Tale 10 on theory of activated processes, Kramers’
problem and the Wiener-Hopf method

I decided to tell this tale to show how the Wiener-Hopf method
works on example of a physical problem.

Kramers’ problem of escape from a potential well

Consider a particle moving in a potential well and interacting
with a thermal bath. The equation of motion for such a particle
has the form:

mi +myz — U'(z) = n(t) (1)

where v is a damping rate, m is the particle’s mass, and the
random force is assumed to be distributed by the Gaussian law
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Figure 1: Potential well, from which the Brownian partcle escapes over the
barrier, located at origin.



with the white-noise correlation function:

(n(t)) =0,  (nt)n(t')) =2myTé(t —t') (2)

The distribution function F(p,z,t) in the phase space p, z sat-
isfies the Fokker-Planck equation:
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If the temperature of the bath T" is low enough (7' < Uy), then
the rate of escape is low as well. So, the distribution function
will come to approximate equilibrium:
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in a relatively short time, while the total number N (¢) changes
slowly.

The normalization of the distribution function (4) is determined
mainly by the shape of the potential near its minimum
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which gives

P, p,T) = N;?j?l exp {—% [Ul +U®@) + %] } )

where only the total number N(¢) depends on ¢. The total
flux from the trap J may be expressed through the distribution
function:

J=%/®pF@-
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Since J is proportional to N,

- N
N=—J=——|
-
where 1/7 = J/N is the escape rate.
Thus, our purpose is to find 7. To do this we must solve the

stationary FP-equation

with the boundary conditions
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—e = — (——I—U) >T, ¢ = T, Flz— +00) = 0. (8)
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Two regimes of escape

A particle, trapped in our potential well, escapes from it, what
leads to depletion of the distribution function in the energy range
of width T near the barrier top, where the potential may be
represented as

Ulz) =— . w~Q, mw?z? ~ Ul

The distribution function at smaller energies is largely unper-
turbed.

The damping rate v has the same dimension as that of frequency.
So, if ¥ > w, then our particle moves aperiodically. In the op-
posite limit v < w the particle moves almost periodically, losing
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in every period of oscillation a relative part of its energy of the
order of v/w. Thus, the energy loss per period ¢; is given by

U
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There are, therefore, two regimes of under-damped motion:

1) (51 >T and

). & < T,

In the case i). our particle comes to the escape energy range
only once; in the case ii). it comes repeatedly.

Integral equation

We assume that under conditions of under-damping (v < w, but
01 < T or 6; > T) the escape rate is determined by energies
close to zero. It is convenient to introduce new variables

p(e,x) = i\/Qm[e — U(z)], (9)
which allow to express the derivatives in the form:
0 P+ 0
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It is natural now to define distribution functions for left(right)
moving particles

1
PR (e,2) = = Flps,a,d (12)
We'll see that it is possible to set € = 0 into pi (€, z). Under this

assumption, the FP equations take the form
(9fR’L
ox
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subject to the boundary conditions

fiexi(e)) = femi(e)), €= Ulea(e)] =0, (14)
e, za(€)) = fE(e,xa(e)), €<0, e—Ulzy(e)] =0, (15)
fH(e,0) = 0, €e>0. (16)

Here 2;(9)(€) denote stoping points at left(right) side of potential
well and Eq (16) shows that there is no flux from the right at
e > 0. The FP equations could be simplified if we introduce the
action S(z,€) instead of z, using the relations:

dsS dsS
o= +1/2m[e — U(z)], i +/—-2mU(z), e =0. (17)
Therefore, the FP equation has the form
8fR’L 0 BRI 6fR,L
— —_— ’ T ]_8
o5 = Ta T TG (18)

This differential equation is already so similar to the diffusion
equation, that we can rewrite it in the integral form without
further explanation

fe.8)= [ “gle— .5~ S)f(e,Shde,  (19)
where g(e,0) = §(e). The explicit form for g(e, S) is
B 1 [ (e +75)7]
o(e:5) = | gy o0 |- (20)

The evolution of the distribution function, as a result of one
oscillation, is




Thus, the function, which was equal to fy(e) at the barrier’s top
will be transformed in one period of oscillation into

/_Ooo de' fo(€')g(e — €),

where it is taken into account that only f(¢) at € < 0 contribute
to the evolution since f(e) at € > 0 corresponds to escaping
particles. Thus,

_ 1 0 / / (6 — €+ 61)2
=\ ams T /_OO de' fo(€') exp [— s ] . (22)

After one oscillation the distribution is shifted by ¢; and broad-
ened with dispersion A = (62)1/2 = (26,T)"/2. Thus, if 6; > T,
then oy > A >T. As —e> T,

T (23)

The flux J can also be expressed through solution of the integral

equation
== [T fe)de

where the identity de = pdp/m is used. If §; < T, then § <
A <« T, and the kernel of the integral equation (22) may be
expaned in energy difference. Upon the integration over energy
¢’ it yields a differential equation instead of an integral one:

df
T— 24
de ( de + f) (24)
We can reduce its order to get the equation
d
df + f=J. (25)



The solution of Eq (25) compatible with the boundary condi-
tions may be found in the form

_ Ql —Ul/T E/T
fle)=Ag —e (e —1) (26)
which gives us the escape rate
_ df Moy
1 _ _ U/T
= 6Ty = 27
! ! de‘ 0 27TT€ (27)
We are looking for the expression for the escape rate in the form
Q
-1 _ 1 _uyT
— A= 28
T o € (28)

and see that A is linear in §;/T at 6; < T. We will shortly see
that A =1 at ; > T. Thus, our purpose is to match these two
asymptotes.

The Wiener-Hopf method

The right hand side of our equation has the form of convolution
of two functions f and g on the negative half-axis:

f&= [ degle—)f(e)

Wiener and Hopf invented their method specially for solving the
equations of exactly this kind. Following their prescription we
introduce the two half-axis Fourier transformations

2 U 0 21 1
b+ (p) = Q—Texp (%) /_+OO def(€) 6(£e) exp [%] (29)
Comparison with the normalization condition gives

A=6.(3) (30)
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The boundary condition

as € — —oo means that ¢_(u) hasapoleat p =i/2 and ¢_(u) =
—1(u+i/2)7 " at |u+1i/2| < 1. The Fourier transform of the
integral equation has the form

¢4 (1) + ¢— () = g(p)d-(n), (31)
g(u) = exp |— <u2 + i) %l (32)
Thus,
¢+ (1) = = G(p)o-(n),
where
6w =1-ewp |- (w+7) 2] (33)

It is important to note that ¢ (u) is a holomorphic function at
Impy > —ay (ap > 0), and ¢_(i) is a holomorphous function
at Imy < a— < 0 with the only exception for its pole at y =
—i/2. Thus there is a stripe where both these functions are
holomorphous. The next step of the Wiener-Hopf procedure is to
represent G (u) in a factorised form G(u) = G4 (u)-G_(p), where
G4 and G_ are entire functions which have no zeros the upper
and lower half-planes respectively. If we manage to factorize G,

then
¢+ (1) _
It is a good idea to eliminate the pole of ¢_(u) at p = —i/2
G ) =Gty (9



Both sides of Eq (34) are holomorphous functions in certain
areas and they coincide in the stripe where these areas overlap.
Therefore, they are both holomorphous, equal in the whole plane
including the infinity and, according to the Liouville theorem,
they both are equal to a constant. Therefore,

i G_(~i/2)

L G(=i/2)Gs ()
d)-l- (M) = ! u+ 2/2 (37)

As for the pre-exponential factor A, it is determined by Eq (30)
A=¢.(i/2) = ‘G+(i/2)‘2

Thus, in order to find the escape rate, we don’t need even to in-
vert Furrier transform for ¢_(u) . It is enough to split the kernel
GG into retarded and advanced parts. This problem of factoriza-
tion may be reduced to the problem of an additive splitting by
taking the logarithms

log G(p) = log G+ () + log G_ ()
Now we can express log G+ through log G

1 +oc log G !
log G () = 5 [ 0B

2mi ooyl — p e (38)

and, finally,

1 f+oo log G(1) d,u’) (39)

G = +—
+ (1) eXP( omi -0 —

Thus, as a result,

1 4o dp &1 (p* + 1)
eXp{zw/—oo u2+in( eXp( T (40)
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Now we are able to study the limiting cases. If §; < T', we can
expand the exponent under the sign of the logarithm, and

. > 1
A = exp i/_'_ QdM - In 51(” +4) —
27T —0 ILL +Z T

51 1 +00 d,u (51
_a L oo _ap | _ 0 41
R e { o [T =2 (a1)

Intermediate behavior is represented in the figure.
One more question which may intrigue the reader relates to the
mean energy of an escaping particle. Since the distribution func-

tion near the barrier top has the form

Ql +00 € . 1
f(e) = 1T o b4 (1) exp {_T <—zu + 5) } dpu (43)
the mean energy may also be expressed through the Wiener-
Hopf solution

<e> =

Jo > fle)ede _ (dlog ¢+(u)) _
p=i/2

Jo fle)de dp
. g m/2 . 9 51
- T{1+ 7T/O (1—2cos?z) In (rcos%ﬂ (44)

For 61 > T the integral in the brackets is negligible and < € >=
T. For 4y < T we again can expand the exponent under the
sign of logarithm and

<e> 2 (m/2 2 41 B
T = 1+ 7r/0 (1 —cos®x) 1n{4Tc052x}dx_
b1 o1
= ((1/2) | =% = .824| = 4
12, 2L = s2, 2 (45
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which is understandable since under conditions of very low vis-
cosity the Langevine fluctuating force is weak as well and it does

not accelerate a particle even to energy T over the top of the
barrier.

Finally, we must emphasize that such a long and stressful work
was absolutely necessary and led to complete success.
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