
NATURAL SCIENCES TRIPOS Part II

22 April 2015, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains seven sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 A spin-1/2 evolves according to the time-dependent Hamiltonian

H(t) = ~ΩSz + ~ΦSx
∞∑
n=0

δ(t− nT ),

where S = 1
2
σ.

(a) Show that the evolution operator from just before the first ‘pulse’ to just
before the (N + 1)th, is given by

U(NT − ε,−ε) = (UΩUΦ)N ,

where

UΩ =

(
e−iΩT/2 0

0 eiΩT/2

)
, UΦ =

(
cosΦ/2 −i sinΦ/2
−i sinΦ/2 cosΦ/2

)
.

[7]

(b) Show that, if θ = θn̂, where n̂ is a unit vector

exp (−iθ · S) = 1 cos (θ/2)− in̂ · σ sin (θ/2) . [7]

(c) Apply the result of (b) to the evolution operator in (a) to find the angle
through which the spin rotates, and its axis of rotation. [12]

(d) How would the answer to part (c) change if we were to consider a spin S
instead? Explain your reasoning. [7]

Solution 1. (a) State that overall evolution is obtained by compunding a cycle
consisting of a pulse with evolution UΦ followed by precession with evolution
operator UΩ. UΩ = e−iΩTS

z
, UΦ = e−iΦS

x
, followed by computation of matrix

exponentials.

(b) Bookwork (see Handout Problem 7.9).

(c)

UΩUΦ =

(
e−iΩT/2 cosΦ/2 −ie−iΩT/2 sinΦ/2
−ieiΩT/2 sinΦ/2 eiΩT/2 cosΦ/2

)
from which we can read off cos θ/2 = cosΩT/2 cosΦ/2 and the direction
vector

n̂ =
1√

1− cos2ΩT/2 cos2 Φ/2

− cosΩT/2 sinΦ/2
sinΩT/2 sinΦ/2
− sinΩT/2 cosΦ/2


(d) There will be no change. The reason is that the rotation of a spin

S→ e−iθ·S/~Seiθ·S/~

depends only on the angular momentum algebra and not on the value of the
spin. The spin-1/2 case just makes the computation of the matrix exponential
easier.
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(a) Show that

K(x, t|x′, t′) =
θ(t− t′)√
4πD(t− t′)

exp

[
− (x− x′)2

4D(t− t′)

]
is the fundamental solution of the diffusion equation in one dimension,
meaning that it obeys[

∂

∂t
−D ∂2

∂x2

]
K(x, t|x′, t′) = δ(x− x′)δ(t− t′)

K(x, t|x′, t′) = 0 for t < t′.

[6]

(b) Show that K(x, t|x′, t′) has the path integral representation

K(xf , tf |xi, ti) =

∫
x(tf)=xf
x(ti)=xi

Dx(t) exp

(
−
∫ tf

ti

ẋ2

4D
dt

)
.

[8]

(c) K(xf , tf |xi, ti) represents the probability that a particle diffuses from
position xi at time ti to position xf at time tf. Explain why the probability to
do so without leaving the interval −L < x < L is given by

K|x|<L(xf , tf |xi, ti) =

∫
x(tf)=xf
x(ti)=xi

Dx(t) exp

(
−
∫ tf

ti

[
ẋ2

4D
+ V (x)

]
dt

)
,

[7]

where V (x) is the infinite potential well potential

V (x) =

{
0 |x| < L

∞ |x| ≥ L.

(d) K|x|<L can be written in the form

K|x|<L(xf , tf |xi, ti) = θ(tf − ti)
∑
α

ϕα(xf)ϕ
∗
α(xi)e

−Eα(tf−ti),

where ϕα(x) and Eα are the eigenfunctions and eigenvalues of the operator

H = −D ∂2

∂x2
+ V (x).

Use this relationship to find an expression for K|x|<L(x, t|0, 0). [8]

(e) Show that for large t the probability that a particle starting from x = 0
remains in −L < x < L for the whole period is approximately

4

π
exp

(
−π

2Dt

4L2

)
.

[4]
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Solution 2. (a) Bookwork (Handout Problem 3.2)

(b) Key thing is reproducing property

K(x, t|x′, t′) =

∫
dx′′K(x, t|x′′, t′′)K(x′′, t′′|x′, t′).

Break the interval up into many smaller intervals and approximate the
exponent for each by − ẋ2

4D
∆t. In the limit this goes over to the path integral.

(c) Essentially the only thing that needs to be said is that the infinite well
potential eliminates the contribution of any path that steps outside the
interval.

(d) Eigenfunctions are

Cn =
1√
L

cos
πnx

2L
, n = 1, 3, 5, . . .

Sn =
1√
L

sin
πnx

L
, n = 1, 2, 3, . . . .

However, the sines don’t contribute to the propagator starting from x = 0.
The ‘energy’ of the Cn is En = Dπ2n2

4L2 , giving

K|x|<L(x, t|0, 0) =
∞∑
n=0

1

L
cos

π(2n+ 1)x

2L
exp

(
−Dπ

2(2n+ 1)2t

4L2

)

(e) Integrating over [L,−L] and retaining only the first term gives the result.
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3 (a) A plane wave incident in the +z direction is scattered from a scattering
potential of finite range located at the origin. Explain why the wavefunction
has the asymptotic form

ψk(r) −→
r→∞

exp (ikz) +
fk(θ, φ)

r
exp (ikr) . (?) [6]

A model of scattering at energy

Ek =
~2k2

2m

from a discrete state is given by the coupled equations

− ~2

2m
∇2ψk(r) + gdkδ(r) = Ekψk(r)

ε0dk + gψk(0) = Ekdk,
(†)

where dk is the amplitude of the wavefunction in the discrete state, and g
represents the coupling between the discrete state and the continuum.

(b) By assuming ψk(r) has the form (?) for all r, with fk independent of
angle, find the relationship between fk and dk from the first of equations (†). [8]

Hint:

(∇2 + k2)
eikr

r
= −4πδ(r)

(c) By taking ψk(0) in the second of equations (†) to be ψk(δ), for some
small quantity δ, find a second relationship between fk and dk. [8]

(d) Combine your answers to parts (b) and (c) to show that

fk = − ~γ√
2m

1

Ek − ε̃0 + iγ
√
Ek

where

ε̃0 = ε0 −
m

2π~2
g2

δ
,

and you should identify the quantity γ. [11]

Solution 3.

(a) Bookwork (Handout Page 35)

(b) Straightforward application of given identity

2π~2

m
fk + gdk = 0
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(c) By expanding the wavefunction

ψk(δ) ∼
fk
δ

+ (1 + ikfk)

we obtain

ε0dk + g

(
fk
δ

+ 1 + ikf

)
= Ekd

(d) Combining the two gives

(ε̃0 − Ek)
2π~2

mg
fk + g (1 + ikfk) = 0

or
fk = − g

(Ek − ε̃0) 2π~2
mg

+ gik

which yields the answer, with γ = g2m3/2/(
√

2π~3).
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(a) Give the form of the density matrix describing a quantum system with
Hamiltonian H in thermal equilibrium at temperature T . [6]

A pair of coupled oscillators are described by the Hamiltonian

H =
1

2m

(
p2x + p2y

)
+
mω2

2

(
x2 + y2

)
+ kxy.

When k = 0 we may describe the system in terms of the usual ladder
operators

a =

√
mω

2~

(
x+ i

px
mω

)
b =

√
mω

2~

(
y + i

py
mω

)
,

and their conjugates. For k 6= 0 we define new operators ã, b̃ by

a = ã cosh θ − b̃† sinh θ

b = b̃ cosh θ − ã† sinh θ.

(b) Find the value of θ that eliminates ãb̃ and ã†b̃† terms from the
Hamiltonian. [8]

(c) For this value of θ, the ground state for k 6= 0 satisfies
ã |g.s.〉 = b̃ |g.s.〉 = 0. Show that

|g.s.〉 = N exp(λa†b†) |0〉x |0〉y ,

satisfies these conditions, where |0〉x and |0〉y are the ground states of the x
and y oscillators for k = 0, and N is a normalization factor that you do not
need to find. Determine λ in terms of θ. [9]

(d) The reduced density matrix of the x oscillator is defined as

ρx =
∑
n

〈n|y (|g.s.〉 〈g.s.|) |n〉y ,

where |n〉y = 1√
n!

(b†)n |0〉y. Show that ρx describes an oscillator in thermal
equilibrium, and find the temperature.

[10]

Solution 4.

(a) Bookwork (Handout Eqs. (5.36)-(5.37))
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(b) Rewriting the Hamiltonian in terms of a, b, and then transforming to ã, b̃, we
find that the term in ãb̃ is

−2ω sinh θ cosh θ +
k

2mw

(
cosh2 θ + sinh2 θ

)
.

Setting this to zero gives

tanh 2θ =
k

2mω2
.

(c) Apply ã to the given state:

ã |g.s.〉 =
(
a cosh θ + b† sinh θ

)
|g.s.〉 =

(
λb† cosh θ + b† sinh θ

)
|g.s.〉 ,

The last step follows from the same manipulation that proves that a coherent state
eαa

† |0〉 is an eigenstate of a. Equating to zero gives

λ = − tanh θ

(d) The ground state is

|g.s.〉 = N
∑
n

λn |n〉x |n〉y .

Thus,

ρa = |N |2
∑
n

λ2n |n〉x 〈n|x ,

which means that ρa = Z−1e−β~ωa
†a with β~ω = − log λ2. Since |λ| < 1 this is

always positive.
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5 In a particular scattering experiment the S-matrix relating incoming α1,2

amplitudes to outgoing β1,2 amplitudes is(
β1
β2

)
=

1√
2

(
1 1
1 −1

)(
α1

α2

)
.

(a) Explain why the S-matrix has to be a unitary matrix. [6]

a†i , ai (i = 1, 2) create and destroy particles in the incoming states, and
b†i , bi do the same for the outgoing states. The creation operators are related
by the S-matrix (

b†1
b†2

)
=

1√
2

(
1 1
1 −1

)(
a†1
a†2

)
.

In the following parts, give all possible occupancies of outgoing states 1 and
2, and their probabilities. The statistics of the particles are given in square
brackets. Note that the states are not necessarily normalized.

(b) The initial state is a†1a
†
2 |VAC〉 [Fermions]. [6]

(c) The initial state is a†1a
†
2 |VAC〉 [Bosons]. [6]

(d) The initial state is (a†1)
N(a†2)

N |VAC〉 [Bosons]. [7]

(e) The initial state is exp(α1a
†
1 + α2a

†
2) |VAC〉 [Bosons]. [8]

Solution 5.

(a) Bookwork. Some discussion of flux conservation (see Handout Page 31).

(b) Outgoing state is 1
2
(b†1 + b†2)(b

†
1 − b

†
2) |VAC〉 = −b†1b

†
2 |VAC〉. Only possible

occupancies are N1 = N2 = 1.

(c) Outgoing state is 1
2
(b†1 + b†2)(b

†
1 − b

†
2) |VAC〉 = 1

2

(
(b†1)

2 − (b†2)
2
)
|VAC〉. Either

N1 = 2 N2 = 0 or N1 = 0, N2 = 1, both with probability 1/2.

(d) Outgoing state (after normalization) is

1
2N
√
2N !

(b†1 + b†2)
N(b†1 − b

†
2)
N |VAC〉 = 1

2N
√
N !

(
(b†1)

2 − (b†2)
2
)N
|VAC〉. Probability

distribution is

P (N1, N2) =

0 N1,2 = odd

N1!N2!
22N (2N)!

(
N !

(N1/2)!(N2/2)!

)2
N1,2 = even
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(e) The final state is

exp

(
1√
2

[α1 + α2] b
†
1 +

1√
2

[α1 − α2] b
†
2

)
|VAC〉

(unnormalized). Since this is a product of coherent states, the distribution is
independent Poissonian for each state with rates 1

2
|α1 ± α2|2.

Proof for a single coherent state: e−|α|
2/2eαa

† |0〉 = e−|α|
2/2
∑

n
αn√
n!
|n〉 which

gives probabilities Pn = e−|α|
2 |α|2n

n!
.
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(a) State the properties satisfied by the matrices S that form the Lie group
SL(2,C). [3]

(b) The hermitian matrix

X =

(
ct+ z x+ iy
x− iy ct− z

)
is associated with the four vector xµ = (ct, x, y, z). Explain why the
transformation

X→ X′ = SXS†,

corresponds to a Lorentz transformation of the four vector. [Hint: consider
the determinant.] [7]

(c) Show that light-like four vectors may be parameterized in terms of a two
component spinor by

XAB = χAχ
∗
B, A,B = 1, 2,

and that

χ =

(
cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)
,

corresponds to a light-like four vector with spatial part pointing in a
direction specified by the polar coordinates (θ, φ) in the usual way. [7]

(d) Find how θ and φ transform for S = exp(κσz/2). [7]

(e) Show that your answer to (d) is consistent with the transformation of the
four vector found in part (c) by the Lorentz transformation Λ = exp(κKz),
where

Kz =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

[9]

Solution 6.

(a) 2× 2 complex matrices of unit determinant (see Handout Page 106).

(b) det X = (ct)2 − x2, which is preserved by the given transformations, which also
preserves hermiticity. Linear transform that preserves invariant interval = Lorentz
transformation.

(c) X of this form have vanishing determinant. Note that χAξB has vanishing
determinant but ξ = χ∗ is required for X to be hermitian. Explicit computation of
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4-vector gives 
ct
x
y
z

 =


1

sin θ cosφ
sin θ sinφ

cos θ


Here there was a sign error φ→ −φ in the question!

(d) Under χ→ χ′ = Sχ φ is unchanged and

tan θ′/2 = e−κ tan θ/2

(e) Finding the matrix exponential gives

Λ =


coshκ 0 0 sinhκ

0 1 0 0
0 0 1 0

sinhκ 0 0 coshκ

 .

Transforming the light-like four-vector from the previous part gives x′ = x, y = y′,
and

t′ = coshκ+ z sinhκ

z′ = z coshκ+ sinhκ
,

so that

tan θ′ =
sin θ

coshκ cos θ + sinhκ
.

Applying some trig we write this as

2 tan θ′/2

1− tan2 θ′/2
=

2 sin θ/2 cos θ/2

coshκ(2 cos2 θ/2− 1) + sinhκ
=

2e−κ tan θ/2

1− e−2κ tan2 θ/2
,

which agrees with the result of part (d).

END OF PAPER
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