Second Tale
Waves on Shallow Water

KdV Equation

This story started in Scotland near Edinburgh and relates to
tsunami in the ocean. Consider waves in shallow water, whose
depth A is much smaller than the lengths of the waves on its
surface. The equation of motion and the continuity condition
for this waves have the form

ov ov oh
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where v is the velocity in the water and g is the gravitational
constant.

Introducing the height of the wave u(z,t) = h—hy, excluding the
velocity v(z,t) and taking into account the lowest nonlinearity,

Figure 1: Adiabatic pendulum
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we have 92 52 92
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If we seek the solution of this equation in the form of waves
running either to the right or to the left, i.e.

u(z,t) = ug1(z £1,1), (4)

we reduce the order of the time derivative:

ou ou 3|9

This equation describes nonlinear evolution in the reference frame
running with the wave velocity. If we take into also account the
dispersion of this velocity due to the finite depth

o) = oo |1 - P 0

our equation will take on the following form

o o ou_
ot  0z3 oxr
which has a splendid name of the Korteveg - de Vries (KdV)

equation. This equation describes the time evolution of a per-
turbation which runs to the right in the frame, which itself runs

0 (7)

to the right with the velocity of the waves of infinitesimal am-
plitude. The weak dispersion and weak nonlinearity in the wave
propagation are taken into account . All the constants (the ve-
locity of the wave, its dispersion and nonlinearity) have been
eliminated by an appropriate choice of the units for ¢,z and w.
If we consider waves of finite amplitude, then in our reference
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frame their crests run with a positive and their wells with a
negative velocity. What shape should a localized bump on the
surface of the water have to move steady, and to what its ve-
locity is equal to? The answer was, perhaps, already known to
Rayleigh:

r — vt _3

: v==6A, a %= 2A (8)

This wave is called a solitary wave or a soliton. The higher
and the narrower a soliton is, the faster it moves. Therefore,
if a high soliton moves behind a small one, they collide. The
numerical solution of the KdV equation shows that, as a result
of such a collision, the heights of both solitons remain exactly
the same and they only swap their places. This result obtained
by Kruscal and Zabussky has given rise to the suspicion that

u(z,t) = Acosh™

a

the KAV equation is an unusual nonlinear equation, which does
not mix the modes. Perhaps, there are special conservation
laws, which guarantee the conservation of the heights of colliding
solitons.

The Inverse Scattering Problem for Schroedinger Equa-
tion and the Solutions of KdV Equation

Let us consider the Schroedinger equation

N A d?
Lo = k¢, L=——=+u(z,t), 9
6=k &l )
which contains u(z,t) as a potential. One can prove that the
comutator of the Schroedinger operator L with an operator A:

~ d3 d d
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is equal to
[L, A] = —ugys + 6uzu (11)

Thus, if u(z,t) obeys the KdV equation, the time derivative of
L obeys the so called Lax equation

oL
ot
The Lax equation means, in particular, that the eigenvalue k2 of

the Schroedinger operators (9) does not depend on time ¢, while
the potential does. Indeed,

ok? _(n ‘8L n) =
ot ot

Taking the time derivative of the both parts of the Schroedinger
equation (9) and using the Lax equation (12) for u, we have

— (L, A]. (12)

(n|LA— AL|n)=k*-0=0  (13)

0¢ 0¢
<8t Ad)) <8t * A¢> =0 (14)
Therefore, 96
a7+ Ag (15)

is the eigenfunction of IAJ, corresponding to the eigenvalue k2,
and proportional to ¢ itself. The proportionality coefficient can

be found if we use the asymptote at £ = —oo, where ¢ = e 2,
One has p
a¢ + Ag = 4ik’ (16)

Therefore, if at ¢ = 0 the asymptote, as x = +o00, is
¢ = a(k,0)e”" + b(k,0)et**
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and we have the Gardner-Green-Kruscal-Miura (GGKM) solu-
tions

a(k,t) = a(k,0); bk, t) = b(k,0)e™ ", (18)
Similarly, for the bound states
Lo = —K%¢
the relation
2 9y 09

is valid, and, since
Ol |ojmo0 = b = Ag = —4K3¢
we have the GGKM solution
b(t) = b(0) exp[8x>t]

Thus, we have found the following recipe to solve the KdV equa-
tion with a given initial condition, vanishing at the infinity:

1. Use the initial condition u(z, 0) to find the scattering data:
a(k,0),b(k,0), as well as the parameters of the bound states
k(n) and b(n,0).

2. Using the GGKM solution, find the scattering data at time
L.

3. Use the solution of the inverse scattering problem to restore
u(z,t). To solve the inverse scattering problem, one does
not need to know a(k) and b(k) separately but only their
ratio, i.e. the reflection coefficient r(k) = b(k)/a(k), k(n)
and b(n).



Solitons

It is clear that there are special potentials, playing an exclu-
sive role in the solution of the KdV equation. These are the
potentials which have zero reflection at all positive energies. A
soliton, taken with a negative sign,

r — vt

u(z,t) = Acosh™ , v==6A4, a = %A (19)

a

is an example of such a potential, which has one bound state. It
is clear now why solitons in the Kruscal-Zabussky experiments
did not change their individuality and did not mix with each
other. Indeed, two initially separated solitons form a potential,
which has zero reflection coefficient and bound states in both
soliton wells. In the course of time these energies will not change
and the reflection-less character of the potential will not change
either. Therefore, in the process of collision of two solitons, the
water profile u(z,t) corresponds to a reflection-less potential,
which has the same energies of the bound states. After collision
we have again two separated reflection-less potentials with the
same energies of the bound states. Thus, it is not surprising that
the solitons keep their individualities throughout the collision.

There is another important observation concerning the solu-
tions of the KdV. If the initial potential has non-zero reflection
coefficient and several bound states, it cannot be reduced to
any set of solitons, but the ripples, associated with non-zero re-
flection, interfere with each other and, therefore, the long time
asymptote looks like a set of solitons running at distances, de-
termined by the initial condition.



Appendix. Solitons

The concept of the Lax L A-pair of operators allows to reduce the solution of
the non-linear KdV equation to a solution of the inverse scattering problem,
i.e. to find the potential from the results of scattering by this potential.
A general solution of the inverse scattering problem is not an easy task.
Fortunately, the problem of finding solitons is not that difficult.
We have to find the eigenfunctions of the Schroedinger operator

d2
L= R u(x) (20)
In the continuous spectrum these functions obey the equation
d2
—d—;’f +u(z)y = k*. (21)

there are two sets of linearly independent solutions of Eq. (21)
1 2(z) = exp[Fikz], r — +00; (22)
é12(z) = exp[Fikz], T — —00. (23)

functions v »(z) and ¢y 2(x) are coupled by complex conjugation:

151 = ¢2 = ¢1(_k)? (Z_Sl = ¢2 = ¢1(_k)

These two sets are not independent and are coupled by the scattering matrix

a b
¢i =tijhy, t= ( b G ) : (24)
where a(k) and b(k) are connected with the reflection, r(k), and transmition,

t(k), coefficients
t(k) =a '(k); r(k)=0bk)a (k). (25)
Thus,

d(x, k) = a(k)y(z, k) + b(k)Y(z, k). (26)
The Wronsky determinant W for both pairs of functions does not depend on
the coordinates = and is equal to 2:¢k:
dp L dy



This independence on z exhibits the current conservation. This conservation
also means that

la(k)[* = [b(R)[* =1, [t(k)[* + |r (k)" = 1. (28)

A reflection-less potential has (k) = 0 for all k. This also means that
b(k) = 0, and |a(k)|?* = |t(k)]*> = 1. Since a(k) has zeros at the values
k = ik, connected with the bound states (k2 = E,) and a(k) = 1 at

k — oo, the only way to satisfy the condition (28) is to take

) (29)
where N is the total number of bound states in this potential (the N-soliton
solution). For N =1 (single soliton)

) 1
_ ki d(k=irk) = —. (30)

b(k) = 0, a(k) = o,

And, finally, the wave function, that corresponds to the ground state, has an
asymptote
o(z) = be ™, T — 400 (31)

What potential u(z) gives these scattering data? First of all, Eq (26) reads
now as

¢(x, k) = a(k)y(z, k) + b(k)y (2, k). (32)
It is convenient to use the Schroedinger equation in its integral form
. 1 ptoo
Pz, k) = e ™ — E/ dz'sin k(x — 2")u(z")p(k, z') (33)
Multiplying Eq (33) by e*** we obtain for x (k,z) = ¢(k, x)e'*®
1 [toe . )
xela ) =1 oo [ D k) (39

Similarly, for x_(k,z) = ¥ (k,z)e~"** we have

1 = , /
X—(z,k) =1+ %k dz'[e**@=2) _ 1u(z")x_ (k,z") (35)



The functions x+(z, k) are analytic in the upper (lower) half-planes of the

plane of complex k respectively. Multiplying Eq (32) by a~!e?*®  we obtain

the equation

X+($:k) =
Therefore, the function
| a Y (k)xs(z, k),  Imk >0,
(e, k) = { x_(z, k), Imk < 0. (37)

is meromorphic with a single pole at £ = ix and a value at infinity ®(k =
o0) = 1. There is only one function of this sort, namely

Oz, k) =1+ % (38)

where
[(z) = 2ikd(z, ik)e ™ = 2irp(z, —ik)e ™ = 2ikbyx_(x, —ik)e 2"

Using Eq (37) and setting kK = —ix in Eq (38), we obtain closed equation for
['(z):

I(z) = 2ikbe™2 <1 + ;ﬁ?ﬁ) , (39)

where
['(x) = 2ikd(z, ix)e ™ = 2ir)(z, —ir)e ™™ = 2irby_(z, —ik)e 2"

Using Eq (37) and setting ¥ = —ix in Eq (38), we obtain a closed equation
for T'(z):
1K
[(z) = 2ikbe=2 (1 + ﬂ) . (40)
2K
Egs (35, 37) and (39) allow to express the potential u(z) through the residue
of I':

u(z) = —272%. (41)

Usin
° b(t) = be"t
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and introducing a phase
1
=—1Inb
¢ 2%

we arrive at the single soliton solution:

2 2
u(z,t) = ~

10

cosh? k(z — 4Kt — @)’

(42)



