Tale 9
on Hidden Symmetry of
Kepler’s Problem and
Accidental Degeneracy in
Hydrogen Atom

Classical Mechanics. Orbital Motion

Kepler’s problem has the Hamiltonian

2
g=r _ (1)
2m r
It is known since Kepler that the orbits of the planets in
the gravitational field of Sun are closed curves - the el-
lipses. Already this is quite an unusual thing. Indeed, two
coordinates x and y and two components of momentum
p, and p, form a four-dimensional phase space. The energy
and angular momentum conservation laws H (p,r) = E and

rp, — yp, = L provide two constraints, which reduce the
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number of independent degrees of freedom to two. There-
fore, the invariant manifold is a two-dimensional surface in
the four-dimensional phase space. One can see that this
surface has no edges. A trajectory {r(¢), p(¢)} corresponds
to a one-parameter line which belongs to this surface. Un-
der some initial conditions this line in the phase space may
be closed, which means that periods of evolutions in z and
y are equal. This would also mean that the orbit in the
real space is a closed line as well. But this cannot not be a
general case. Quite the contrary, general case corresponds
to a line, winding around on invariant surface. This corre-
sponds to a rosette in the real space. That very fact that
the orbits in the Kepler’s problem are closed independently
from initial conditions may mean that there are more con-
straints which reduce the number of independent degrees
of freedom to one. Show where this additional constraint
comes from.

Fock’s sphere

Energy conservations gives for the negative energies:

2 2
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which allows to express the radius r through the momentum

p:

_ 2ma
pi + p*
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Infinitesimal action
dS = —rdp

is minimal when r and p are parallel (this also follows from
equation of motion). Therefore,

, dp2 + dPZ 5
2+ ) 3)

It is convenient at this stage to make a stereo-graphic pro-
jection:

dS* = (2ma)

Pz = Po COS ¢ cot g (4)
Py = posin ¢ cot g (5)

which gives after substitution of (4) and (5) into Eq (3):
ds® = (%)2 (6 + sin® 6dg”) . (6)

One can easy recognize a natural metric on 2D sphere in
expression in the brackets in the right hand side of Eq (6).
Principle of the less action reads, therefore, as a condition
that all the trajectories of the Kepler’s problem in the mo-
mentum space are the geodesic lines on the stereo-graphic
sphere (4, 5). The geodesic lines on any sphere are great
circles. Being projected to the plane (p,,p,), these circles
give the ellipses.

It follows from Eqs(2), (4) and (5) that

2 7,
r—= n’;oz sin? —. (7)
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The equation of motions says that

4
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Using parameterizations (4), (5), calculating time deriva-
tives of the z- and y-components of the momentum p and
substituting them into Eq (9), we, finally, obtain:

1 om2a\ /2 _ |
sin /2 - (%) ( sin? 0 ¢? + §* )1/4; (10)
0
4 2 . ‘
b = mpi? ((sin*0 ¢* + 6% )% (11)

Anti-Lagrangian and Conservation Laws

After the Fock sphere has been constructed, it easy to de-
velop the relevant Lagrangian formalism. Since the Fock
sphere has been constructed in the momentum space, it is
convenient to introduce the “anti-Lagrangian” E(p, p):

~ . ) . OH
L(p,p) = —pr —H(p,r), p=5"

The result of this substitution gives the anti-Lagrangian for
the Kepler problem (1):

(12)

2
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L 5 +2a'’* (p?) (13)
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Using the parameterizations (4), (5), we may express the
anti-Lagrangian through the angles § and ¢ on the stereo-
graphic sphere and their time derivatives 6 and ¢:

. 2 0 2 : )
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The anti-Lagrangian contains two parts: potential and ki-
netic energy. The former forms the first term in Eq (14),
while the latter corresponds to the second term. The ex-
pression in square brackets is the square of the speed v =
(v3 + v3)'/? of the point on the stereo-graphic sphere.

The anti-Lagrangian (14) does not depend on azimuthal
angle ¢ (¢ is a cyclic variable). Therefore, the canonically
conjugated momentum [, = 85/(% is an integral of the

motion:
oL 2 inZ@ .9
=222 S 7 5T Gng. (15)
8¢  po y/ sin?6 ¢? + 62 po v
At pere-helium and affelium v4 = v and, therefore,
I,
sin 90 = Po .
2m «
and Eq (15) reads
sinfy = -2 sin 6. (16)
v

Eq (16) explicitely means that the trajectory on the stere-
graphic sphere belongs to the plane which has the angle 6
with the vertical axis. Thus, this trajectory is the line of
the crossing of the mentioned plane with the sphere: the
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great circle.

Using the inverse stereo-graphic projecton, we can prove
that the conservation of the invarian I, corresponds in the
real space to conservation of the angular momentum L =
TPy — YPo-

It is also clear, that there are two more rotations of the
stereo-graphic sphere (around axes z and y):

d¢ = cotf cot ¢ 66 (17)
d¢p = — cotf tan¢ 06 (18)

respectively. Both these two rotations map the sphere on
itself and map any geodesic line on another geodesic line.
Therefore, the anti-Lagrangian must get nothing after these
rotations but a total time derivative (check this). This im-
plies existence of two more integrals of the motion I, and
I,. Analogously to I, being proportional to the angular
momentum L, these additional integrals of the moton I,
and [, are proportianal to the compotents of the, so called,
Runge-Lentz vectors:

A:-ﬁﬁ(gﬁﬂ—gg (19)

m r

Quantum Mechanics.
Accidental Degeneracy in 2D Hydrogen
Atom

This section follows to ideas of the paper by Wolfgang Pauli
(1926) in which he derived the Balmer serial law for spectra
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of the Hydrogen atom from the Matrix Quantum Mechan-
ics. The difference with this original derivation, made de-
liberately, is that the space dimension is chosen to be equal
to two.

First of all, it is necessary to generalize the expression for
the Runge-Lentz vector to make it valid for non-commuting
coordinate and momentum.

Ag = —/m - ([pL]ﬂ _[Lplp 7’5>

2m 2m r

The Runge-Lentz vector for two-dimensional electron has
two components: A, and A,. Direct calculation gives that

1
A*=2H <L2 + Z) + ma? (20)
and the commutation relations have the form
(A, Ay] = —2i1HL (21)
L, A] = 1A, (22)
[L, Ay] = —iA, (23)

In this subsection we discuss properties of the bound states,
which means that the values of energy E, =< n|H|n > are
supposed to be negative. Therefore, two hermitian opera-
tors

Axay
Ay y =
Y /_2H

are well defined. As a result the commutation relations

A

could be rewritten as

lag,a)] = iL (24)
[L,a,] = iay, (25)
[L,a,] = —ia, (26)
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and the Eq(20) take the form

1 ma?

2 2
L= ——
a” + 4+—2H

(27)

After performing this routine job we are prepare to be sur-
prised by its result. Indeed, we see that the commutation
relations in the form of Eqs (24,25,26) forms the su(2)-
algebra (or isomorphous algebra so(3)). This means that
the values a,, and L form three components of the “spin”
j, which commutes with Hamiltonians H. Angular momen-
tum L is z component of total momentum 5. Since L has
only integer values, 7 also has only integer values, which
means that the dynamic symmetry of the Kepler’s problem
is rather SO(3) than SU(2). Therefore, all bound states
of 2D electron in the Coulomb potential form multiplets
with total integer “spin” j . The values of energy Ej, cor-
responding to this “spins”, may be found from Eq(27)
mao? 1

or, keeping in mind that j =n —1forn=1,2,3..,

moz2

BT o 12p

(29)
Due to this condition the values of the angular momentum
L are limited by the integers [ which don’t exceed n—1. The
fact, that all states with different values of [, but the same
7 have equal energies, is called “the accidental degeneracy”.
If the Coulomb potential is perturbed by a perturbation of
a general form, the multiplets are split into doublets with



L = +l.
Finally, every multiplet of the egenstates of the hydrogen
atom forms a basis of an irreducible representation of the
the algebra so(3). A natural connection between this al-
gebra and the Fock sphere will be discussed in the next
section.

Wave functions

Pauli’s finding was continued by Fock (see Fock’s sphere),
who has found explicit form the noticed symmetry and was
able to show explicit way of finding the eigenstates.

Since the energy of the ground state is

By = —2ma?, Po = 2ma.

The ground state is a constant on the stereo-graphic sphere.
Therefore, the wave function of the ground state in the
momentum representation is

1
Y1(p) o 2 pt (30)

In the coordinate representation, the wave function has the
following form:

dalr) oc [ ppj_pp [ dgeirreese

oc/ pd Jopr) = Ko(por), (31)
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where Ky(z) is the MacDonald function. The first excited
state corresponds to the energy

2ma’ _ ma

9 ) bo = 3

and forms a triplet 129 and 1 11. On the stereo-graphic
sphere, these functions corresponds to the p-triplet:

Yoo x cosl;  1hg i o sinf exp{* ip}. (32)

By =

Inverting the stereo-graphic projection, we find the func-
tions 190(p) and 9 4+ (P).

2 2
by —D
p% +i
¢2,i(P) X pg _|_p2 € Z¢' (34)

In order to find the functions in the coordinates represen-
tation, we need to perform the Furrier transform.

A remarkable quality of the proposed method is that we
did not deal at any stage with an explicit solution of the
Schrodinger equation, replacing all the troubles by the men-
tioned stereo-graphic projecting.

Continuum

Let us begin with classical mechanics. The energy E = p3/2m is positive.
Therefore

2ma
r=——- (35)
p? - pj
2 2ma \? 2 2
dS*® = 71)2 — 2 (dpy + dpy) (36)
0
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The hyperbolic projection

0 0
Pz = Po cos ¢ coth 5; Pz = Pposin¢ coth 3

projects the outer part of the circle p2 + pz = p3 to hyperboloid, and the
metric (41) takes the form

2
ds? = <@> (62 + sinh? dg?) (37)
bo

of the natural metric on this hyperboloid. The group of motion of the two-
sheets Hyperboloid is SO(2,1). Since this group is not compact, its repre-
sentations are labled not by any discrete quantum numbers but a contineous
quantum number £ (0 < k < 00).

The Laplace-Beltrami operator on hyperboloid has the following form:

5 1 0 0 1 0?
2 .
= 2 (sinhf =)+ —— 2. 38

V= Snbo 90 (S‘n ae) T 5o 992 (38)
Looking for its eigenfinctions in the form vy (0, ¢) = €™ Ry (cosh 8), we
get the equation for Ry, (z):

d’R

o7 ~m?R - k*(z*> -~ 1) R=0. (39)
Solutions of Eq (39) give the eigenfunctions on the stereographic hyper-
boloid, which may be transformed the inverted stereo-graphy into the func-

tions on the momentum plane.

Zero energy

At zero energy

2ma
r= 40
o2 (40)
2mar\ 2
2 _ 2 2
as? = (255 dp? + ) (41)
This provokes an inversion ¢ = p/p?, which immediately gives
dS* = 2ma(del + dE}) (42)

This implies that every trajectory in the (&;,&,) -plane is a straight line and
the trajectories in the p-plane are the circles (p — p,/2)% = pf,/4 which pass
through the origin. Here p, is the momentum in the pere-helium.



