cm exp

(
imθ − i~Tm2

2I

)
.

(10)

This shows that
cm →

∑
m′

im−m
′
Jm−m′cm′e

−i~Tm′2/2I . (11)

(e) When the given condition is satisfied UT = 1, so that U = UN
η . The

expectation value of the energy is

〈E〉 =
~2

2I

∫ 2π

0

|∂θeiηN cos θ|2 dθ
2π

=
(~ηN)2

2I

∫ 2π

0

sin2 θ
dθ

2π
=

(~ηN)2

4I
, (12)

showing that the energy increases quadratically with the number of steps.
Parenthetically, moving away from resonance causes diffusion and eventually
localization of the eigenstates.
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2 A system consists of two spin-1/2 subsystems, labelled A and B, with states
denoted by |s〉A,B, with s =↑, ↓ corresponding to eigenvalues of the Pauli matrix
σzA,B equal to ±1.

A general state of the composite system may be written

|χ〉 = a1 |↑〉A |↑〉B + a2 |↑〉A |↓〉B + a3 |↓〉A |↑〉B + a4 |↓〉A |↓〉B (13)

(a) Show that the reduced density matrix of the A subsystem
ρA ≡ trB |χ〉 〈χ| is

ρA =

(
|a1|2 + |a2|2 a1a

∗
3 + a2a

∗
4

a∗1a3 + a∗2a4 |a3|2 + |a4|2
)
. (14)

(b) Consider the alternative basis of states

|1〉 =
i√
2

(|↑〉A |↓〉B + |↓〉A |↑〉B)

|2〉 =
1√
2

(|↑〉A |↑〉B + |↓〉A |↓〉B)

|3〉 =
i√
2

(|↑〉A |↑〉B − |↓〉A |↓〉B)

|4〉 =
1√
2

(|↑〉A |↓〉B − |↓〉A |↑〉B) .

(15)

Writing the general state now as

|χ〉 = b1 |1〉+ b2 |2〉+ b3 |3〉+ b4 |4〉 ,

show that the determinant of ρA is

det ρA =
1

4

∣∣∣ 4∑
i=1

b2i

∣∣∣2. (16)

Find the eigenvalues of the density matrix and the entanglement entropy
SA = − tr [ρA log ρA].

(c) What are the conditions satisfied by a matrix belonging to the Lie group
SO(4)? Explain why the matrices

Lx =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , Ly =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , Lz =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



Kx =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Ky =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Kz =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 .

(17)

form a basis for the Lie algebra so(4).
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(d) The algebra of these generators is

[La, Lb] = εabcLc

[La,Kb] = εabcKc

[Ka,Kb] = εabcLc.

, (summation implied) (18)

Find the commutation relations satisfied by L±a ≡ (La ±Ka) /2 and interpret
this result.

(e) By considering the action of σx,y,zA on the states in part (b), explain why
the entanglement entropy is independent of unitary transformations of the A
spin only.

Solution 2. (a) We have

ρA = trB [(a1 |↑〉A |↑〉B + a2 |↑〉A |↓〉B + a3 |↓〉A |↑〉B + a4 |↓〉A |↓〉B)

(a∗1 〈↑|A 〈↑|B + a∗2 〈↑|A 〈↓|B + a∗3 〈↓|A 〈↑|B + a∗4 〈↓|A 〈↓|B)] .
(19)

Taking the trace over the B states yields the answer.
(b) The determinant of ρA is |a1a4 − a2a3|2. Finding ai in terms of bi yields

the given answer. det ρA = λ+λ−, the product of the eigenvalues, and since
λ+ + λ− = 1, we have

λ± =
1

2

(
1±

√
1− 4 det ρA

)
.

The entanglement entropy is just SA = −λ+ log λ+ − λ− log λ−. There’s no need to
write these expressions out in more detail.

(c) Matrix is 4× 4, orthogonal with determinant +1. If M = exp(Λ) satisfies
this condition, then Λ is antisymmetric, and the given matrices form a basis for
the antisymmetric matrices.

(d) This is just taking linear combinations to give[
L±a , L

±
b

]
= εabcL

±
c[

L±a , L
∓
b

]
= 0.

(20)

Interpretation: this is two copies of the su(2) ∼ so(3) algebra, showing that
SO(4) ∼ SU(2)× SU(2)
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(e) The action of the three Pauli matrices is

σxA


|1〉
|2〉
|3〉
|4〉

 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0



|1〉
|2〉
|3〉
|4〉



σyA


|1〉
|2〉
|3〉
|4〉

 =


0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0



|1〉
|2〉
|3〉
|4〉



σzA


|1〉
|2〉
|3〉
|4〉

 =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0



|1〉
|2〉
|3〉
|4〉



(21)

This coincides with iL−x,y,z, showing that the transformations generated are
elements of SO(4). The crucial point is that such transformations leave the
quadratic form

∑4
j=1 a

2
j invariant. Hence the determinant of ρA, and the

eigenvalues, are unchanged.
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3 A Hamiltonian describing bosons with spin that can move between two sites
is

H =

Ht︷ ︸︸ ︷
t
∑
s=↑,↓

(
a†sbs + b†sas

)
+E(∆) (22)

where a†s, as, b
†
s, bs are creation and annihilation operators for the A and B sites,

Na =
∑

s=↑,↓ a
†
sas, Nb =

∑
s=↑,↓ b

†
sbs and E(Na−Nb) is some function of the number

difference ∆ ≡ Na −Nb.

(a) Show that [
a†sbs, E(∆)

]
= (E(∆− 2)− E(∆)) a†sbs[

b†sas, E(∆)
]

= (E(∆+ 2)− E(∆)) b†sas.
(23)

[Hint: It might be easier to explain why a†sbsE(∆) = E(∆− 2)a†sbs]

(b) A unitary transformation H → H ′ ≡ eSHe−S is performed to remove Ht

from the Hamiltonian at lowest order. Show that S must be chosen so that

[S, E(∆)] = −Ht (24)

(c) By taking S to have the form

S = f(∆)
∑
s=↑,↓

a†sbs − h.c., (25)

(h.c. denotes the hermitian conjugate), find the function f(∆).

(d) Show that the transformed Hamiltonian H ′ contains the term

H(2) =
1

2
[S,Ht] (26)

of order t2. Evaluate the part of H(2) that does not change the occupancy of
the two sites, leaving your answer expressed in terms of f(∆).

(e) Discuss how the form of H(2) depends on whether E(∆) is linear (no
interactions between particles) or not.

Solution 3. (a) This follows from the fundamental relations

[a†, Na] = −a†, [a,Na] = a (27)

(b) We have

H ′ = eSHe−S = H + [S,H] +
1

2
[S, [S,H]] + . . . . (28)

The given equation eliminates Ht from the Hamiltonian.
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(c) Plugging in the given form, we need to find

[f(∆)a†sbs, E(∆)] = f(∆) (E(∆− 2)− E(∆)) a†sbs. (29)

from which we immediately get

f(∆) = − t

E(∆− 2)− E(∆)
.

(d) At second order we have the terms

[S,Ht] +
1

2
[S, [S, E(∆)]] =

1

2
[S,Ht],

where we use the relation defining S. The part which doesn’t change the
occupancy comes from the commutator

[f(∆)a†sbs, b
†
s′as′ ] = δss′f(∆)∆+ (f(∆)− f(∆+ 2)) b†s′as′a

†
sbs. (30)

The second order Hamiltonian is then

H(2) = t2

[
f(∆)∆+ (f(∆)− f(∆+ 2))

∑
s,s′

b†s′as′a
†
sbs

]
(31)

(e) The first term in H(2) is always present. The second term requires that
f(∆) is ∆ dependent, which means that it only appears if E(∆) is nonlinear.
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4 The Klein–Gordon equation is[
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

]
Ψ(r, t) = 0. (32)

(a) Explain some of the difficulties in interpreting Ψ(r, t) as a wavefunction,
in contrast to solutions of Schrödinger’s equation.

(b) A vector potential is introduced by the replacement ∇ → ∇− ieA/~.
Show that the equation obeyed by the amplitude ψk(t) of a plane wave
Ψ(r, t) = ψk(t)eik·r in a spatially constant vector potential A(t) is

ψ̈k(t) + ω2
k−eA(t)/~ψk(t) = 0, (33)

where you should state the form of ωk.

(c) Since E = −Ȧ, an electric field pulse at time t = 0 is described by a
vector potential

A(t) =

{
0 t < 0

A0 t ≥ 0
(34)

Find the form of ψk(t) at t > 0 if at t < 0

ψk(t) =

√
1

2ωk

ak exp (−iωkt) , (35)

[Hint: think of this as a 1D scattering problem]

(d) By interpreting the positive and negative frequency parts of the t > 0
solution in terms of ak and b†−k, show that the vacuum condition

ak |VAC〉 = 0, t < 0 (36)

becomes (
ukak + vkb

†
−k

)
|VAC〉 = 0, t > 0, (37)

where you should find uk and vk.

(e) Show that |VAC〉 differs from the state with no t > 0 particles or
antiparticles by a factor

N
∏
k

exp
(
−(vk/uk)a†kb

†
−k

)
(38)

with some normalization N , and find the probability distribution of (k,−k)
particle-antiparticle pairs in terms of vk/uk.
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Solution 4. (a) Negative frequency states; second order means initial Ψ not
sufficient; physical meaning of Π = ∂tΨ ; probability nonconservation, etc.

(b) Straightforward substitution. ωk =
√
c2k2 + (mc2/~)2

(c) We have to solve

ψ̈k + ω2
−ψk = 0, t < 0

ψ̈k + ω2
+ψk = 0, t > 0

(39)

where ω+ = ωk, ω− = ωk−eA0/~. This corresponds to scattering off a potential step.
From the continuity of the solution and its first derivative, the solution is

ψk(t) =


√

1
2ω−

ak exp (−iω−t) t < 0√
1

8ω−
ak

[(
1− ω−

ω+

)
exp (iω+t) +

(
1 + ω−

ω+

)
exp (−iω+t)

]
t ≥ 0.

(40)

(d) From the solution we obtain

v =
1

2

(√
ω+

ω−
−
√
ω−
ω+

)
, u =

1

2

(√
ω+

ω−
+

√
ω−
ω+

)
(41)

(e) The basic observation is that since

a exp(αa†) |VAC〉 = α exp(αa†) |VAC〉 , (42)

(coherent states), the same is true when α is replaced by any operator commuting
with a. For the probability distribution, recall that the normalized occuption
number states are

1√
n!

(a†)n |VAC〉 . (43)

Expanding the exponential shows us the probability of getting n pairs is then
∝ |u/v|2n. After normalizing this geometric distribution we get

Pn = (1− |u/v|2)|u/v|2n.

END OF PAPER
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