Tale 4
Drunkard and Policemen

This short tale is about the problem of a random walk in the pre-
sence of traps. Imagine a drunkard wandering at random in a typical
American town. The latter is particularly suitable for our purposes,
because its map is a rectangular grid of streets and avenues. Let our
drunkard, who is initially at a cross-roads, go one block of length [ in
time 7 in a random direction. At the next cross-roads he makes a new
decision and goes another block. The poor fellow keeps wandering
around the town until he meets one of the policemen, who are distri-
buted randomly with the density ¢ and remain in the same place. The
policeman seizes the drunkard ending his random walk. The question
is: what is the probability that the drunkard will survive for a time
t, after he has started his walk, assuming that ¢ is much larger, than
the time he needs to go one block (£ > 7) .

The solution may be found without going into any details of Ameri-
can town building, since for large time intervals the relevant distances
are large as well. The probability w;(r) of finding our drunkard at a
point r in a time ¢, if he starts from the origin, is given by the diffusion
equation:

[% — DV? + U, Z d(r — r;)]we(r) = 0(r)o(t). (1)
7

where D = 2I?/7 is the diffusion coefficient. The sum is taken over
all policemen. Uj is a constant which has the same dimensions as D.
The term in Uy in Eq (1) is responsible for decreasing the probability
wy(r) due to drunkard’s encounters with the policemen. (This is why
it is important that Uy is positive.) It is convenient to use the Laplace
transform

wy(r) = [~ wy(r)e dt (2)

Then Eq (1) can be rewritten in the form
[s — DV? 4+ U(r)]w,(r) = 6(r); Ul(r) = Upd o(r—r;). (3)
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Equation (3) is similar to the time-independent Schroedinger equation,
where -s plays the role of energy. If ¢,(r) is the eigenfunction, which
corresponds to the eigenvalue FE,, then

¢n(r)¢;,(0)
w,(r) = zn: s+ E,

Since U > 0, all E,, > 0. As a result, all the poles of w(s,r) lie on the
negative half of the real axis. Using the inverse transform, we get

wi(r) = 3 6u(r) 65 (0)c

To make the problem simpler, let us consider an ensemble of drun-
kards, who have started their walks at all cross-roads of the town, and
find the total number of survivals to time ¢. This allows us to ignore
the r-dependence of w. As a result, we obtain, with exponential ac-
curacy:

wy oc S e Pt = /OOO dEg(E)e ¥ (4)

where

(E) = T 3(E ~ E,)

is the density of states. In the 2D case and for U(r) = 0 the density
of states is

o |

- /5(E B Dk2) (27)2 27D

o(E)

If U(r) # 0, then g(E) looks like it is shown in Fig 1. In the mean
field approximation the real density of states is replaced by a shifted
step-function:

g(E) EQ(E Eo) Eo X CUo, (5)

which leads to
w(t) oc e Bt Ey o clp.

But this approximation is not good, because, using it, we miss the
tail of the density of states at very low energies. As we can see from
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Eq (4), it is this tail that determines the long time asymptote of the
probability wy.

The low energy states are the bound states of our fictitious Schroe-
dinger equation caused by rare fluctuations of the random potential,
like those shown in Fig.3. If the energy E is very small, these fluc-
tuations of the random potential correspond to U(r) = 0 in the inner
area of a circle of radius R and about cU, outside the circle. For
E < cUy the potential walls could be considered infinitely high. The
wave function of the ground state in such a well is the zeroth order
Bessel function Jy(y/F/Dr) that obeys the condition

E

This condition determines the minimal radius Rg of the potential
fluctuation, which has a bound state of energy FE.

E
Rgp :Ml\l;’

where p; = 2.4048 is the first root of the Bessel function Jy(r).
The probability P(Rg) of such a fluctuation is given by the Poisson
formula

P(Rg) = exp[—7mcRE],
so, the density of states is

(6)

Using Eq (4) and Eq (6), we arrive at the following expression for
the probability

—cmpd - |

9(E) o< exp g]

wy X /dEe_Et_%, E, =crpiD. (7)
This integral can be calculated by the method of steepest descent:
0=t 2
-t 7



il E* -~ E*
t E
and, finally,
w; o< exp|—2y/emrui Dt] (8)

So, our drunkard will survive to time ¢ if:

1. he comes to an empty space of size
L=\/c12L, Li> L> 12

where L; = v/ Dt is the characteristic length of diffusion in time
t, and ¢~ '/? is the mean distance between the policemen. So the
drunkard must be lucky in the first place;

2. he does not leave this area.

A better strategy would be, of course, not to drink at all.



