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Answer three questions only. The approximate number of marks allotted to
each part of a question is indicated in the right margin where
appropriate. The paper contains seven sides and is accompanied by a
booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 Consider a spin-1/2 in a time varying field, described by the Hamiltonian

H(t) = Ω0Sz +
ΩR

2

(
S+e

−iωt + S−e
iωt

)
,

where S± = Sx ± iSy, and Si = h
2σi , i = x , y , z, with σi the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
.

(a) Write the state of the system |Ψ (t)〉 in the form

|Ψ (t)〉 = exp (−iωtSz/h) |ΨR(t)〉

and show that |ΨR(t)〉 obeys the equation

ih
d |ΨR(t)〉

dt
= HRabi |ΨR〉

where
HRabi = (Ω0 − ω) Sz + ΩRSx .[

You might find it useful to write the Hamiltonian as a 2 × 2 matrix.
]

[7]

(b) Find the eigenvalues of HRabi and describe the complete time evolution of the
corresponding eigenstates (you don’t need to find the eigenstates explicitly). [8]

(c) Find the evolution of the phase of the eigenstates of HRabi after time 2π/ω .

Considering the adiabatic limit ω �
√
Ω2

0 + Ω2
R, interpret your result in terms of

Berry’s phase. [9]

(d) Explain how your answers to (a), (b), and (c) would be modified if we have
spin-s, rather than spin-1/2. [9]

Solution (a) is straightforward, the only hard part being to transform the rotating parts of
the Hamiltonian

eiωSz t/hS+e
−iωte−iωSz t/h = S+,

which can be done just with 2 × 2 matrices if need be, though for part (d) they would be
better off recognizing that it only depends on the angular momentum algebra. (b)
eigenvalues are

E± = ±
h

2

√
(Ω0 − ω)2 + Ω2

R,

and the time evolution of the eigenstate is

e−iE±t/h

e−iωt/2ψ(±)
↑

eiωt/2ψ(±)
↓

 .
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(c) In time 2π/ω the phase evolves by an amount

π

(
1 ±

1
ω

√
(Ω0 − ω)2 + Ω2

R

)
−→
ω→0

π

± 1
ω

√
Ω2

0 + Ω2
R + 1 ∓

Ω0√
Ω2

0 + Ω2
R

 .
The first part is the dynamical phase, while the ω-independent part is the Berry phase,
which may be written

π (1 ∓ cos θ)

where cos θ =
Ω0√
Ω2

0+ΩR

. 2π(1 − cos θ) is the solid angle of a circular cap on the unit

sphere subtending an angle 2θ, while 2π(1 + cos θ) is minus this (mod 4π). (d) Nothing
changes in (a), because the transformation depends only on the angular momentum

relations. In (b) we have 2s + 1 levels with energies mh
√

(Ω0 − ω)2 + Ω2
R, m = −s, . . . s.

In (c) we likewise have m multiplying the solid angle rather 1/2.
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2 In one dimension, the propagator K (x , t |x′, t′) is the solution of the equation[
ih
∂

∂t
− H

]
K (x , t |x′, t′) = ihδ(x − x′)δ(t − t′) and

K (x , t |x′, t′) = 0 for t < t′,

where H is the Hamiltonian. The momentum space propagator is defined by

K (x , t |x′, t′) =
1

2πh

∫ ∞

−∞

dpdp′ K (p, t |p′, t′) exp
(
ipx/h − ip′x′/h

)
.

(a) Show that the propagator for a free particle is

Kfree(x , t |x′, t′) = θ(t − t′)
(

m

2iπh(t − t′)

)1/2

exp
[
−
m(x − x′)2

2ih(t − t′)

]
[7]

(b) Now consider a particle moving in a linear potential, described by the
Hamiltonian

H = −
h2

2m
∂2

∂x2 + αx .

Find the equation satisfied by K (p, t |p′, t′) and verify that the solution is

K (p, t |p′, t′) = θ(t − t′)δ(p − p′ + α[t − t′]) exp

 i
(
p3 − p′3

)
6αmh

 .
[8]

(c) Use the result of part (b) to obtain K (x , t |x′, t′) for a particle moving in a
linear potential. [9]
(d) By computing the classical action for a trajectory (x′, t′)→ (x , t), show that
the same result follows from the path integral. [9]

Solution (a) Bookwork. They could continue from the fundamental solution of the heat
equation, or compute the Fourier transform of the momentum space propagator. (b)
Equation is [

ih∂t − ihα∂p −
p2

2m

]
K (p, t |p′, t′) = ihδ(t − t′)δ(p − p′).

Verify solution by substitution. (c) This is a matter of computing the Fourier transform

K (x , t |x′, t′) =
1

2πh

∫ ∞

−∞

dpdp′ K (p, t |p′, t′) exp
(
ipx/h − ip′x′/h

)
=

1
2πh

∫ ∞

−∞

dp exp
(
i(p3 − [p + α(t − t′)]3)

6αmh
+ ipx/h − i(p + α[t − t′])x′/h

)
=

1
2πh

∫ ∞

−∞

dp exp

− i(t − t′)
2mh

(
p + α(t − t′)/2 −

(x − x′)m
t − t′

)2

−
iα2(t − t′)3

24mh
+
i(x − x′)2m

2h(t − t′)
−
iα(x + x′)(t − t′)

2h

)
.
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Doing the Gaussian integral gives the final form

K (x , t |x′, t′) =

(
m

2iπh(t − t′)

)1/2

exp
(
−
iα2(t − t′)3

24mh
+
i(x − x′)2m

2h(t − t′)
−
iα(x + x′)(t − t′)

2h

)
(d) For the path integral solution we need to find the classical action for the trajectory

X(t) = x′ −
αt2

m
+ (x − x′)

t

T

(I’ve set T = t − t′ for convenience). Then we have

Scl =

∫ T

0
dt

[
1
2
mẊ2 − αX

]
=

m(x − x′)2

2T
−
α2T 3

24m
−
α(x + x′)T

2
,

which leads quickly to the result once you argue that the Gaussian path integral is
unchanged from the free particle case.
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3 A particle is initially in a plane wave state eik ·r and interacts with a scattering
potential V (r). Its wavefunction is a solution of the Lippmann–Schwinger equation

ψk(r) = eik ·r −
m

2πh2

∫
d3r′

eik |r−r
′ |

|r − r′|
V (r′)ψk(r′).

(a) Show that the differential cross-section in the (first) Born approximation is

dσ(θ, φ)
dΩ

=

∣∣∣∣∣ m

2πh2

∫
d3r e−iq·rV (r)

∣∣∣∣∣2
where q = k f − k is the momentum transfer, and k f is the final momentum,
pointing in a direction specified by spherical coordinates (θ, φ). [7]

(b) Use this result to show that the total cross-section in the Born approximation is

σtotal =
m2

πh4

∫
d3r d3r′V (r)V (r′)

sin k |r − r′|

k |r − r′|
eik ·(r−r

′)

[8]

(c) By iterating the integral equation a second time find the second Born
approximation to the scattering amplitude. [9]

(d) Show that the results of parts (b) and (c) are consistent with the optical
theorem

Im f (θ = 0) =
kσtotal

4π
,

where f (θ, φ) is the scattering amplitude. [9]

Solution (a) Bookwork based on approximating the exponent in the
Lippmann–Schwinger equation by

k |r − r′| ∼ kr − k r̂ · r′

(b) Write the answer to (a) as a double integral

σtotal =

(
m

2πh2

)2 ∫
dΩk f

∫
d3rd3r′ e−iq·(r−r

′)V (r)V (r′).

Doing the integral over the solid angle gives the result. (c) Second Born approximation
to the scattered wave is

ψ(2)
k

(r) =

(
m

2πh2

)2 ∫
d3r1d

3r2
eik |r−r1 |

|r − r1 |
V (r1)

eik |r1−r2 |

|r1 − r2 |
V (r2)eik ·r2 ,

which gives the contribution to the scattering amplitude

f (2) =

(
m

2πh2

)2 ∫
d3r1d

3r2 e
−ik f ·r1V (r1)

eik |r1−r2 |

|r1 − r2 |
V (r2)eik ·r2 .

(d) Evaluating at k = k f gives the forward scattering amplitude, which checks with the
optical theorem.
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4 A product state of a system of identical bosons or fermions is described in terms of
single particle states ϕα(r), occupation numbers Nα, and creation and annihilation
operators a†α, aα. The field operator has the form

ψ(r) ≡
∑
β

ϕβ(r)aβ ,

while the density operator is
ρ̂(x) ≡ ψ†(x)ψ(x).

(a) Show that in a product state the density-density correlation function has the
form (with the plus sign for bosons and minus sign for fermions)

Cρ(r , r′) ≡
〈
: ρ(r) ρ(r′) :

〉
= 〈ρ(r)〉

〈
ρ(r′)

〉
± g(r , r′)g(r′, r).

Here : · · · : denotes normal ordering, 〈ρ(r)〉 is the expectation value of the density,
and

g(r , r′) =
∑
α

Nαϕ
∗
α(r)ϕα(r′)

is the single particle density matrix. The term with both creation and both
annihilation operators corresponding to the same state may be neglected in the
limit of a large system. [10]

(b) Assuming that g(r , r′)→ 0 as |r − r′| → ∞, find the ratio

Cρ(r , r)
lim

|r−r ′ |→∞
Cρ(r , r′)

for both bosons and fermions. [4]

(c) Now find the form of the three point correlation function

C
(3)
ρ (r1, r2, r3) ≡ 〈: ρ(r1)ρ(r2)ρ(r3) :〉,

expressing your answer in terms of 〈ρ(r)〉 and g(r , r′).
[15]

(d) Find the ratio

C
(3)
ρ (r , r , r)

lim
|r1−r2 |→∞
|r1−r3 |→∞
|r2−r3 |→∞

C
(3)
ρ (r1, r2, r3)

for both bosons and fermions. [4]
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Solution(a) From the definition

Cρ(r , r′) = ±
∑
αβγδ

ϕ∗α(r)ϕβ(r)ϕ∗γ(r′)ϕδ(r′)〈a†αa
†
γaβaδ〉

=
∑
αγ

|ϕα(r)|2 |ϕγ(r′)|2NαNγ ±
∑
αγ

ϕ∗α(r)ϕα(r′)ϕ∗γ(r′)ϕγ(r)NαNγ

= 〈ρ(r)〉
〈
ρ(r′)

〉
± g(r , r′)g(r′, r).

Notice that the case α = β = γ = δ is not handled correctly by this formula, but provides
a negligible contribution as the size of the system goes to infinity. (b) The ratio is 2 for
bosons and 0 for fermions. (c) The three point function is a straightforward
generalisation of the calculation for the two point case. There are six different ways to
pair the indices of the three creation operators with those of the three annihilation
operators. Any such pairing results in an occupation number factor.

C
(3)
ρ (r1, r2, r3) = ±

∑
abcde f

ϕ∗a(r1)ϕb(r1)ϕ∗c(r2)ϕd(r2)ϕ∗e(r3)ϕ f (r3)〈a†aa
†
ca
†
eabada f 〉

= 〈ρ(r1)〉〈ρ(r2)〉〈ρ(r3)〉 ± g(r1, r2)g(r2, r1)〈ρ(r3)〉
± g(r1, r3)g(r3, r1)〈ρ(r2)〉 ± g(r2, r3)g(r3, r2)〈ρ(r1)〉
+ g(r1, r2)g(r2, r3)g(r3, r1) + g(r1, r3)g(r3, r2)g(r2, r1)

(d) The ratios are 6 and 0.
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5 Consider a system of N bosons, each of which can occupy only two states: |↑〉 and
|↓〉. We can introduce creation and annihilation operators a†s , as, with s =↑, ↓, to add and
remove particles from the two states.

(a) Show that the operators

Sx =
h

2

(
a
†

↑
a
↓

+ a
†

↓
a
↑

)
Sy = −i

h

2

(
a
†

↑
a
↓
− a
†

↓
a
↑

)
Sz =

h

2

(
a
†

↑
a
↑
− a
†

↓
a
↓

)
obey the angular momentum (SU(2)) commutation relations. [7]

(b) Show that S2 ≡ S2
x + S2

y + S2
z can be expressed in terms of N , the total number

of bosons, and find the relationship between the spin quantum number s and N . [8]

(c) A totally symmetric wavefunction of N bosons can be written asΨ(s1s2···sN ),
where the round brackets denote the operation of symmetrisation:

Ψ(s1s2···sN ) =
1
N !

∑
P

ΨsP1sP2···sPN
,

and the sum is over all permutations of N objects. How many independent
components are needed to describeΨ(s1s2···sN )? Interpret this result in terms of
angular momentum states. [5]

(d) What are the defining properties of the Lie group SU(2)? [3]

(e) Under an element U of SU(2), the componentsψs of a one boson state
transform asψ → Uψ. If φs and χs are the components of two one boson states,
show that the quantity φ↑χ↓ − φ↓χ↑ is invariant under SU(2) transformations.

[10]

Solution (a) Straightforward. (b) We first find

S2
x + S2

y =
h2

4

([
a
†

↑
a
↓

+ a
†

↓
a
↑

]2
−

[
a
†

↑
a
↓
− a
†

↓
a
↑

]2
)

=
h2

2

(
a
†

↑
a
↓
a
†

↓
a
↑

+ a
†

↓
a
↑
a
†

↑
a
↓

)
=
h2

2
(
N↑

[
N↓ + 1

)
+ N↓

[
N↑ + 1

)]
Together with S2

z = h2

4
(
N↑ − N↓

)2 we get S2 = h2s(s + 1) where s = (N↑ + N↓)/2. (c)
N + 1 = 2s = 1 components required. This is just the number of independent angular
momentum states of spin s. (d) 2 × 2 unitary matrices of determinant one. (e) For a
general 2 × 2 matrix

U =

(
a b

c d

)
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we find that
φ↑χ↓ − φ↓χ↑ → (ad − bc)

(
φ↑χ↓ − φ↓χ↑

)
,

so as long as the determinant is one this quantity is invariant (so being unitary is actually
a red herring).
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6 The one dimensional Klein–Gordon equation has the form(ih ∂
∂t
− V (x)

)2

+ c2h2 ∂
2

∂x2 − m2c4
 ψ(x , t) = 0,

where V (x) is an external potential.
(a) When V (x) = 0, a general solution of the Klein–Gordon equation can be
written

ψ(x , t) =
∑
k

√
1

2ωk

[
a
k

exp (i [kx − ωk t]) + b
†

k
exp (−i [kx − ωk t])

]
,

where ωk =
√
k2c2 + m2c4/h2. How is this solution modified when V (x) = V0? [6]

(b) Consider the potential step

V (x) =

V0 x > 0
0 x < 0

.

Find the transmission and reflection amplitudes for an incoming plane wave of
energy E > mc2 incident from x < 0. [9]

(c) Paying careful attention to the analytic structure of the reflection and
transmission amplitudes, describe their behaviour in the three regimes

I : E > V0 + mc2

I I : V0 − mc2 < E < V0 + mc2

I I I : E < V0 − mc2,

assuming V0 > 2mc2. [12]

(d) What is the physical interpretation of the behaviour in regime III? [6]
Solution (a)

ψ(x , t) =
∑
k

√
1

2ωk

[
a
k

exp (i [kx − (ωk +V0/h) t]) + b
†

k
exp (−i [kx − (ωk − V0/h) t])

]
,

(b) A plane wave incident from x < 0 has wavevector k = 1
hc

√
E2 − m2c4 and gives rise

to a wave on x > 0 with q = 1
hc

√
(E − V0)2 − m2c4, as well as reflected wave. Writing

ψ(x) =

eikx + re−ikx x < 0
teiqx x > 0

we find that continuity of the wavefuntion and its first derivative yield

t =
2

1 + q/k
, r =

1 − q/k

1 + q/k
.
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It would also be acceptable to normalise these to the flux of the particles by including a
factor q

k
in t.

(c) In regime I, k and q are real and positive, and the reflection amplitude is decreasing
to zero with increasing energy, while the transmission amplitude tends to 1. In regime II
q is imaginary, so that r is a complex number of unit modulus. Although t is finite it is
the amplitude of an evanescent wave. In regime III both k and q are real once more, but
q is negative (that is, if we are taking E to have a positive imaginary infinitesimal, q is
positive in regime I – as is physically necessary – and negative in regime III). Thus both
t and r are becoming large.
(d) In regime III the potential step is able to create particle-antiparticle pairs, with the
particle going to −∞ and the antiparticle to +∞. Ideally, reference should be made to
part (a), noting that in this regime the dispersion of the particles on x < 0 overlaps with
the dispersion of antiparticles on x > 0. Those especially on the ball will note that
negative q antiparticles have a positive group velocity (i.e. moving away from x = 0).

END OF PAPER
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