Tale 3
Supersymmetric Quantum Mechanics

1. let us begin from well-known example of a linear oscillator,

which has the Hamiltonian:
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The Hamiltonians of Eqgs (1) and (3) lead to a differential equa-
tion of the second order, which, however, could be reduced to
that of the first order by introduction the creation and annihi-
lation operators a* and a:
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This remarkable substitution allows to find all energy levels.
Indeed,
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then
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The wave functions of the excited states could be found by the
action of the a*-operator on (q).

One more example: Dirac’s electron in two dimensions with
the spin 1/2 and Lande-factor g = 2. Its Hamiltonian has the
form
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This Hamiltonian' can be written as

H = %hw(cﬁa +aat + fTf— ffY)
where
a0 =ata—aat =1 {f*,f}=fTF+ffT =1

The operators a and at are Bose-like, while the operators f and
f* are Fermi-like. So,

H = hw(a™a+ % +frf - %) =hw(a*a+ fTf) = hw(np + ng).

'We omitted an infinite degeneracy in values of momenta p, which does not enter,
finally, into Hamiltonian



Therefore, the energy levels E(np, nr) are doubly degenerate, if
the numbers of bosons and fermions both do not vanish. If one
introduces the vector notation

cb:(“), ot = (at f)

f
then
+ aa™ af” +
(I)(I):(fcﬁ ff+>’ H=3"0.

The vector ® may be transformed by the unitary transformation
® = UD. It gives 't = ®+UT for the conjugate vector ®T,
and &P = ¢TUTUD = &+®. The unitary matrix U has a

substructure
Uaa Uaf )
U =
(Ufa Uty

It is convenient now to introduce the operators transforming
fermions into bosons and vice versa

Qoca’f QFoxaf?
Q\nB,nF >x np+1,np—1 > QﬂnB,nF >x np—1,np+1 >

The operators Q and Q™ are nilpotent, i.e. Q% = (QF)?=0. Tt
is also convenient to introduce the Hermitian operators

A

Q=Q"+Q, Q=-i(Q"-Q)
Direct calculation gives

{Q1,Q2} = Q1Q2 + Q2Q1 =0,

and

Q=0 ={Q",Q}

3



If the Hamiltonian has the form H = {Q*, @}, then the system
this Hamiltonian describes is supersymmetrically invariant, i.e
[H,Q] = [H,Q"] = [H,Q12] = 0. It is interesting to look at the
superalgebra of the operators

{Qi,Q;} =20;H; [H,Q;]=0 1,j=1,2

A mathematician would say that this is the Lie Superalgebra
or the Gradiate Lie algebra, but it sounds more like a boring
science rather, than a fairy tale. In the fairy tale, Q-operators
are square roots of the Hamiltonian H. Therefore, if

Q11 = qib1,
then

Hiyy = q2¢1
and if

V2 = Qatn,
then

Q1Y2 = Q1Q2¢1 = —Q2Q1¢¥1 = —qih

i.e. 1y is an eigenfunction of Ql with the eigenvalue equal to
—q. On the other hand, since [H, Q] = 0,

Hipy = HQu1 = QaHvy = Qaq*1 = ¢*1bs

and, therefore, 15 is an eigenfunction of H with the same eigen-
value ¢2. Therefore, if ¢ # 0, then all levels of H are two-fold
degenerate (and correspond to superpartners).

One more step forward. Consider the operators QLQ, Q, Q*
acting on spinors (np = 0 and nyp = 1). In this basis f* = o™



and f = o, while Qt = Bf" and Q = B*f where B is an
arbitrary boson operator. Introducing

Bt = By +iB; B =B —iBs
one has
Q1= Q"+Q = (B1—iBy)
In the same way,

Q2 = —i(Q" — Q) = Bioy — Baoy

, o1 — 10
+(B1+232)% = Bio1+ B0

o1+ 109

and B, B* B, B*
H=0q=0l= 1D }+2[’ Jo

The particular case B=5b corresponds to the case of Dirac’s

electron in magnetic field, considered above. The representa-
tion we have found gives hope of splitting more complicated
Hamiltonians, than we considered before. The main point of
this splitting is to reduce the order of the Hamiltonian with
respect to derivatives. Consider, for instance,

ip+ W(x) B_ —ip+ W(z)
\/§ ) - \/§ )
{B,B*} =p*+W? [B,B=W.

B =

Then,
P+ W24+ Wy

H = :
2

or, in the matrix form,

g (He 0)_1 PP+ W2+W' 0\ (BB 0
- \0 H.) 2\0 p*+W?*-W') \0 B'B
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Thus, we have found a general form of supersymmetric quantum
mechanics. If now we want to solve an equation, say, of the form

2 2 /
p+W*—-W
Hoyp=2"0 = By (8)
we must recall that it has a superpartner
2 2 /
p + W+ W
Hop =22y = By 9)

These two operators H. have the same eigenvalues E,, except
for the eigenvalue Fy = 0, which only the operator H_ has.
This very special eigenfunction ¢y is solution of the first order
equation

By =0

Since H_ = B+B, the function vy is the eigenfunction of H_
with the eigenvalue Ey = 0. Let the function ¢y be an eigen-
function of H, with the eigenvalue Ey. Then B+¢1 is an eigen-
function of H_ with the same eigenvalue. This helps us to solve
the Schroedinger equation for a particular potential.

2. Let us choose

W(a, z) = atanhz, (10)
then
1 ala+1
Ho(a)= 2P +a2 - 221D (1)
cosh” z
ala—1
Hi(a) = 207 + a2~ 227D, (12)
cosh” z
Now we can see that
a? o
H =H (a) — = 4+ —
o) = H (o)~ T+



for a; = a — 1. Thus, in the potential well shown in the Fig 1
there is a level with £ = 0. If a > 0, then

af—a] o —(a—1)° 2a-1

T2 2 T2
E_042—04%4—04%—043_042—(04—2)2_404—4

2T 2 - 2 T2
E_(aQ—a%)—l—(a%_l—ai)_aQ—(a—n)2_2na—n2
" 2 N 2 2

It is obvious now that the exact solvability of the Schroedinger
equation with the potential

a(a+1)
cosh? z

U(z) =

is not accidental fact. It is connected with the hidden super-
symmetry of the Hamiltonian, which has the eigenvalues

(a—n)?

B, =—
2

for all n, satisfying the condition 0 < n < [a+1] 2. Tt turns out to
be convenient, in order to take the supersymmetry into account
explicitly, to consider not only one Schroedinger equation

H 9y = Ev,

but a couple of them, adding the superpartner equation. The
matrix Hamiltonian
H, 0
H=| "

2Notation [z] stays for integer par of =




has the supersymmetry, which helps to solve the equation.
3. One may remember, from the tale about solitons, that the
solutions of the Schroedinger equation with the potential
1

cosh’ z

U(z) =

correspond to zero reflection coefficient at all positive energies.
This quite strange statement may be supported by arguments,
based on supersymmetry. Indeed, let a = 1 and the superpart-
ners have the form

2
P 1 1
H =B"B="—— — 13
2 cosh2x+2’ (13)
2
1
H+:BB+:% : (14)

Therefore, the Hamiltonian H_ with the considered potential is
supersymmetrically equivalent to the free motion Hamiltonian
H.. The Hamiltonian H_ has a zero level, and the eigenfunc-
tion, which corresponds to this level, obeys the equation

- 9] -
By = (% —|—tanhx)¢é =0

which has the solution 1&6_) = cosh™'z. On the other hand,
the ground state wave function of the Hamiltonian H, is just a
constant and all the rest are running waves ¢](C+) = exp'™ The
operator BT transforms the eigenfunctions of the Hamiltonian
H™ into the eigenfunctions of the Hamiltonian H_ with the same
energy. Therefore,

_ : 0 : /
) = Beitr = (_8— + tanh z)e™ = (—ik + tanh z)e’*
xr
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Thus, we have constructed the eigenfunction of continuous spec-
trum, valid at any real values of x and containing no reflected
wave. Therefore the reflection coefficient is zero due to the su-
persymmetric equivalence of the Hamiltonian considered to that
with no potential at all and of the eigenfunctions of its continu-
ous spectrum to simple running waves. It is interesting that the
wave function

,(c;)o = tanhz

corresponds to the bottom of continuous spectrum in the soliton-
like potential.



