
Tale 10 on theory of a
tivated pro
esses, Kramers'problem and the Wiener-Hopf methodI de
ided to tell this tale to show how the Wiener-Hopf methodworks on example of a physi
al problem.Kramers' problem of es
ape from a potential wellConsider a parti
le moving in a potential well and intera
tingwith a thermal bath. The equation of motion for su
h a parti
lehas the form: m�x+m
 _x� U 0(x) = �(t) (1)where 
 is a damping rate, m is the parti
le's mass, and therandom for
e is assumed to be distributed by the Gaussian law
x

U

− U oFigure 1: Potential well, from whi
h the Brownian part
le es
apes over thebarrier, lo
ated at origin.
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with the white-noise 
orrelation fun
tion:h�(t)i = 0; h�(t)�(t0)i = 2m
TÆ(t� t0) (2)The distribution fun
tion F (p; x; t) in the phase spa
e p; x sat-is�es the Fokker-Plan
k equation:�F�t + pm�F�x � ��p (F dUdx + 
 "pF +mT �F�p #) = 0 (3)If the temperature of the bath T is low enough (T � U1), thenthe rate of es
ape is low as well. So, the distribution fun
tionwill 
ome to approximate equilibrium:F / N(t) exp 24� p22mT � U(x)T 35 ; �� = �0� p22m + U1A� T (4)in a relatively short time, while the total number N(t) 
hangesslowly.The normalization of the distribution fun
tion (4) is determinedmainly by the shape of the potential near its minimumU(x) = �U1 + m
212 (x� xmin)2;whi
h givesF (x; p; T ) = N(t)
12�T exp8<:� 1T 24U1 + U(x) + p22m359=; ; (5)where only the total number N(t) depends on t. The total
ux from the trap J may be expressed through the distributionfun
tion: J = 1m Z dp p F (p):2



Sin
e J is proportional to N ,_N = �J = �N� ;where 1=� = J=N is the es
ape rate.Thus, our purpose is to �nd � . To do this we must solve thestationary FP-equationpm �F�x � ��p fF dUdx + 
[pF +mT �F�p ℄g = 0 (6)with the boundary 
onditionsF (x; p; T )j� = N(t)
12�T exp8<:� 1T 24U1 + U(x) + p22m359=; ; (7)�� = �0� p22m + U1A� T; x! xmin; F (x! +1)! 0: (8)Two regimes of es
apeA parti
le, trapped in our potential well, es
apes from it, whatleads to depletion of the distribution fun
tion in the energy rangeof width T near the barrier top, where the potential may berepresented asU(x) = �m!2x22 ; ! � 
; m!2x2 � U1:The distribution fun
tion at smaller energies is largely unper-turbed.The damping rate 
 has the same dimension as that of frequen
y.So, if 
 � !, then our parti
le moves aperiodi
ally. In the op-posite limit 
 � ! the parti
le moves almost periodi
ally, losing3



in every period of os
illation a relative part of its energy of theorder of 
=!. Thus, the energy loss per period Æ1 is given byÆ1 � 
U1!There are, therefore, two regimes of under-damped motion:i). Æ1 � T andii). Æ1 � T .In the 
ase i). our parti
le 
omes to the es
ape energy rangeonly on
e; in the 
ase ii). it 
omes repeatedly.Integral equationWe assume that under 
onditions of under-damping (
 � !, butÆ1 � T or Æ1 � T ) the es
ape rate is determined by energies
lose to zero. It is 
onvenient to introdu
e new variablesp�(�; x) = �q2m[�� U(x)℄; (9)whi
h allow to express the derivatives in the form: ��p!x = p�m  ���!x (10) ��x!p =  ��x!� + dUdx  ���!x (11)It is natural now to de�ne distribution fun
tions for left(right)moving parti
les fR;L(�; x) = 1N F [p�; x; �℄ (12)We'll see that it is possible to set � = 0 into p�(�; x). Under thisassumption, the FP equations take the form�fR;L�x = �q�2mU(x) ��� 24fR;L + T �fR;L�� 35 (13)4



subje
t to the boundary 
onditionsfR(�; x1(�)) = fL(�; x1(�)); �� U [x2(�)℄ = 0; (14)fR(�; x2(�)) = fL(�; x2(�)); � < 0; �� U [x2(�)℄ = 0; (15)fL(�; 0) = 0; � > 0: (16)Here x1(2)(�) denote stoping points at left(right) side of potentialwell and Eq (16) shows that there is no 
ux from the right at� > 0. The FP equations 
ould be simpli�ed if we introdu
e thea
tion S(x; �) instead of x, using the relations:dSdx = �q2m[�� U(x)℄; dSdx = �q�2mU(x); � = 0: (17)Therefore, the FP equation has the form�fR;L�S = 
 ��� [fR;L + T �fR;L�� ℄ (18)This di�erential equation is already so similar to the di�usionequation, that we 
an rewrite it in the integral form withoutfurther explanationf(�; S) = Z +1�1 g(�� �`; S � S 0)f(�`; S 0)d�0; (19)where g(�; 0) = Æ(�). The expli
it form for g(�; S) isg(�; S) = vuut 14�
ST exp 24�(�+ 
S)24
ST 35 (20)The evolution of the distribution fun
tion, as a result of oneos
illation, isg(�) = g(�; S1) = vuut 14�Æ1T exp 24�(�+ Æ1)24Æ1T 35 : (21)5



Thus, the fun
tion, whi
h was equal to f0(�) at the barrier's topwill be transformed in one period of os
illation intoZ 0�1 d�0f0(�0)g(�� �`);where it is taken into a

ount that only f(�) at � < 0 
ontributeto the evolution sin
e f(�) at � > 0 
orresponds to es
apingparti
les. Thus,f(�) = vuut 14�Æ1T Z 0�1 d�0f0(�0) exp 24�(�� �` + Æ1)24Æ1T 35 : (22)After one os
illation the distribution is shifted by Æ1 and broad-ened with dispersion � = hÆ2i1=2 = (2Æ1T )1=2. Thus, if Æ1 � T ,then Æ1 � �� T . As ��� T ,f(�) = 
12�T exp ��+ UT ! (23)The 
ux J 
an also be expressed through solution of the integralequation ��1 = J = Z +10 f(�)d�where the identity d� = pdp=m is used. If Æ1 � T , then Æ1 �� � T , and the kernel of the integral equation (22) may beexpaned in energy di�eren
e. Upon the integration over energy�0 it yields a di�erential equation instead of an integral one:dd�  T dfd� + f! = 0: (24)We 
an redu
e its order to get the equationT dfd� + f = J�: (25)6



The solution of Eq (25) 
ompatible with the boundary 
ondi-tions may be found in the formf(�) = A 
12�T e�U1=T (e�=T � 1) (26)whi
h gives us the es
ape rate��1 = �Æ1T dfd� j�=0 = 
1Æ12�T e�U1=T (27)We are looking for the expression for the es
ape rate in the form��1 = A
12� e�U1=T (28)and see that A is linear in Æ1=T at Æ1 � T . We will shortly seethat A = 1 at Æ1 � T . Thus, our purpose is to mat
h these twoasymptotes.The Wiener-Hopf methodThe right hand side of our equation has the form of 
onvolutionof two fun
tions f and g on the negative half-axis:f(�) = Z 0�1 d�0g(�� �0)f(�0)Wiener and Hopf invented their method spe
ially for solving theequations of exa
tly this kind. Following their pres
ription weintrodu
e the two half-axis Fourier transformations��(�) = 2�
1 exp  U1T ! Z +1�1 d�f(�) �(��) exp 24(2i�+ 1)�2T 35 (29)Comparison with the normalization 
ondition givesA = �+  i2! (30)7



The boundary 
onditionf(�) = 
12�T exp  ��+ U1T !as �! �1means that ��(�) has a pole at � = i=2 and ��(�) =�1(� + i=2)�1 at j� + i=2j � 1. The Fourier transform of theintegral equation has the form�+(�) + ��(�) = g(�)��(�); (31)g(�) = exp "�  �2 + 14! Æ1T # (32)Thus, �+(�) = �G(�)��(�);where G(�) = 1� exp "�  �2 + 14! Æ1T # (33)It is important to note that �+(�) is a holomorphi
 fun
tion atIm� > ��+ (�+ > 0), and ��(�) is a holomorphous fun
tionat Im� < �� < 0 with the only ex
eption for its pole at � =�i=2. Thus there is a stripe where both these fun
tions areholomorphous. The next step of theWiener-Hopf pro
edure is torepresentG(�) in a fa
torised formG(�) = G+(�)�G�(�), whereG+ and G� are entire fun
tions whi
h have no zeros the upperand lower half-planes respe
tively. If we manage to fa
torize G,then �+(�)G+(�) = �G�(�)��(�): (34)It is a good idea to eliminate the pole of ��(�) at � = �i=2�+(�)G+(�) (�+ i2) = �G�(�)��(�) (�+ i2) (35)8



Both sides of Eq (34) are holomorphous fun
tions in 
ertainareas and they 
oin
ide in the stripe where these areas overlap.Therefore, they are both holomorphous, equal in the whole planein
luding the in�nity and, a

ording to the Liouville theorem,they both are equal to a 
onstant. Therefore,��(�) = � i�+ i=2 G�(�i=2)G�(�) (36)�+(�) = i G�(�i=2)G+(�)�+ i=2 (37)As for the pre-exponential fa
tor A, it is determined by Eq (30)A = �+(i=2) = jG+(i=2)j2Thus, in order to �nd the es
ape rate, we don't need even to in-vert Furrier transform for ��(�) . It is enough to split the kernelG into retarded and advan
ed parts. This problem of fa
toriza-tion may be redu
ed to the problem of an additive splitting bytaking the logarithmslogG(�) = logG+(�) + logG�(�)Now we 
an express logG� through logGlogG�(�) = � 12�i Z +1�1 logG(�0)�0 � � � d�0 (38)and, �nally,G�(�) = exp0�� 12�i Z +1�1 logG(�0)�0 � � d�01A (39)Thus, as a result,A = exp8<: 12� Z +1�1 d��2 + 14 ln0�1� exp0��Æ1(�2 + 14)T 1A1A9=; (40)9



Now we are able to study the limiting 
ases. If Æ1 � T , we 
anexpand the exponent under the sign of the logarithm, andA = exp8<: 12� Z +1�1 d��2 + 14 ln0�Æ1(�2 + 14)T 1A9=; == Æ1T exp8<: 12� Z +1�1 d��2 + 149=; = Æ1T (41)As Æ1 � T ,A = exp8<:� 12� Z +1�1 d��2 + 14 exp �Æ1T  �2 + 14!!9=; (42)Intermediate behavior is represented in the �gure.One more question whi
h may intrigue the reader relates to themean energy of an es
aping parti
le. Sin
e the distribution fun
-tion near the barrier top has the formf(�) = 
14�2T Z +1�1 �+(�) exp(� �T  �i�+ 12!) d� (43)the mean energy may also be expressed through the Wiener-Hopf solution< � > = R+10 f(�)�d�R+10 f(�)d� = T 0�d log�+(�)d� 1A�=i=2 == T (1 + 2� Z �=20 (1� 2 
os2 x) ln  Æ14T 
os2 x!) (44)For Æ1 � T the integral in the bra
kets is negligible and < � >=T . For Æ1 � T we again 
an expand the exponent under thesign of logarithm and< � >T = 1 + 2� Z �=20 (1� 
os2 x) ln( Æ14T 
os2 x) dx == �(1=2)vuut Æ1�T = :82vuutÆ1T (45)10



whi
h is understandable sin
e under 
onditions of very low vis-
osity the Langevine 
u
tuating for
e is weak as well and it doesnot a

elerate a parti
le even to energy T over the top of thebarrier.Finally, we must emphasize that su
h a long and stressful workwas absolutely ne
essary and led to 
omplete su

ess.
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